- Python(PyTorch)和MATLAB及Rust和C++结构相似度指数测量导图
亚图跨际
Python交叉知识算法量化检查图像压缩质量低分辨率多光谱峰值信噪比端到端优化图像压缩手术机器人三维实景实时可微分渲染重建三维可视化
要点量化检查图像压缩质量低分辨率多光谱和高分辨率图像实现超分辨率分析图像质量图像索引/多尺度结构相似度指数和光谱角映射器及视觉信息保真度多种指标峰值信噪比和结构相似度指数测量结构相似性图像分类PNG和JPEG图像相似性近似算法图像压缩,视频压缩、端到端优化图像压缩、神经图像压缩、GPU变速图像压缩手术机器人深度估计算法重建三维可视化推理图像超分辨率算法模型三维实景实时可微分渲染算法MATLAB结构
- ESRGAN——老旧照片、视频帧的修复和增强,提高图像的分辨率
爱研究的小牛
AIGC——图像AIGC—视频AIGC人工智能深度学习音视频自动化
ESRGAN(EnhancedSuper-ResolutionGAN):用于提高图像的分辨率,将低质量图像升级为高分辨率版本,常用于老旧照片、视频帧的修复和增强。一、ESRGAN介绍1.1背景超分辨率问题是计算机视觉中的一个重要研究领域,其目标是通过增加像素数量来提高图像的分辨率,恢复出更加细腻的图像。传统的算法(如双三次插值)通常导致放大后的图像模糊、不自然。而深度学习特别是**生成对抗网络(G
- stable diffusion和GAN网络的区别,优点缺点是什么
爱好很多的算法工程师
SD大模型AIGC笔记
稳定扩散(stablediffusion)和生成对抗网络(GAN)是两种不同的深度学习方法。稳定扩散是一种无监督学习方法,用于图像超分辨率重建。它基于扩散过程模型,通过在不同的时间步骤中对图像进行重建来增加分辨率。该方法能够有效地增加图像的细节,并产生更高质量的图像。其优点包括:无监督学习:稳定扩散不需要使用任何带标签的训练数据,因此可以用于无监督任务。高分辨率重建:稳定扩散能够通过迭代过程逐渐增
- (condition instance batchnorm)A LEARNED REPRESENTATION FOR ARTISTIC STYLE
水球喵
分享一个不错的对batchnorm的解释https://blog.csdn.net/aichipmunk/article/details/54234646.作者提到:BatchNorm会忽略图像像素(或者特征)之间的绝对差异(因为均值归零,方差归一),instancenorm也是一样的,他们只考虑相对差异,所以在不需要绝对差异的任务中(比如分类、风格),有锦上添花的效果。而对于图像超分辨率这种需要
- Stable Diffusion系列(六):原理剖析——从文字到图片的神奇魔法(潜空间篇)
羊城迷鹿
多模态模型stablediffusionlatent潜空间论文
文章目录LDM概述原理模型架构自编码器模型扩散模型条件引导模型图像生成过程实验结果指标定义IS(越大越好)FID(越小越好)训练成本与采样质量分析不带条件的图片生成基于文本的图片生成基于语义框的图片生成基于语义图的图片生成超分辨率图像生成图像重绘其他文生图模型DALL-EImagen在上一章,我们了解了扩散模型的基本原理,但它离实现StableDiffusion的文生图或图生图功能显然还有一段距离
- ESRGAN:基于GAN的增强超分辨率方法(附代码解析)
PaperWeekly
作者丨左育莘学校丨西安电子科技大学研究方向丨计算机视觉之前看的文章里有提到GAN在图像修复时更容易得到符合视觉上效果更好的图像,所以也是看了一些结合GAN的图像修复工作。ESRGAN:EnhancedSuper-ResolutionGenerativeAdversarialNetworks发表于ECCV2018的Workshops,作者在SRGAN的基础上进行了改进,包括改进网络的结构、判决器的判
- [超分辨率重建]ESRGAN算法训练自己的数据集过程
Cr_南猫
超分辨率重建超分辨率重建人工智能深度学习
一、下载数据集及项目包1.数据集1.1文件夹框架的介绍,如下图所示:主要有train和val,分别有高清(HR)和低清(LR)的图像。1.2原图先通过分割尺寸的脚本先将数据集图片处理成两个相同的图像组(HR和LR)。如训练x4的ESRGAN模型,那么我们需要将HR的图像尺寸与LR的图像尺寸比例是4:1。在我的训练中,我将HR的图像尺寸分割成了480x480,LR的图像分割成了120x120。如下图
- 第十八篇【传奇开心果短博文系列】Python的OpenCV库技术点案例示例:图像修复和恢复
传奇开心果编程
Python库OpenCV技术点案例示例短博文pythonopencv计算机视觉人工智能
