目录
一、模型介绍
二、模型总结
1、将原始矩阵正向化
2、正向化矩阵标准化
3、计算得分并归一化
三、代码详解
四、模型拓展
C.L.Hwang 和 K.Yoon 于1981年首次提出 TOPSIS (Technique for Order Preference by Similarity to an Ideal Solution),可翻译为逼近理想解排序法,国内常简称为优劣解距离法。TOPSIS 法是一种常用的综合评价方法,能充分利用原始数据的信息,其结果能精确地反映各评价方案之间的差距。基本过程为先将原始数据矩阵统一指标类型(一般正向化处理)得到正向化的矩阵,再对正向化的矩阵进行标准化处理以消除各指标量纲的影响,并找到有限方案中的最优方案和最劣方案,然后分别计算各评价对象与最优方案和最劣方案间的距离,获得各评价对象与最优方案的相对接近程度,以此作为评价优劣的依据。该方法对数据分布及样本含量没有严格限制,数据计算简单易行。
层次分析法的一些局限性:
(1)评价的决策层不能太多,太多的话n会很大,判断矩阵和一致矩阵差异可能会很大。
(2)若决策层中指标的数据是已知的,那么我们无法利用数据来使得评价的更加准确。
开始举例:
小明同宿舍共有四名同学,他们第一学期的高数成绩如下表所示:
姓名 成绩
小明 89
小王 60
小张 74
花花 99请你为这四名同学进行评分,该评分能合理的描述其高数成绩的高低。
逐步解决问题的过程:
1、先类比上一讲层次分析法中要求的那个权重
该想法看上去是不合理的。
因为可以随便修改成绩,只要保证排名不变,那么评分就不会改变!
2、那么比较好的做法是什么呢?
最高成绩max : 99
最低成绩min : 60
构造计算评分的公式:
这时候就得到下表:
这里要解释三点:
(1)比较的对象一般要远大于两个。(例如比较一个班级的成绩)
(2)比较的指标也往往不只是一个方面的,例如成绩、工时数、课外竞赛得分等。
(3)有很多指标不存在理论上的最大值和最小值,如衡量经济增长水平的指标:GDP增速。
这种做法明显较为妥当!
现在我们将问题拓展一下:增加指标个数。
新增加了一个指标,现在要综合评价四位同学,并为他们进行评分。
解释:
成绩是越高(大)越好,这样的指标称为极大型指标(效益型指标)。
与他人争吵的次数越少(越小)越好,这样的指标称为极小型指标(成本型指标)。
逐步解决拓展问题的过程:
1、统一指标类型
将所有的指标转化为极大型称为指标正向化(最常用)。
极小型指标转换为极大型指标的公式:max - x
2、标准化处理
为了消去不同指标量纲的影响,需要对已经正向化的矩阵进行标准化处理。
标准化处理的计算公式:
代码:
X = [89,1; 60,3; 74,2; 99,0]
[n , m] = size(X)
X ./ repmat(sum(X.*X) .^ 0.5, n, 1)
那么如何计算得分呢?
