- Python中使用Graphviz绘制决策树图解
黃昱儒
本文还有配套的精品资源,点击获取简介:Graphviz是一款用于数据可视化和算法流程展示的图形绘制软件,特别适用于Python中绘制决策树和其他图形类型。本安装包包含Graphviz安装程序和配置指南,以及如何在Python中利用pydot库等第三方库进行图形绘制的详细步骤。通过配置环境变量和利用DOT语言,用户可以将决策树模型转换为可视化图形,加深对机器学习模型的理解和调试。1.Graphviz
- 使用numpy或pytorch校验两个张量是否相等
文章目录1、numpy2、pytorch做算法过程中,如果涉及到模型落地,那必然会将原始的深度学习的框架训练好的模型转换成目标硬件模型的格式,如onnx,tensorrt,openvino,tflite;那么就有对比不同格式模型输出的一致性,从而判断模型转换是否成功。1、numpy用到的核心代码就一行,就是:importnumpyasnpnp.testing.assert_allclose(act
- onnx模型部署 python_深度学习模型转换与部署那些事(含ONNX格式详细分析)
weixin_39759270
onnx模型部署python
背景深度学习模型在训练完成之后,部署并应用在生产环境的这一步至关重要,毕竟训练出来的模型不能只接受一些公开数据集和榜单的检验,还需要在真正的业务场景下创造价值,不能只是为了PR而躺在实验机器上在现有条件下,一般涉及到模型的部署就要涉及到模型的转换,而转换的过程也是随着对应平台的不同而不同,一般工程师接触到的平台分为GPU云平台、手机和其他嵌入式设备对于GPU云平台来说,在上面部署本应该是最轻松的事
- nnv开源神经网络验证软件工具
一、软件介绍文末提供程序和源码下载用于神经网络验证的Matlab工具箱,该工具箱实现了可访问性方法,用于分析自主信息物理系统(CPS)领域中带有神经网络控制器的神经网络和控制系统。二、相关工具和软件该工具箱利用神经网络模型转换工具(nnmt)和闭环系统分析、混合系统模型转换和转换工具(HyST)以及CONTINUOUSReachabilityAnalyzer(CORA)三、无需安装即可执行NNV可
- YOLOv8模型在RDK5开发板上的部署指南:.pt到.bin转换与优化实践
pk_xz123456
python算法仿真模型YOLO人工智能rnn深度学习开发语言lstm
以下是针对在RDK5开发板(基于NVIDIAJetsonOrin平台)部署YOLOv8模型的详细技术指南,涵盖从模型转换、优化到部署的全流程:YOLOv8模型在RDK5开发板上的部署指南:.pt到.bin转换与优化实践——基于TensorRT的高性能嵌入式部署方案第一章:技术背景与核心概念1.1RDK5开发板硬件架构NVIDIAJetsonOrinNX核心参数:1024-coreAmpereGPU
- TensorFlow Lite (TFLite) 和 PyTorch Mobile介绍2
追心嵌入式
tensorflowpytorch人工智能
以下是TensorFlowLite(TFLite)和PyTorchMobile两大轻量化框架的核心用途、典型应用场景及在嵌入式开发中的实际价值对比,结合你的OrangePiZero3开发板特性进行说明:TensorFlowLite(TFLite)核心用途嵌入式设备推理:将训练好的TensorFlow模型转换为轻量格式,在资源受限设备(如手机、边缘计算盒子、OrangePi)上高效运行。硬件加速:通
- 【软考高级系统架构论文】论模型驱动架构设计方法及其应用
_Richard_
2025年软考系统架构师系统架构
论文真题模型驱动架构设计是一种用于应用系统开发的软件设计方法,以模型构造、模型转换和精化为核心,提供了一套软件设计的指导规范。在模型驱动架构环境下,通过创建出机器可读和高度抽象的模型实现对不同问题域的描述,这些模型独立于实现技术,以标准化的方式储存,利用模型转换策略来驱动包括分析、设计和实现等在内的整个软件开发过程。请围绕“模型驱动架构设计方法及其应用”论题,依次从以下三个方面进行论述。概要叙述你
- 解决YOLO模型从Python迁移到C++时目标漏检问题——跨语言部署中的关键陷阱与解决方案
马里马里奥-
YOLOpythonc++
问题背景当我们将Python训练的YOLO模型部署到C++环境时,常遇到部分目标漏检问题。这通常源于预处理/后处理差异、数据类型隐式转换或模型转换误差。本文通过完整案例解析核心问题并提供可落地的解决方案。一、常见原因分析预处理不一致Python常用OpenCV(BGR通道,归一化[0,1][0,1][0,1])C++可能误用其他库(如RGB通道,归一化[−1,1][-1,1][−1,1])差异值=