传奇开心果短博文系列系列短博文目录Python的OpenCV库技术点案例示例系列短博文目录前言一、常用的图像修复与恢复技术二、插值方法示例代码三、基于纹理合成的方法示例代码四、基于边缘保持的方法示例代码五、基于图像修复模型的方法示例代码六、基于深度学习的方法示例代码七、基于结构化边缘的方法示例代码八、基于多帧图像的方法示例代码九、基于超分辨率的方法示例代码十、cv2.inpaint()函数修复图像
- 【深度学习】实验7实验结果,图像超分辨
X.AI666
深度学习深度学习人工智能
代码和报告均为本人自己实现(实验满分),只展示主要任务实验结果,如果需要详细的实验报告或者代码可以私聊博主,接实验技术指导1对1实验要求布置请看http://t.csdnimg.cn/jCsv6Model实现说明代码实现了一个基于生成对抗网络(SRGAN)的图像超分辨率模型。总体来说,SRGAN由两个主要组件组成:生成器(Generator)和判别器(Discriminator),它们相互对抗并共
- YOLOv8改进 | 检测头篇 | 独创RFAHead检测头超分辨率重构检测头(适用Pose、分割、目标检测)
Snu77
YOLOv8有效涨点专栏YOLO目标检测人工智能深度学习计算机视觉pythonPytorch
一、本文介绍本文给大家带来的改进机制是RFAHead,该检测头为我独家全网首发,本文主要利用将空间注意力机制与卷积操作相结合的卷积RFAConv来优化检测头,其核心在于优化卷积核的工作方式,特别是在处理感受野内的空间特征时。RFAConv主要的优点就是增加模型的特征提取能力,这对于对于那些数据集中有困难识别的样本来说是非常有效的解决方法,同时本文的检测头结构为我本人独家提出,全网仅此一份,结构非常
- ESRGAN:基于GAN的增强超分辨率方法(附代码解析)
无止境x
SuperResolution(超分辨)ESRGAN
之前看的文章里有提到GAN在图像修复时更容易得到符合视觉上效果更好的图像,所以也是看了一些结合GAN的图像修复工作。ESRGAN:EnhancedSuper-ResolutionGenerativeAdversarialNetworks发表于ECCV2018的Workshops,作者在SRGAN的基础上进行了改进,包括改进网络的结构、判决器的判决形式,以及更换了一个用于计算感知域损失的预训练网络。
- 一种通过增强的面部边界实现精确面部表示的多级人脸超分辨率
qq_43314576
人工智能机器学习深度学习
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档文章目录摘要Abstract文献阅读:一种通过增强的面部边界实现精确面部表示的多级人脸超分辨率二、使用步骤1、研究背景2、方法提出3、相关方法3.1、FSR网络结构3.2、多阶段FSR网络结构4、实验工作5、方法比较LSTM代码学习2.1、什么是LSTM2.2、LSTM的处理过程2.3、LSTM代码分析总结摘要本周主要阅读了2020C
- (2021|NIPS,VQ-VAE,精度瓶颈松弛,三明治层归一化,CapLoss)CogView:通过转换器掌握文本到图像的生成
EDPJ
论文笔记transformer深度学习人工智能
CogView:MasteringText-to-ImageGenerationviaTransformers公众号:EDPJ(添加VX:CV_EDPJ或直接进Q交流群:922230617获取资料)目录0.摘要1.简介2.方法2.1理论2.2标记化2.3自回归Transformer2.4训练的稳定性3.微调3.1超分辨率3.2图像标题和自我重新排名3.3风格学习3.4工业时尚设计4.实验结果4.1
- 论文阅读《SGNet: Structure Guided Network via Gradient-Frequency Awareness for Depth Map Super-Resolutio》
CV科研随想录
CV顶会(刊)论文阅读论文阅读
论文地址:https://arxiv.org/pdf/2312.05799v1.pdf源码地址:https://github.com/yanzq95/SGNet概述 深度图的图像引导超分辨率在各个领域有着广泛的应用。但是,复杂的成像环境会导致深度图的结构边缘变得模糊。如图2所示,从梯度图可以看出,它能够很好地表现出图像的结构信息。从频谱图可以看出,高分辨率的深度图和RGB图像都包含了丰富的高频和
- 文本生成高清、连贯视频,谷歌推出时空扩散模型
RPA中国
音视频人工智能
谷歌研究人员推出了创新性文本生成视频模型——Lumiere。与传统模型不同的是,Lumiere采用了一种时空扩散(Space-time)U-Net架构,可以在单次推理中生成整个视频的所有时间段,能明显增强生成视频的动作连贯性,并大幅度提升时间的一致性。此外,Lumiere为了解决空间超分辨率级联模块,在整个视频的内存需求过大的难题,使用了Multidiffusion方法,同时可以对生成的视频质量、