类比只有一个指标计算得分:
具体是如下图处理:
X = [89,1;60,3;74,2;99,0]
[n , m] = size(X);
Z = X ./ repmat(sum(X.*X) .^ 0.5,n,1);
D_P = sum([(Z - repmat(max(Z),n,1)).^2 ],2) .^ 0.5 %D+向量
D_N = sum([(Z - repmat(min(Z),n,1)).^2 ],2) .^ 0.5 %D-向量得:
最常见的四种指标:
所谓的将原始矩阵正向化,就是要将所有的指标类型统一转化为极大型指标。(转换的函数形式可以不唯一哦~ )
(1)极小型指标 → 极大型指标
极小型指标转换为极大型指标的公式:max - x
如果所有的元素均为正数,那么也可以使用 1 / x
注意:正向化的公式不唯一,大家也可以结合自己的数据进行适当的修改。
(2)中间型指标 → 极大型指标
中间型指标:指标值既不要太大也不要太小,取某特定值最好(如水质量评估 PH 值)
注意:正向化的公式不唯一,大家也可以结合自己的数据进行适当的修改。
(3)区间型指标 → 极大型指标
区间型指标:指标值落在某个区间内最好,例如人的体温在36°~37°这个区间比较好。
注意:正向化的公式不唯一,大家也可以结合自己的数据进行适当的修改。
标准化的目的是消除不同指标量纲的影响。
注意:标准化的方法有很多种,其主要目的就是去除量纲的影响,未来我们还可能见到更多种的标准化方法,例如:(x‐x的均值)/x的标准差;具体选用哪一种标准化的方法在多数情况下并没有很大的限制,这里我们采用的是前人的论文中用的比较多的一种标准化方法。
与最小值的距离 / (与最大值的距离 + 与最小值的距离)
注意:要区别开归一化和标准化。归一化的计算步骤也可以消去量纲的影响,但更多时候,我们进行归一化的目的是为了让我们的结果更容易解释,或者说让我们对结果有一个更加清晰直观的印象。例如将得分归一化后可限制在0‐1这个区间,对于区间内的每一个得分,我们很容易的得到其所处的比例位置。
1. 将EXCEL中的数据导入到Matlab,并另存为mat文件,下次可直接load 。Matlab中函数的编写和调用。
2. magic(n)幻方矩阵
3. sort函数
4. zeros和ones函数
以上的matlab操作可百度或谷歌一下,资料网上一大把。
第一步:把数据复制到工作区,并将这个矩阵命名为X
% (1)在工作区右键,点击新建(Ctrl+N),输入变量名称为X
% (2)在Excel中复制数据,再回到Excel中右键,点击粘贴Excel数据(Ctrl+Shift+V)
% (3)关掉这个窗口,点击X变量,右键另存为,保存为mat文件(下次就不用复制粘贴了,只需使用load命令即可加载数据)
% (4)注意,代码和数据要放在同一个目录下哦,且Matlab的当前文件夹也要是这个目录。
clear;clc
load data_water_quality.mat注意:如果提示: 错误使用 load,无法读取文件 'data_water_quality.mat'。没有此类文件或目录。
% 那么原因是因为你的Matlab的当前文件夹中不存在这个文件
% 可以使用cd函数修改Matlab的当前文件夹
% 比如说,我的代码和数据放在了: D:第2讲.TOPSIS法(优劣解距离法)\代码和例题数据
% 那么我就可以输入命令:
% cd 'D:第2讲.TOPSIS法(优劣解距离法)\代码和例题数据'
% 也可以看我更新的视频:“更新9_Topsis代码为什么运行失败_得分结果怎么可视化以及权重的确定如何更加准确”,里面有介绍
第二步:判断是否需要正向化
[n,m] = size(X);
disp(['共有' num2str(n) '个评价对象, ' num2str(m) '个评价指标'])
Judge = input(['这' num2str(m) '个指标是否需要经过正向化处理,需要请输入1 ,不需要输入0: ']);if Judge == 1
Position = input('请输入需要正向化处理的指标所在的列,例如第2、3、6三列需要处理,那么你需要输入[2,3,6]: '); %[2,3,4]
disp('请输入需要处理的这些列的指标类型(1:极小型, 2:中间型, 3:区间型) ')
Type = input('例如:第2列是极小型,第3列是区间型,第6列是中间型,就输入[1,3,2]: '); %[2,1,3]
% 注意,Position和Type是两个同维度的行向量