- C++、OpenVINO部署YOLOv5模型的指南(Windows)
马里马里奥-
c++openvinoopencv
C++、OpenVINO部署YOLOv5模型的指南(Windows)一、环境准备硬件要求软件配置二、模型转换流程1.导出ONNX模型2.转换为OpenVINOIR格式三、C++推理实现核心代码结构后处理关键算法四、性能优化技巧五、常见问题解答1:输出形状不匹配2:推理速度不达标六、部署效果展示七、结语一、环境准备硬件要求Intel第6代以上CPU16GB内存50GB可用磁盘空间软件配置Visual
- Cesium1.95中加载模型过多导致内存溢出的解决方案(服务端层面、代码层面、浏览器层面)
duansamve
cesiumchrome
针对Chrome浏览器加载Cesium1.95时因GLB模型和图片过多导致内存溢出的问题,以下是涵盖服务端、代码层和浏览器层的完整优化方案,结合性能瓶颈分析和具体实施策略:一、服务端优化(减少传输与解析压力)1、模型格式转换GLB→3DTiles:将大规模GLB模型转换为3DTiles格式,实现分块加载和视锥体裁剪。使用Cesiumion或gltf-pipeline工具转换,降低单次加载内存压力。
- Hummingbird库:将机器学习模型转换为深度学习模型
萧鼎
python基础到进阶教程机器学习深度学习人工智能
引言随着深度学习在各个领域的广泛应用,研究人员和工程师开始探索如何将传统的机器学习模型(如决策树、随机森林等)转换为可以在GPU上高效运行的神经网络模型。微软推出的Hummingbird库正是为了解决这一需求,它可以将经过训练的传统机器学习模型转换为等效的深度学习模型,从而加速推理并支持跨平台部署。在本博客中,我们将深入探讨Hummingbird的原理、使用方法、适用场景,并通过实验展示其优势。第
- sherpa-onnx 项目亮点解析
杜璟轶Freda
sherpa-onnx项目亮点解析sherpa-onnxk2-fsa/sherpa-onnx:Sherpa-ONNX项目与ONNX格式模型的处理有关,可能涉及将语音识别或者其他领域的模型转换为ONNX格式,并进行优化和部署。项目地址:https://gitcode.com/gh_mirrors/sh/sherpa-onnx1.项目的基础介绍Sherpa-onnx是一个开源项目,旨在提供一个基于ON
- 为什么RAG系统必须引入Rerank?深入解析两阶段检索的价值与挑战
一休哥助手
人工智能RAG
在当今大模型应用中,检索增强生成(RAG)已成为解决知识更新和幻觉问题的关键技术,但超过70%的RAG系统在首次部署后都面临答案不精准的困扰——而引入Rerank重排序机制,正是解开这一困局的关键密钥。一、RAG的精度困境:当“近似”检索遇到生成需求在经典RAG流程中,系统通过以下步骤运作:用户查询被Embedding模型转换为向量在向量数据库中进行相似度搜索(ANN)返回Top-K相关文档提示工
- RKNN-Toolkit 开源项目教程
彭宏彬
RKNN-Toolkit开源项目教程rknn-toolkit项目地址:https://gitcode.com/gh_mirrors/rk/rknn-toolkit1.项目介绍RKNN-Toolkit是一款由Rockchip开发的软件工具包,旨在为开发者提供模型转换、推理以及性能评估等功能,支持在PC和RockchipNPU平台(包括RK1808/RK1806/RK3399Pro/RV1109/RV
- 第3章 开源大模型框架概览3.3 模型转换框架与工具3.3.1 ONNX:跨框架模型转换
AI天才研究院
计算大数据人工智能语言模型AILLMJavaPython架构设计AgentRPA
https://aurigait.com/blog/onnx-onnx-runtime-and-tensortrt/1.背景介绍1.背景介绍开源大模型框架已经成为机器学习和深度学习领域的重要组成部分。这些框架为研究人员和工程师提供了强大的工具,以便更快地构建、训练和部署深度学习模型。在这个系列文章中,我们将深入探讨一些最受欢迎的开源大模型框架,并探讨它们在实际应用中的优势和局限性。在本章中,我们将
- 华为HCIP-Cloud-Service认证H13-821V2.0-001
gong19172316967
HICP学习资料和题库HCIP