- HiNet阅读笔记
小杨小杨1
#全监督计算机视觉人工智能深度学习
HINet:HalfInstanceNormalizationNetworkforImageRestoration摘要提出了一种新的block:半实例归一化块(HINblock)图像恢复任务sota一些效果展示引言批处理归一化不能提高超分辨率网络的性能批归一化消除了网络的范围灵活性图像恢复任务通常使用小的图像patch和小的mini-batchsize来训练网络,这导致BN的统计不稳定。实例标准化
- ICCV 2023 超分辨率(super-resolution)方向上接收论文总结
yyywxk
ICCV2023官网链接:https://iccv2023.thecvf.com/会议时间:2023年10月2日至6日,法国巴黎(Paris)。ICCV2023统计数据:收录2160篇。现将超分辨率方向上接收的论文汇总如下,遗漏之处还请大家斧正。图像超分SRFormer:PermutedSelf-AttentionforSingleImageSuper-ResolutionPaper:http:/
- torch.utils.data.Dataset
syugyou
pytorchpython
文章目录torch.utils.data.Dataset结构示例超分辨率数据集bsd_300__getitem__()transformimagenet22k数据集__getitem__()RelatedLinkstorch.utils.data.Dataset表示一个数据集的抽象类,Map-style的数据集都应该是它的子类,并且重写__getitem__(),支持给定key值获取数据,重写__
- 紫光展锐M6780丨超分辨率技术——画质重构还原经典
紫光展锐官方
重构人工智能
上一期,我们揭秘了让画质更加炫彩的AI-PQ技术。面对分辨率较低的老电影,光有高饱和度的色彩是不够的,如何能够提高视频影像的分辨率,使画质更加清晰,实现老片新看?本期带大家揭晓紫光展锐首颗AI+8K超高清智能显示芯片平台M6780的第二项隐藏技能——AI-SR超分辨率技术。在图像、视频的显示过程中,视频源的输入尺寸取决于视频资源的实际尺寸,如果视频资源较为老旧,其分辨率普遍低于播放设备的显示分辨率
- 超分之SRGAN
深度学习炼丹师-CXD
超分SR计算机视觉人工智能深度学习超分辨率重建论文笔记
Photo-RealisticSingleImageSuper-ResolutionUsingaGenerativeAdversarialNetwork使用生成对抗网络的逼真单图像超分辨率一作:ChristianLedig是Twitter2017年的一篇论文。超分之SRGAN代码实现文章目录0.摘要1.引言1.1相关工作1.1.1介绍了SR技术的发展历程1.1.2介绍了SR技术中卷积神经网络的设计
- 超分之ESRGAN
深度学习炼丹师-CXD
超分SR深度学习计算机视觉超分辨率重建pytorch
Esrgan:增强型超分辨率生成对抗网络。Esrgan:Enhancedsuper-resolutiongenerativeadversarialnetworks.In:ECCVW.(2018)XintaoWang,KeYu,ShixiangWu,JinjinGu,YihaoLiu,ChaoDong,YuQiao,andChenChangeLoy.文章目录摘要一、引言二、相关工作三、Methods
- 卷积神经网络(CNN)
Array902
cnn人工智能神经网络
卷积神经网络主要就是应用于计算机视觉(CV)当中!可以做啥?检测任务:检测追踪分类与检索:分类看图像是啥,检索比如说淘宝里面识别一张图片得到类似商品超分辨率重构医学任务等无人驾驶人脸识别传统神经网络与卷积神经网络的区别卷积神经网络拿到一张图像直接进行处理,不需要将图像中的点拉成一维向量;整体架构卷积层:提取特征池化层:压缩特征卷积h*w*c上面的一块小区域的样本点矩阵:小区域处的权重矩阵:图像颜色
- ECCV 2022 超分辨率(super-resolution)方向上接收论文总结(持续更新)
yyywxk
ECCV2022除了著名的CVPR、ICCV,ECCV(欧洲计算机视觉国际会议)也是计算机视觉三大国际顶级会议之一,每两年召开一次。本届ECCV2022将在10月23日-27日的以色列特拉维夫(Tel-Aviv)举行,采取线下和线上混合形式召开[1]。而本届会议论文录用率不足20%。现将超分辨率方向上接收的论文汇总如下,遗漏之处还请大家斧正。图像超分CADyQ:Content-AwareDynam