for i = 1 : size(Position,2) %这里需要对这些列分别处理,因此我们需要知道一共要处理的次数,即循环的次数
X(:,Position(i)) = Positivization(X(:,Position(i)),Type(i),Position(i));
% Positivization是我们自己定义的函数,其作用是进行正向化,其一共接收三个参数
% 第一个参数是要正向化处理的那一列向量 X(:,Position(i)) 回顾上一讲的知识,X(:,n)表示取第n列的全部元素
% 第二个参数是对应的这一列的指标类型(1:极小型, 2:中间型, 3:区间型)
% 第三个参数是告诉函数我们正在处理的是原始矩阵中的哪一列
% 该函数有一个返回值,它返回正向化之后的指标,我们可以将其直接赋值给我们原始要处理的那一列向量
end
disp('正向化后的矩阵 X = ')
disp(X)
end
%% 作业:在这里增加是否需要算加权
% 补充一个基础知识:m*n维的矩阵A 点乘 n维行向量B,等于这个A的每一行都点乘B
% (注意:2017以及之后版本的Matlab才支持,老版本Matlab会报错)
% % 假如原始数据为:
% A=[1, 2, 3;
% 2, 4, 6]
% % 权重矩阵为:
% B=[ 0.2, 0.5 ,0.3 ]
% % 加权后为:
% C=A .* B
% 0.2000 1.0000 0.9000
% 0.4000 2.0000 1.8000
% 类似的,还有矩阵和向量的点除, 大家可以自己试试计算A ./ B
% 注意,矩阵和向量没有 .- 和 .+ 哦 ,大家可以试试,如果计算A.+B 和 A.-B会报什么错误。%% 这里补充一个小插曲
% % 在上一讲层次分析法的代码中,我们可以优化以下的语句:
% % Sum_A = sum(A);
% % SUM_A = repmat(Sum_A,n,1);
% % Stand_A = A ./ SUM_A;
% % 事实上,我们把第三行换成:Stand_A = A ./ Sum_A; 也是可以的哦
% % (再次强调,新版本的Matlab才能运行哦)%% 让用户判断是否需要增加权重
disp('请输入是否需要增加权重向量,需要输入1,不需要输入0')
Judge = input('请输入是否需要增加权重: ');
if Judge == 1
disp(['如果你有3个指标,你就需要输入3个权重,例如它们分别为0.25,0.25,0.5, 则你需要输入[0.25,0.25,0.5]']);
weigh = input(['你需要输入' num2str(m) '个权数。' '请以行向量的形式输入这' num2str(m) '个权重: ']);
OK = 0; % 用来判断用户的输入格式是否正确
while OK == 0
if abs(sum(weigh) - 1)<0.000001 && size(weigh,1) == 1 && size(weigh,2) == m % 这里要注意浮点数的运算是不精准的。
OK =1;
else
weigh = input('你输入的有误,请重新输入权重行向量: ');
end
end
else
weigh = ones(1,m) ./ m ; %如果不需要加权重就默认权重都相同,即都为1/m
end
第三步:对正向化后的矩阵进行标准化
Z = X ./ repmat(sum(X.*X) .^ 0.5, n, 1);
disp('标准化矩阵 Z = ')
disp(Z)
第四步:计算与最大值的距离和最小值的距离,并算出得分
D_P = sum([(Z - repmat(max(Z),n,1)) .^ 2 ] .* repmat(weigh,n,1) ,2) .^ 0.5; % D+ 与最大值的距离向量
D_N = sum([(Z - repmat(min(Z),n,1)) .^ 2 ] .* repmat(weigh,n,1) ,2) .^ 0.5; % D- 与最小值的距离向量
S = D_N ./ (D_P+D_N); % 未归一化的得分
disp('最后的得分为:')
stand_S = S / sum(S)
[sorted_S,index] = sort(stand_S ,'descend')% A = magic(5) % 幻方矩阵
% M = magic(n)返回由1到n^2的整数构成并且总行数和总列数相等的n×n矩阵。阶次n必须为大于或等于3的标量。
