- 《DeepSeek训练算法:开启高效学习的新大门》
人工智能深度学习
在人工智能的浪潮中,大语言模型的发展日新月异。DeepSeek作为其中的佼佼者,凭借其独特的训练算法和高效的学习能力,吸引了众多目光。今天,就让我们深入探究DeepSeek训练算法的独特之处,以及它是如何保证模型实现高效学习的。一、独特的架构基础DeepSeek以Transformer架构为基石,但并非简单沿用,而是进行了深度创新。Transformer架构的核心是注意力机制,这让模型在处理序列数
- DeepSeek推理模型架构以及DeepSeek爆火的原因
微学AI
架构LLMdeepseek
大家好,我是微学AI,今天给大家介绍一下DeepSeek推理模型架构以及DeepSeek爆火的原因,DeepSeek推理模型凭借其创新的混合专家(MoE)架构和优化的Transformer架构,融合稀疏注意力机制,实现了高效的计算资源分配与显著降低的推理成本。在训练过程中,DeepSeek广泛应用蒸馏技术,通过生成高质量数据和将大型模型的推理能力迁移至小型模型,大幅提升训练效率与模型性能。Deep
- 书籍-《掌握Transformer:从BERT到大模型和Stable Diffusion(第二版)》
书籍:MasteringTransformers:TheJourneyfromBERTtoLargeLanguageModelsandStableDiffusion,2ndEdition作者:SavaşYıldırım,MeysamAsgari-Chenaghlu出版:PacktPublishing编辑:陈萍萍的公主@一点人工一点智能下载:书籍下载-《掌握Transformer:从BERT到大模型
- transformer概述
沉墨的夜
transformer深度学习人工智能
Transformer架构的提出,不仅在自然语言处理(NLP)领域掀起了革命,也在多个深度学习任务中获得了广泛应用。自2017年由Vaswani等人提出以来,Transformer经历了多次优化和扩展,成为深度学习领域的基石。以下是Transformer架构的演进历程、作用和意义、架构详情以及未来发展趋势的详细阐述。Transformer架构的演进历程(1)Transformer的起源(2017年
- Python中LLM的稀疏Transformer架构:Longformer与BigBird
二进制独立开发
非纯粹GenAIGenAI与Pythonpythontransformer架构开发语言分布式人工智能自然语言处理
文章目录1.Transformer架构的挑战2.稀疏Transformer架构的提出2.1Longformer2.1.1局部注意力2.1.2全局注意力2.1.3实现2.2BigBird2.2.1随机注意力2.2.2局部注意力2.2.3全局注意力2.2.4实现3.稀疏Transformer架构的优势4.稀疏Transformer架构的挑战5.未来发展方向5.1更高效的稀疏注意力机制5.2自适应稀疏注
- 【深度学习基础】什么是注意力机制
我的青春不太冷
深度学习人工智能注意力机制
文章目录一、注意力机制的核心地位:从补充到主导二、技术突破:从Transformer到多模态融合三、跨领域应用:从NLP到通用人工智能四、未来挑战与趋势结语参考链接注意力机制:深度学习的核心革命与未来基石在深度学习的发展历程中,注意力机制(AttentionMechanism)的引入堪称一场革命。它不仅解决了传统模型的根本性缺陷,更通过动态聚焦关键信息的能力,重塑了人工智能处理复杂任务的范式。本文
- <Attention Is All You Need>:全网首次提出Transformer模型论文中英文对照学习
kingking44
transformer学习人工智能
论文摘要英文Thedominantsequencetransductionmodelsarebasedoncomplexrecurrentorconvolutionalneuralnetworksthatincludeanencoderandadecoder.Thebestperformingmodelsalsoconnecttheencoderanddecoderthroughanattenti
- 基于DeepSeek-R1的高效推理优化实战:从API封装到动态批处理
竹木有心
人工智能
引言在LLM(大语言模型)应用中,推理延迟和计算资源消耗是核心痛点。本文以DeepSeek-R1-7B模型为例,通过动态批处理、模型量化和异步推理三大技术,将单次推理耗时从2.3s降至0.4s,吞吐量提升6倍。所有代码均通过PyTorch2.1+验证。一、环境准备与模型加载优化1.1硬件感知的模型加载通过device_map自动分配计算资源,避免显存溢出fromtransformersimport
- 第TR5周:Transformer实战:文本分类
计算机真好丸
transformer分类深度学习
文章目录1.准备环境1.1环境安装1.2加载数据2.数据预处理2.1构建词典2.2生成数据批次和迭代器2.3构建数据集3.模型构建3.1定义位置编码函数3.2定义Transformer模型3.3初始化模型3.4定义训练函数3.5定义评估函数4.训练模型4.1模型训练5.总结:本文为365天深度学习训练营中的学习记录博客原作者:K同学啊1.准备环境1.1环境安装这是一个使用PyTorch通过Tran
- LightGBM+NRBO-Transformer-BiLSTM多变量回归预测 Matlab代码
前程算法屋
私信获取源码transformer回归matlab
LightGBM+NRBO-Transformer-BiLSTM多变量回归预测Matlab代码一、引言1.1、研究背景与意义在现代数据科学领域,多变量回归预测问题一直是一个研究热点。随着互联网和物联网技术的迅速发展,数据量呈指数级增长,如何从这些海量数据中提取有用的信息,并进行准确预测,成为了一个亟待解决的问题。多变量回归预测模型在金融风险管理、气象预报、医疗健康等多个领域具有广泛的应用。例如,在
- KTransformers:告别天价显卡!国产框架让单卡24G显存跑DeepSeek-R1 671B大模型:推理速度飙升28倍