- 基于深度学习的老黑白视频修复
OverlordDuke
深度学习GAN深度学习音视频人工智能视频修复
基于深度学习的老黑白视频修复PaddleGAN实现老北京黑白视频修复项目背景与意义安装PaddleGAN1.1准备工作1.2下载PaddleGAN代码1.3安装依赖导入依赖包2.1导入相关库2.2定义display函数展示旧影像3.1读取视频帧3.2获得帧率并显示视频修复4.1使用DAIN模型补帧4.2使用DeOldify模型进行上色4.3使用PPMSVSR模型实现视频的超分辨率展示结果Paddl
- Resemble Enhance音频失真损坏修复AI工具:一个开源语音超分辨率AI模型
喜好儿aigc
人工智能aigc科技机器人ai
ResembleEnhance是一款强大的音频处理工具,可以将嘈杂的录音转化为清晰而有力的声音,为用户提供更优质的听觉体验。这个工具不仅可以有效去除录音中的各种噪声和杂音,还能够恢复音频失真并扩展音频带宽,使原本的声音听起来更加清晰和自然。详细介绍:ResembleEnhance:OpenSourceSpeechSuperResolutionModelGitHub:https://github.c
- ESRGAN - Enhanced Super-Resolution Generative Adversarial Networks论文翻译——中文版
SnailTyan
文章作者:Tyan博客:noahsnail.com|CSDN|声明:作者翻译论文仅为学习,如有侵权请联系作者删除博文,谢谢!翻译论文汇总:https://github.com/SnailTyan/deep-learning-papers-translationESRGAN:EnhancedSuper-ResolutionGenerativeAdversarialNetworks摘要超分辨率生成对抗
- 【扩散模型】11、Stable Diffusion | 使用 Diffusers 库来看看 Stable Diffusion 的结构
呆呆的猫
stablediffusion
文章目录一、什么是StableDiffusion二、Diffusers库三、微调、引导、条件生成3.1微调3.2引导3.3条件生成四、StableDiffusion4.1以文本为条件生成4.2无分类器的引导4.3其它类型的条件生成:超分辨率、图像修补、深度图到图像的转换4.4使用DreamBooth微调五、使用Diffusers库来窥探StableDiffusion内部5.1StableDiffu
- 基于DL的人脸超分辨率(FSR)任务综述
多少学一点吧
FSR深度学习计算机视觉神经网络
一、任务描述从低分辨率的人脸图像中生成高分辨率的人脸图像。二、数据来源利用已有的高分辨率(HR)人脸图像,采用一些方法降低图像的分辨率,得到对应的低分辨率(LR)人脸图像。LR图像用于网络的训练,HR图像用于监督,网络生成的图片记为SR(superresolution),损失函数可以基于评估HR图像和SR图像之间的差异构建。三、常见的评价指标和损失函数1、评价指标:(1)PSNR(PeakSign
- 目标检测YOLO实战应用案例100讲-基于图像增强的鸟类目标检测(续)
林聪木
目标检测YOLO深度学习
目录SRGAN网络模型改进研究3.1SRGAN超分辨率模型3.1.1SRGAN网络结构3.1.2SRGAN的损失函数
- [C#]使用OpenCvSharp实现二维码图像增强超分辨率
FL1623863129
C#c#开发语言
【官方框架地址】github.com/shimat/opencvsharp【算法介绍】借助于opencv自带sr.prototxt和sr.caffemodel实现对二维码图像增强【效果展示】【实现部分代码】usingSystem;usingSystem.Collections.Generic;usingSystem.ComponentModel;usingSystem.Data;usingSyst
- apache 安装linux windows
墙头上一根草
apacheinuxwindows
linux安装Apache 有两种方式一种是手动安装通过二进制的文件进行安装,另外一种就是通过yum 安装,此中安装方式,需要物理机联网。以下分别介绍两种的安装方式
通过二进制文件安装Apache需要的软件有apr,apr-util,pcre
1,安装 apr 下载地址:htt
- fill_parent、wrap_content和match_parent的区别
Cb123456
match_parentfill_parent
fill_parent、wrap_content和match_parent的区别:
