参考:torch.nn.functional 和 torch.nn 去使用softmax,logsoftmax,crossentropy等的区别_LUQC638的博客-CSDN博客参考:softmax + log = logsoftmax, logsoftmax+ nllloss= crossentropy_LUQC638的博客-CSDN博客import torchimport torch.nn as nnimport torch.nn.functional as F# Example of target with class indicesinput = torch.randn(3, 5)print(f"Input is {input}")t = torch.tensor([1..https://blog.csdn.net/weixin_61445075/article/details/122251742
torch.nn.CrossEntropyLoss() 的输入需要注意:官网说,可以是预测值和类别标量值,或者是预测值和softmax的真实概率值,但实际运行当target是softmax的概率的时候,报错。
CrossEntropyLoss — PyTorch 1.12 documentationhttps://pytorch.org/docs/master/generated/torch.nn.CrossEntropyLoss.html#torch.nn.CrossEntropyLoss
import torch
import torch.nn as nn
import torch.nn.functional as F
if __name__ == '__main__':
# Example of target with class indices
# Example of target with class indices
loss = nn.CrossEntropyLoss()
input = torch.randn(3, 5, requires_grad=True)
target = torch.empty(3, dtype=torch.long).random_(5)
output = loss(input, target)
print(input,target,output)
output.backward()
# Example of target with class probabilities
input = torch.randn(3, 5, requires_grad=True)
target = torch.randn(3, 5).softmax(dim=1)
print(input,target)
output = loss(input, target)
print(input, target, output)
output.backward()
输出:
tensor([[ 0.3674, -0.5932, -0.7216, -1.3490, 0.0218],
[ 1.9170, 0.4528, -0.1410, 0.2581, -0.5870],
[ 1.8812, -0.2069, -0.0421, -0.2248, 0.1507]], requires_grad=True) tensor([4, 4, 2]) tensor(2.2236, grad_fn=)
tensor([[-2.4329, -2.4403, 0.1269, 0.7363, 0.1317],
[-0.4405, 1.5062, -0.9750, -2.3200, -0.3775],
[-0.2398, 0.8891, -0.5336, 0.3223, 0.8040]], requires_grad=True) tensor([[0.2735, 0.1542, 0.4316, 0.0837, 0.0570],
[0.0465, 0.3717, 0.4131, 0.0301, 0.1387],
[0.2184, 0.1615, 0.1662, 0.0928, 0.3611]])
Traceback (most recent call last):
File "/home/luzhengyu/PycharmProjects/test.py", line 19, in
output = loss(input, target)
File "/home/luzhengyu/anaconda3/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1051, in _call_impl
return forward_call(*input, **kwargs)
File "/home/luzhengyu/anaconda3/lib/python3.8/site-packages/torch/nn/modules/loss.py", line 1120, in forward
return F.cross_entropy(input, target, weight=self.weight,
File "/home/luzhengyu/anaconda3/lib/python3.8/site-packages/torch/nn/functional.py", line 2824, in cross_entropy
return torch._C._nn.cross_entropy_loss(input, target, weight, _Reduction.get_enum(reduction), ignore_index)
RuntimeError: 1D target tensor expected, multi-target not supported