% sort(A)若A是向量不管是列还是行向量,默认都是对A进行升序排列。sort(A)是默认的升序,而sort(A,'descend')是降序排序。
% sort(A)若A是矩阵,默认对A的各列进行升序排列
% sort(A,dim)
% dim=1时等效sort(A)
% dim=2时表示对A中的各行元素升序排列
% A = [2,1,3,8]
% Matlab中给一维向量排序是使用sort函数:sort(A),排序是按升序进行的,其中A为待排序的向量;
% 若欲保留排列前的索引,则可用 [sA,index] = sort(A,'descend') ,排序后,sA是排序好的向量,index是向量sA中对A的索引。
% sA = 8 3 2 1
% index = 4 3 1 2
三种类型矩阵的正向化:
% function [输出变量] = 函数名称(输入变量)
% 函数的中间部分都是函数体
% 函数的最后要用end结尾
% 输出变量和输入变量可以有多个,用逗号隔开
% function [a,b,c]=test(d,e,f)
% a=d+e;
% b=e+f;
% c=f+d;
% end
% 自定义的函数要单独放在一个m文件中,不可以直接放在主函数里面(和其他大多数语言不同)function [posit_x] = Positivization(x,type,i)
% 输入变量有三个:
% x:需要正向化处理的指标对应的原始列向量
% type: 指标的类型(1:极小型, 2:中间型, 3:区间型)
% i: 正在处理的是原始矩阵中的哪一列
% 输出变量posit_x表示:正向化后的列向量
if type == 1 %极小型
disp(['第' num2str(i) '列是极小型,正在正向化'] )
posit_x = Min2Max(x); %调用Min2Max函数来正向化
disp(['第' num2str(i) '列极小型正向化处理完成'] )
disp('~~~~~~~~~~~~~~~~~~~~分界线~~~~~~~~~~~~~~~~~~~~')
elseif type == 2 %中间型
disp(['第' num2str(i) '列是中间型'] )
best = input('请输入最佳的那一个值: ');
posit_x = Mid2Max(x,best);
disp(['第' num2str(i) '列中间型正向化处理完成'] )
disp('~~~~~~~~~~~~~~~~~~~~分界线~~~~~~~~~~~~~~~~~~~~')
elseif type == 3 %区间型
disp(['第' num2str(i) '列是区间型'] )
a = input('请输入区间的下界: ');
b = input('请输入区间的上界: ');
posit_x = Inter2Max(x,a,b);
disp(['第' num2str(i) '列区间型正向化处理完成'] )
disp('~~~~~~~~~~~~~~~~~~~~分界线~~~~~~~~~~~~~~~~~~~~')
else
disp('没有这种类型的指标,请检查Type向量中是否有除了1、2、3之外的其他值')
end
end补充1:Min2Max.m
function [posit_x] = Min2Max(x)
posit_x = max(x) - x;
%posit_x = 1 ./ x; %如果x全部都大于0,也可以这样正向化
end补充2:Mid2Max.m
function [posit_x] = Mid2Max(x,best)
M = max(abs(x-best));
posit_x = 1 - abs(x-best) / M;
end
1、如何计算得分?
X = [89,1;60,3;74,2;99,0]
[n , m] = size(X);
Z = X ./ repmat(sum(X.*X) .^ 0.5,n,1);
D_P = sum([(Z - repmat(max(Z),n,1)).^2 ],2) .^ 0.5 %D+向量
D_N = sum([(Z - repmat(min(Z),n,1)).^2 ],2) .^ 0.5 %D-向量
2、类比只有一个指标计算得分
3、带权重的TOPSIS
当然:层次分析法的主观性太强了,更推荐大家使用熵权法来进行客观赋值。
相关内容可查看视频:番外篇:基于熵权法对Topsis模型的修正(正课最后一个视频)
(注意,番外篇里面涉及到的代码有后面的内容,建议基础不好的同学把后续视频看完后再去看番外篇,后续会出~~)
我是花花,祝自己也祝您变强了~~