1)fill_parent
设置一个构件的布局为fill_parent将强制性地使构件扩展,以填充布局单元内尽可能多的空间。这跟Windows控件的dockstyle属性大体一致。设置一个顶部布局或控件为fill_parent将强制性让它布满整个屏幕。
2) wrap_conte
- 网页自适应设计
天子之骄
htmlcss响应式设计页面自适应
网页自适应设计
网页对浏览器窗口的自适应支持变得越来越重要了。自适应响应设计更是异常火爆。再加上移动端的崛起,更是如日中天。以前为了适应不同屏幕分布率和浏览器窗口的扩大和缩小,需要设计几套css样式,用js脚本判断窗口大小,选择加载。结构臃肿,加载负担较大。现笔者经过一定时间的学习,有所心得,故分享于此,加强交流,共同进步。同时希望对大家有所
- [sql server] 分组取最大最小常用sql
一炮送你回车库
SQL Server
--分组取最大最小常用sql--测试环境if OBJECT_ID('tb') is not null drop table tb;gocreate table tb( col1 int, col2 int, Fcount int)insert into tbselect 11,20,1 union allselect 11,22,1 union allselect 1
- ImageIO写图片输出到硬盘
3213213333332132
javaimage
package awt;
import java.awt.Color;
import java.awt.Font;
import java.awt.Graphics;
import java.awt.image.BufferedImage;
import java.io.File;
import java.io.IOException;
import javax.imagei
- 自己的String动态数组
宝剑锋梅花香
java动态数组数组
数组还是好说,学过一两门编程语言的就知道,需要注意的是数组声明时需要把大小给它定下来,比如声明一个字符串类型的数组:String str[]=new String[10]; 但是问题就来了,每次都是大小确定的数组,我需要数组大小不固定随时变化怎么办呢? 动态数组就这样应运而生,龙哥给我们讲的是自己用代码写动态数组,并非用的ArrayList 看看字符
- pinyin4j工具类
darkranger
.net
pinyin4j工具类Java工具类 2010-04-24 00:47:00 阅读69 评论0 字号:大中小
引入pinyin4j-2.5.0.jar包:
pinyin4j是一个功能强悍的汉语拼音工具包,主要是从汉语获取各种格式和需求的拼音,功能强悍,下面看看如何使用pinyin4j。
本人以前用AscII编码提取工具,效果不理想,现在用pinyin4j简单实现了一个。功能还不是很完美,
- StarUML学习笔记----基本概念
aijuans
UML建模
介绍StarUML的基本概念,这些都是有效运用StarUML?所需要的。包括对模型、视图、图、项目、单元、方法、框架、模型块及其差异以及UML轮廓。
模型、视与图(Model, View and Diagram)
&
- Activiti最终总结
avords
Activiti id 工作流
1、流程定义ID:ProcessDefinitionId,当定义一个流程就会产生。
2、流程实例ID:ProcessInstanceId,当开始一个具体的流程时就会产生,也就是不同的流程实例ID可能有相同的流程定义ID。
3、TaskId,每一个userTask都会有一个Id这个是存在于流程实例上的。
4、TaskDefinitionKey和(ActivityImpl activityId
- 从省市区多重级联想到的,react和jquery的差别
bee1314
jqueryUIreact
在我们的前端项目里经常会用到级联的select,比如省市区这样。通常这种级联大多是动态的。比如先加载了省,点击省加载市,点击市加载区。然后数据通常ajax返回。如果没有数据则说明到了叶子节点。 针对这种场景,如果我们使用jquery来实现,要考虑很多的问题,数据部分,以及大量的dom操作。比如这个页面上显示了某个区,这时候我切换省,要把市重新初始化数据,然后区域的部分要从页面
- Eclipse快捷键大全
bijian1013
javaeclipse快捷键
Ctrl+1 快速修复(最经典的快捷键,就不用多说了)Ctrl+D: 删除当前行 Ctrl+Alt+↓ 复制当前行到下一行(复制增加)Ctrl+Alt+↑ 复制当前行到上一行(复制增加)Alt+↓ 当前行和下面一行交互位置(特别实用,可以省去先剪切,再粘贴了)Alt+↑ 当前行和上面一行交互位置(同上)Alt+← 前一个编辑的页面Alt+→ 下一个编辑的页面(当然是针对上面那条来说了)Alt+En