1.以下关于HiLens关键能力的说法错误的是?(C)A.HiLens能提供模型优化框架、自动压缩模型能力,将模型转换为目标芯片所支持的模型格式B.在HLens平台上开发的Ski11可以运行到任何基于华为海思芯片的设备上C.HilLens平台只能导入从HodelArts训练的模型D.开放的技能市场预置丰富的技能,用户可以直接下载技能,开发者还可以发布自己技能2.以下关于基于知识图谱的智能问答的说法
- SD模型转换之safetensors转为bin,解决safety_checker 报错问题
致命扼腕
SDAIGC多模态python深度学习计算机视觉服务器人工智能
前言最近同事给发了一个SD的任务,去评测一下效果,对于第一次接触的小白来说一脸懵,遇到了很多问题,写这篇帮大家排坑,自己也方便记录转换模型在转模型之前,我们需要装几个包diffusors,transformers和huggingface_hubpipinstallpackage-ihttps://mirrors.aliyun.com/pypi/simple即可接下来就是python脚本,来自官方h
- 安全稳定的模型转换工具:Ckpt2Safetensors GUI
安全稳定的模型转换工具:Ckpt2SafetensorsGUISafe-and-Stable-Ckpt2Safetensors-Conversion-Tool-GUIConvertyourStableDiffusioncheckpointsquicklyandeasily.项目地址:https://gitcode.com/gh_mirrors/sa/Safe-and-Stable-Ckpt2Saf
- win10 环境进行 python + pytorch + yolov8 + tensorRT( c++版 ) 测试过程记录
狄龙疤
pythonpytorchc++cudatensorRTyolov8计算机视觉
参考博客:1.YOLOv8模型转换pt->onnx(附上代码):https://blog.csdn.net/2303_80018785/article/details/1381949612.yolov8的TensorRT部署(C++版本):https://blog.csdn.net/liujiahao123987/article/details/133892746test.cpp就是使用此博客的d
- 大模型转换为 GGUF 并使用Ollama部署
大模型应用
知识图谱人工智能程序员大模型GGUF
下载的模型都是GGUF格式,那如何部署私有大模型呢?下面详细的对该过程解密:1什么是GGUF?为什么进行转换GGUF格式?1.1什么是GGUF?GGUF(GPT-GeneratedUnifiedFormat),提到GGUF就不得不提到它的前身GGML(GPT-GeneratedModelLanguage)。GGML是专门为了机器学习设计的张量库,最早可以追溯到2022/10。其目的是为了有一个单文
- 转换PP-OCRv5模型为OpenVINO格式的详细指南
mingo_敏
OpenVINOopenvino人工智能
转换PP-OCRv5模型为OpenVINO格式的详细指南一、引言PP-OCRv5是百度飞桨推出的高性能OCR(光学字符识别)模型,在文本检测和识别任务中表现出色。整体识别精度相比上一代提升13个百分点。OpenVINO则是英特尔推出的开源深度学习推理框架,能显著优化模型在英特尔硬件上的推理性能。本文将详细介绍如何将PP-OCRv5模型转换为OpenVINO格式(.xml和.bin文件),并实现高效
- 华为HCIP-Cloud-Service认证H13-821V2.0-002
gong19172316967
HICP学习资料和题库HCIP
1.以下关于HiLens关键能力的说法错误的是?(C)A.HiLens能提供模型优化框架、自动压缩模型能力,将模型转换为目标芯片所支持的模型格式B.在HLens平台上开发的Ski11可以运行到任何基于华为海思芯片的设备上C.HilLens平台只能导入从HodelArts训练的模型D.开放的技能市场预置丰富的技能,用户可以直接下载技能,开发者还可以发布自己技能2.以下关于基于知识图谱的智能问答的说法
- RK3588 RKNN ResNet50推理测试
Hi20240217
环境搭建学习AI推理RK3588RKNNNPU
RK3588RKNNResNet50推理测试一、背景二、性能数据三、操作步骤3.1安装依赖3.2安装rknn-toolkit,更新librknnrt.so3.3下载推理图片3.4生成`onnx`模型转换脚本3.5生成rknn模型3.6运行rknn模型一、背景在嵌入式设备上进行AI推理时,我们面临着算力有限、功耗敏感等挑战。RK3588芯片搭载的NPU(神经网络处理单元)专为加速AI运算设计,而RK