- js 笔记 函数
征客丶
JavaScript
一、函数的使用
1.1、定义函数变量
var vName = funcation(params){
}
1.2、函数的调用
函数变量的调用: vName(params);
函数定义时自发调用:(function(params){})(params);
1.3、函数中变量赋值
var a = 'a';
var ff
- 【Scala四】分析Spark源代码总结的Scala语法二
bit1129
scala
1. Some操作
在下面的代码中,使用了Some操作:if (self.partitioner == Some(partitioner)),那么Some(partitioner)表示什么含义?首先partitioner是方法combineByKey传入的变量,
Some的文档说明:
/** Class `Some[A]` represents existin
- java 匿名内部类
BlueSkator
java匿名内部类
组合优先于继承
Java的匿名类,就是提供了一个快捷方便的手段,令继承关系可以方便地变成组合关系
继承只有一个时候才能用,当你要求子类的实例可以替代父类实例的位置时才可以用继承。
在Java中内部类主要分为成员内部类、局部内部类、匿名内部类、静态内部类。
内部类不是很好理解,但说白了其实也就是一个类中还包含着另外一个类如同一个人是由大脑、肢体、器官等身体结果组成,而内部类相
- 盗版win装在MAC有害发热,苹果的东西不值得买,win应该不用
ljy325
游戏applewindowsXPOS
Mac mini 型号: MC270CH-A RMB:5,688
Apple 对windows的产品支持不好,有以下问题:
1.装完了xp,发现机身很热虽然没有运行任何程序!貌似显卡跑游戏发热一样,按照那样的发热量,那部机子损耗很大,使用寿命受到严重的影响!
2.反观安装了Mac os的展示机,发热量很小,运行了1天温度也没有那么高
&nbs
- 读《研磨设计模式》-代码笔记-生成器模式-Builder
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/**
* 生成器模式的意图在于将一个复杂的构建与其表示相分离,使得同样的构建过程可以创建不同的表示(GoF)
* 个人理解:
* 构建一个复杂的对象,对于创建者(Builder)来说,一是要有数据来源(rawData),二是要返回构
- JIRA与SVN插件安装
chenyu19891124
SVNjira
JIRA安装好后提交代码并要显示在JIRA上,这得需要用SVN的插件才能看见开发人员提交的代码。
1.下载svn与jira插件安装包,解压后在安装包(atlassian-jira-subversion-plugin-0.10.1)
2.解压出来的包里下的lib文件夹下的jar拷贝到(C:\Program Files\Atlassian\JIRA 4.3.4\atlassian-jira\WEB
- 常用数学思想方法
comsci
工作
对于搞工程和技术的朋友来讲,在工作中常常遇到一些实际问题,而采用常规的思维方式无法很好的解决这些问题,那么这个时候我们就需要用数学语言和数学工具,而使用数学工具的前提却是用数学思想的方法来描述问题。。下面转帖几种常用的数学思想方法,仅供学习和参考
函数思想
把某一数学问题用函数表示出来,并且利用函数探究这个问题的一般规律。这是最基本、最常用的数学方法
- pl/sql集合类型
daizj
oracle集合typepl/sql
--集合类型
/*
单行单列的数据,使用标量变量
单行多列数据,使用记录
单列多行数据,使用集合(。。。)
*集合:类似于数组也就是。pl/sql集合类型包括索引表(pl/sql table)、嵌套表(Nested Table)、变长数组(VARRAY)等
*/
/*
--集合方法
&n
- [Ofbiz]ofbiz初用
dinguangx
电商ofbiz
从github下载最新的ofbiz(截止2015-7-13),从源码进行ofbiz的试用
1. 加载测试库
ofbiz内置derby,通过下面的命令初始化测试库
./ant load-demo (与load-seed有一些区别)
2. 启动内置tomcat
./ant start
或
./startofbiz.sh
或
java -jar ofbiz.jar
&
- 结构体中最后一个元素是长度为0的数组
dcj3sjt126com
cgcc