- RK3588 IREE+Vulkan ResNet50推理测试
Hi20240217
环境搭建pytorch人工智能RK3588嵌入式IREEVulkan
RK3588IREE+VulkanResNet50推理测试背景一.性能数据【暂不考虑该框架】二.操作步骤2.1搭建NFS服务,解决IREE编译时,空间不足的问题2.2编译、安装`IREE`2.2.1挂载NFS2.2.2安装依赖2.2.3编译`IREE`2.2.4获取驱动及设备信息2.2.5下载推理图片2.2.6生成`onnx`模型转换脚本2.2.7生成运行推理测试脚本2.2.8`CPU-FP32`
- 甄选范文“论模型驱动架构设计方法及其应用”,软考高级论文,系统架构设计师论文
程序员古德
系统架构
论文真题模型驱动架构设计是一种用于应用系统开发的软件设计方法,以模型构造、模型转换和精化为核心,提供了一套软件设计的指导规范。在模型驱动架构环境下,通过创建出机器可读和高度抽象的模型实现对不同问题域的描述,这些模型独立于实现技术,以标准化的方式储存,利用模型转换策略来驱动包括分析、设计和实现等在内的整个软件开发过程。请围绕“模型驱动架构设计方法及其应用”论题,依次从以下三个方面进行论述。1.概要叙
- TensorFlow模型转换与优化:流程解析
TensorFlow模型转换与优化:流程解析在深度学习模型部署的实际场景中,我们常常需要对模型进行跨框架的转换与优化。本文将详细介绍两种将TensorFlow模型转换为ONNX格式、进行量化操作并最终转回TensorFlow的方法。通过这些方法,我们可以在保证模型性能的同时,显著减少模型的体积和内存占用,提高模型的运行效率。一、路径1:TensorFlow→ONNX→量化→重命名→TensorFl
- 华为海思系列----昇腾张量编译器(ATC)模型转换工具----入门级使用指南(LINUX版)
不想起名字呢
linuxc++海思ss928atc模型转换
由于官方SDK比较冗余且经常跨文档讲解且SDK整理的乱七八糟,对于新手来说全部看完上手成本较高,本文旨在以简短的方式介绍CAFFE/ONNX模型转om模型,并进行推理的全流程。希望能够帮助到第一次接触华为海思框架的道友们。大佬们就没必要看这种基础文章啦!注:本文所有操作均在WSL(Windows虚拟子系统)上操作的,默认root环境,默认开发板系统为LINUX,所有环境变量均写入bashrc,非虚
- PPOCRv4推理模型转换为nb模型
AAA抗刀小玉
ocrpaddleocrpythonpaddlepaddle深度学习
一、前期准备Andriodstudio4.2参考:https://blog.csdn.net/qq_40647372/article/details/133266819?ops_request_misc=%257B%2522request%255Fid%2522%253A%2522246c9d8e3affc84f010618778b02955d%2522%252C%2522scm%2522%253
- EasyExcel高级特性和技术选型
快乐肚皮
java
文章目录前言一、EasyExcel核心优势二、EasyExcel高级特性2.1异步读取与多线程处理2.2动态模型转换与数据校验2.3定制复杂样式2.4监听器实现实时处理2.5与SpringBoot无缝集成三、EasyExcel、ApachePOI、JExcelApi、OpenCSV对比分析及如何选择四、使用建议总结前言在Java生态中,处理Excel文件的需求无处不在,无论是数据导入导出、报表生成
- 转onnx模型学习汇总及TensorRT部署
天亮换季
人工智能自动驾驶持续部署pytorch算法深度学习python
文章目录一写在前面二学习过程三模型转换(三种算法均开源)1.MatrixVT转onnx和TensorRT2.BEVPoolV2转onnx和TensorRT3.BEVDepth转模型四总结一写在前面 深度学习火起来已近十年,于当下的算法岗位而言,多数都在基于深度学习方式或者深度学习相关方法做研发,但算法研发发展至今,对研发人员的要求绝不会限于公开数据集的使用、开源模型的训练、网络模块的堆加等,需要
- Spring4.1新特性——Spring MVC增强
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- mysql 性能查询优化
annan211
javasql优化mysql应用服务器
1 时间到底花在哪了?
mysql在执行查询的时候需要执行一系列的子任务,这些子任务包含了整个查询周期最重要的阶段,这其中包含了大量为了
检索数据列到存储引擎的调用以及调用后的数据处理,包括排序、分组等。在完成这些任务的时候,查询需要在不同的地方
花费时间,包括网络、cpu计算、生成统计信息和执行计划、锁等待等。尤其是向底层存储引擎检索数据的调用操作。这些调用需要在内存操
- windows系统配置
cherishLC
windows
删除Hiberfil.sys :使用命令powercfg -h off 关闭休眠功能即可:
http://jingyan.baidu.com/article/f3ad7d0fc0992e09c2345b51.html
类似的还有pagefile.sys
msconfig 配置启动项
shutdown 定时关机
ipconfig 查看网络配置
ipconfig /flushdns
- 人体的排毒时间
Array_06
工作
========================
|| 人体的排毒时间是什么时候?||
========================
转载于:
http://zhidao.baidu.com/link?url=ibaGlicVslAQhVdWWVevU4TMjhiKaNBWCpZ1NS6igCQ78EkNJZFsEjCjl3T5EdXU9SaPg04bh8MbY1bR
- ZooKeeper
cugfy
zookeeper
Zookeeper是一个高性能,分布式的,开源分布式应用协调服务。它提供了简单原始的功能,分布式应用可以基于它实现更高级的服务,比如同步, 配置管理,集群管理,名空间。它被设计为易于编程,使用文件系统目录树作为数据模型。服务端跑在java上,提供java和C的客户端API。 Zookeeper是Google的Chubby一个开源的实现,是高有效和可靠的协同工作系统,Zookeeper能够用来lea
- 网络爬虫的乱码处理
随意而生
爬虫网络
下边简单总结下关于网络爬虫的乱码处理。注意,这里不仅是中文乱码,还包括一些如日文、韩文 、俄文、藏文之类的乱码处理,因为他们的解决方式 是一致的,故在此统一说明。 网络爬虫,有两种选择,一是选择nutch、hetriex,二是自写爬虫,两者在处理乱码时,原理是一致的,但前者处理乱码时,要看懂源码后进行修改才可以,所以要废劲一些;而后者更自由方便,可以在编码处理
- Xcode常用快捷键
张亚雄
xcode
一、总结的常用命令:
隐藏xcode command+h
退出xcode command+q
关闭窗口 command+w
关闭所有窗口 command+option+w
关闭当前
- mongoDB索引操作
adminjun
mongodb索引
一、索引基础: MongoDB的索引几乎与传统的关系型数据库一模一样,这其中也包括一些基本的优化技巧。下面是创建索引的命令: > db.test.ensureIndex({"username":1}) 可以通过下面的名称查看索引是否已经成功建立: &nbs
- 成都软件园实习那些话
aijuans
成都 软件园 实习
无聊之中,翻了一下日志,发现上一篇经历是很久以前的事了,悔过~~
断断续续离开了学校快一年了,习惯了那里一天天的幼稚、成长的环境,到这里有点与世隔绝的感觉。不过还好,那是刚到这里时的想法,现在感觉在这挺好,不管怎么样,最要感谢的还是老师能给这么好的一次催化成长的机会,在这里确实看到了好多好多能想到或想不到的东西。
都说在外面和学校相比最明显的差距就是与人相处比较困难,因为在外面每个人都
- Linux下FTP服务器安装及配置
ayaoxinchao
linuxFTP服务器vsftp
检测是否安装了FTP
[root@localhost ~]# rpm -q vsftpd
如果未安装:package vsftpd is not installed 安装了则显示:vsftpd-2.0.5-28.el5累死的版本信息
安装FTP
运行yum install vsftpd命令,如[root@localhost ~]# yum install vsf
- 使用mongo-java-driver获取文档id和查找文档
BigBird2012
driver
注:本文所有代码都使用的mongo-java-driver实现。
在MongoDB中,一个集合(collection)在概念上就类似我们SQL数据库中的表(Table),这个集合包含了一系列文档(document)。一个DBObject对象表示我们想添加到集合(collection)中的一个文档(document),MongoDB会自动为我们创建的每个文档添加一个id,这个id在
- JSONObject以及json串