在Linux源代码中,有很多的结构体最后都定义了一个元素个数为0个的数组,如/usr/include/linux/if_pppox.h中有这样一个结构体: struct pppoe_tag { __u16 tag_type; __u16 tag_len; &n
- Linux cp 实现强行覆盖
dcj3sjt126com
linux
发现在Fedora 10 /ubutun 里面用cp -fr src dest,即使加了-f也是不能强行覆盖的,这时怎么回事的呢?一两个文件还好说,就输几个yes吧,但是要是n多文件怎么办,那还不输死人呢?下面提供三种解决办法。 方法一
我们输入alias命令,看看系统给cp起了一个什么别名。
[root@localhost ~]# aliasalias cp=’cp -i’a
- Memcached(一)、HelloWorld
frank1234
memcached
一、简介
高性能的架构离不开缓存,分布式缓存中的佼佼者当属memcached,它通过客户端将不同的key hash到不同的memcached服务器中,而获取的时候也到相同的服务器中获取,由于不需要做集群同步,也就省去了集群间同步的开销和延迟,所以它相对于ehcache等缓存来说能更好的支持分布式应用,具有更强的横向伸缩能力。
二、客户端
选择一个memcached客户端,我这里用的是memc
- Search in Rotated Sorted Array II
hcx2013
search
Follow up for "Search in Rotated Sorted Array":What if duplicates are allowed?
Would this affect the run-time complexity? How and why?
Write a function to determine if a given ta
- Spring4新特性——更好的Java泛型操作API
jinnianshilongnian
spring4generic type
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- CentOS安装JDK
liuxingguome
centos
1、行卸载原来的:
[root@localhost opt]# rpm -qa | grep java
tzdata-java-2014g-1.el6.noarch
java-1.7.0-openjdk-1.7.0.65-2.5.1.2.el6_5.x86_64
java-1.6.0-openjdk-1.6.0.0-11.1.13.4.el6.x86_64
[root@localhost
- 二分搜索专题2-在有序二维数组中搜索一个元素
OpenMind
二维数组算法二分搜索
1,设二维数组p的每行每列都按照下标递增的顺序递增。
用数学语言描述如下:p满足
(1),对任意的x1,x2,y,如果x1<x2,则p(x1,y)<p(x2,y);
(2),对任意的x,y1,y2, 如果y1<y2,则p(x,y1)<p(x,y2);
2,问题:
给定满足1的数组p和一个整数k,求是否存在x0,y0使得p(x0,y0)=k?
3,算法分析:
(
- java 随机数 Math与Random
SaraWon
javaMathRandom
今天需要在程序中产生随机数,知道有两种方法可以使用,但是使用Math和Random的区别还不是特别清楚,看到一篇文章是关于的,觉得写的还挺不错的,原文地址是
http://www.oschina.net/question/157182_45274?sort=default&p=1#answers
产生1到10之间的随机数的两种实现方式:
//Math
Math.roun
- oracle创建表空间
tugn
oracle
create temporary tablespace TXSJ_TEMP
tempfile 'E:\Oracle\oradata\TXSJ_TEMP.dbf'
size 32m
autoextend on
next 32m maxsize 2048m
extent m
- 使用Java8实现自己的个性化搜索引擎
yangshangchuan
javasuperword搜索引擎java8全文检索
需要对249本软件著作实现句子级别全文检索,这些著作均为PDF文件,不使用现有的框架如lucene,自己实现的方法如下:
1、从PDF文件中提取文本,这里的重点是如何最大可能地还原文本。提取之后的文本,一个句子一行保存为文本文件。
2、将所有文本文件合并为一个单一的文本文件,这样,每一个句子就有一个唯一行号。
3、对每一行文本进行分词,建立倒排表,倒排表的格式为:词=包含该词的总行数N=行号