bijian1013
jsonJSONObject
一.JAR包简介
要使程序可以运行必须引入JSON-lib包,JSON-lib包同时依赖于以下的JAR包:
1.commons-lang-2.0.jar
2.commons-beanutils-1.7.0.jar
3.commons-collections-3.1.jar
&n
- [Zookeeper学习笔记之三]Zookeeper实例创建和会话建立的异步特性
bit1129
zookeeper
为了说明问题,看个简单的代码,
import org.apache.zookeeper.*;
import java.io.IOException;
import java.util.concurrent.CountDownLatch;
import java.util.concurrent.ThreadLocal
- 【Scala十二】Scala核心六:Trait
bit1129
scala
Traits are a fundamental unit of code reuse in Scala. A trait encapsulates method and field definitions, which can then be reused by mixing them into classes. Unlike class inheritance, in which each c
- weblogic version 10.3破解
ronin47
weblogic
版本:WebLogic Server 10.3
说明:%DOMAIN_HOME%:指WebLogic Server 域(Domain)目录
例如我的做测试的域的根目录 DOMAIN_HOME=D:/Weblogic/Middleware/user_projects/domains/base_domain
1.为了保证操作安全,备份%DOMAIN_HOME%/security/Defa
- 求第n个斐波那契数
BrokenDreams
今天看到群友发的一个问题:写一个小程序打印第n个斐波那契数。
自己试了下,搞了好久。。。基础要加强了。
&nbs
- 读《研磨设计模式》-代码笔记-访问者模式-Visitor
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.util.ArrayList;
import java.util.List;
interface IVisitor {
//第二次分派,Visitor调用Element
void visitConcret
- MatConvNet的excise 3改为网络配置文件形式
cherishLC
matlab
MatConvNet为vlFeat作者写的matlab下的卷积神经网络工具包,可以使用GPU。
主页:
http://www.vlfeat.org/matconvnet/
教程:
http://www.robots.ox.ac.uk/~vgg/practicals/cnn/index.html
注意:需要下载新版的MatConvNet替换掉教程中工具包中的matconvnet:
http
- ZK Timeout再讨论
chenchao051
zookeepertimeouthbase
http://crazyjvm.iteye.com/blog/1693757 文中提到相关超时问题,但是又出现了一个问题,我把min和max都设置成了180000,但是仍然出现了以下的异常信息:
Client session timed out, have not heard from server in 154339ms for sessionid 0x13a3f7732340003
- CASE WHEN 用法介绍
daizj
sqlgroup bycase when
CASE WHEN 用法介绍
1. CASE WHEN 表达式有两种形式
--简单Case函数
CASE sex
WHEN '1' THEN '男'
WHEN '2' THEN '女'
ELSE '其他' END
--Case搜索函数
CASE
WHEN sex = '1' THEN
- PHP技巧汇总:提高PHP性能的53个技巧
dcj3sjt126com
PHP
PHP技巧汇总:提高PHP性能的53个技巧 用单引号代替双引号来包含字符串,这样做会更快一些。因为PHP会在双引号包围的字符串中搜寻变量, 单引号则不会,注意:只有echo能这么做,它是一种可以把多个字符串当作参数的函数译注: PHP手册中说echo是语言结构,不是真正的函数,故把函数加上了双引号)。 1、如果能将类的方法定义成static,就尽量定义成static,它的速度会提升将近4倍
- Yii框架中CGridView的使用方法以及详细示例
dcj3sjt126com
yii
CGridView显示一个数据项的列表中的一个表。
表中的每一行代表一个数据项的数据,和一个列通常代表一个属性的物品(一些列可能对应于复杂的表达式的属性或静态文本)。 CGridView既支持排序和分页的数据项。排序和分页可以在AJAX模式或正常的页面请求。使用CGridView的一个好处是,当用户浏览器禁用JavaScript,排序和分页自动退化普通页面请求和仍然正常运行。
实例代码如下:
- Maven项目打包成可执行Jar文件
dyy_gusi
assembly
Maven项目打包成可执行Jar文件
在使用Maven完成项目以后,如果是需要打包成可执行的Jar文件,我们通过eclipse的导出很麻烦,还得指定入口文件的位置,还得说明依赖的jar包,既然都使用Maven了,很重要的一个目的就是让这些繁琐的操作简单。我们可以通过插件完成这项工作,使用assembly插件。具体使用方式如下:
1、在项目中加入插件的依赖:
<plugin>
- php常见错误
geeksun
PHP
1. kevent() reported that connect() failed (61: Connection refused) while connecting to upstream, client: 127.0.0.1, server: localhost, request: "GET / HTTP/1.1", upstream: "fastc
- 修改linux的用户名
hongtoushizi
linuxchange password
Change Linux Username
更改Linux用户名,需要修改4个系统的文件:
/etc/passwd
/etc/shadow
/etc/group
/etc/gshadow
古老/传统的方法是使用vi去直接修改,但是这有安全隐患(具体可自己搜一下),所以后来改成使用这些命令去代替:
vipw
vipw -s
vigr
vigr -s
具体的操作顺
- 第五章 常用Lua开发库1-redis、mysql、http客户端
jinnianshilongnian
nginxlua
对于开发来说需要有好的生态开发库来辅助我们快速开发,而Lua中也有大多数我们需要的第三方开发库如Redis、Memcached、Mysql、Http客户端、JSON、模板引擎等。
一些常见的Lua库可以在github上搜索,https://github.com/search?utf8=%E2%9C%93&q=lua+resty。
Redis客户端
lua-resty-r
- zkClient 监控机制实现
liyonghui160com
zkClient 监控机制实现
直接使用zk的api实现业务功能比较繁琐。因为要处理session loss,session expire等异常,在发生这些异常后进行重连。又因为ZK的watcher是一次性的,如果要基于wather实现发布/订阅模式,还要自己包装一下,将一次性订阅包装成持久订阅。另外如果要使用抽象级别更高的功能,比如分布式锁,leader选举
- 在Mysql 众多表中查找一个表名或者字段名的 SQL 语句
pda158
mysql
在Mysql 众多表中查找一个表名或者字段名的 SQL 语句:
方法一:SELECT table_name, column_name from information_schema.columns WHERE column_name LIKE 'Name';
方法二:SELECT column_name from information_schema.colum
- 程序员对英语的依赖
Smile.zeng
英语程序猿
1、程序员最基本的技能,至少要能写得出代码,当我们还在为建立类的时候思考用什么单词发牢骚的时候,英语与别人的差距就直接表现出来咯。
2、程序员最起码能认识开发工具里的英语单词,不然怎么知道使用这些开发工具。
3、进阶一点,就是能读懂别人的代码,有利于我们学习人家的思路和技术。
4、写的程序至少能有一定的可读性,至少要人别人能懂吧...
以上一些问题,充分说明了英语对程序猿的重要性。骚年
- Oracle学习笔记(8) 使用PLSQL编写触发器
vipbooks
oraclesql编程活动Access
时间过得真快啊,转眼就到了Oracle学习笔记的最后个章节了,通过前面七章的学习大家应该对Oracle编程有了一定了了解了吧,这东东如果一段时间不用很快就会忘记了,所以我会把自己学习过的东西做好详细的笔记,用到的时候可以随时查找,马上上手!希望这些笔记能对大家有些帮助!
这是第八章的学习笔记,学习完第七章的子程序和包之后