蚝油菜花
每日AI项目与应用实例人工智能开源
❤️如果你也关注AI的发展现状,且对AI应用开发感兴趣,我会每日分享大模型与AI领域的开源项目和应用,提供运行实例和实用教程,帮助你快速上手AI技术!微信公众号|搜一搜:蚝油菜花“还在为千亿模型租天价显卡?清华团队用CPU/GPU协同计算,让4090跑起671B参数全量模型!”大家好,我是蚝油菜花。如果你也经历过——看着API调用账单瑟瑟发抖,微调一次模型吃掉半月算力预算️盯着OOM报错抓狂,为了
- 根据deepseek模型微调训练自动驾驶模型及数据集的思路
ywfwyht
自动驾驶深度学习人工智能自动驾驶人工智能机器学习
以下是使用DeepSeek模型微调训练自动驾驶模型的详细步骤和代码示例。本流程假设你已有自动驾驶领域的数据集(如驾驶指令、传感器数据等),并基于PyTorch框架实现。Step1:环境准备#安装依赖库pipinstalltorchtransformersdatasetsnumpypandasStep2:数据准备假设数据集格式为JSON,包含输入文本(传感器/场景描述)和输出控制指令://data/
- 预测股票走势的ai模型
roxxo
AI模型人工智能深度学习金融
AI股票走势预测模型用深度学习+时间序列分析来构建一个股票预测AI,基于历史数据预测未来走势。1.关键功能✅AI选股(基于财务数据+技术指标)✅股票走势预测(LSTM/Transformer)✅智能筛选高增长潜力股✅可视化分析2.关键技术数据来源:YahooFinance/AlphaVantage财务分析:PE、EPS、ROE、PB、成交量机器学习选股:随机森林/XGBoost深度学习预测:LST
- 2025年大模型与Transformer架构:技术前沿与未来趋势报告
和老莫一起学AI
transformer架构深度学习人工智能产品经理学习大模型
_“欧米伽未来研究所”关注科技未来发展趋势,研究人类向欧米伽点演化过程中面临的重大机遇与挑战。将不定期推荐和发布世界范围重要科技研究进展和未来趋势研究。在人工智能的宏大版图中,Transformer架构无疑是一颗璀璨的明星。它的出现,彻底改变了自然语言处理、计算机视觉等诸多领域的发展轨迹。《2025年大模型与Transformer架构:技术前沿与未来趋势报告》深入剖析了Transformer架构的
- 深度解析DeepSeek大模型的技术架构与创新点
程序员
大家好,我是一名DeepSeek大模型研究者,今天我想和大家分享一下DeepSeek大模型的核心技术架构和创新特点。作为国内领先的开源大模型,DeepSeek在架构设计和技术创新上都有其独特之处。让我们一起来揭开它的神秘面纱!一、基础架构概览DeepSeek的核心架构建立在Transformer的基础上,但进行了多项创新优化。我第一次接触DeepSeek时,就被它在模型结构上的精巧设计所吸引。1.
- deepseek+python,离线api,持续对话
守着黎明看日出
python
功能:通过start开启新对话,stop结束对话,exit退出程序,并且可持续对话代码fromtransformersimportAutoModelForCausalLM,AutoTokenizer,BitsAndBytesConfigimporttorch#导入torch模块#配置4-bit量化quantization_config=BitsAndBytesConfig(load_in_4bit
- 清华大学KVCache.AI团队联合趋境科技联合的KTransformers开源项目为什么那么厉害
魔王阿卡纳兹
IT杂谈人工智能科技开源清华DeepSeek趋境科技KTransformers
KTransformers是一个由清华大学KVAV.AI团队开发的开源项目,旨在优化大语言模型(LLM)的推理性能,特别是在有限显存资源下运行大型模型。以下是KTransformers的详细介绍:1.核心特点高性能优化:KTransformers通过内核级优化、多GPU并行策略和稀疏注意力等技术,显著加速模型推理速度,降低硬件门槛。灵活扩展性:KTransformers是一个以Python为中心的
- Transformer
AI专题精讲
深度学习transformer深度学习自然语言处理
1.TransformerTransformer是一种新的、基于attention机制来实现的特征提取器,可用于代替CNN和RNN来提取序列的特征。Transformer首次由论文《AttentionIsAllYouNeed》提出,在该论文中Transformer用于encoder-decoder架构。事实上Transformer可以单独应用于encoder或者单独应用于decoder。Trans
- Transformer以及BERT阅读参考博文
mumukehao
文本属性图文本属性图
Transformer以及BERT阅读参考博文Transformer学习:已有博主的讲解特别好了:李沐:Transformer论文逐段精读【论文精读】_哔哩哔哩_bilibili知乎:Transformer模型详解(图解最完整版)-知乎个人杂想:QKT∗VQK^{T}*VQKT∗V中,QKTQK^TQKT其实可以理解为相似性矩阵S,那么S∗VS*VS∗V其实就相当于相似性矩阵对原始的嵌入加权求和。
- ZCC6507: A Superior Isolated Power Solution Outperforming SN6507
zhichengwei
其他
Inthefieldofisolatedpowerdesign,engineersareconstantlyseekingmoreefficient,flexible,andcost-effectivesolutions.TheZCC6507,ahigh-performancepush-pulltransformerdriver,standsoutwithitsuniquedesignandsig
- 23. AI-大语言模型
真上帝的左手
23.AI人工智能语言模型自然语言处理
文章目录前言一、LLM1.简介2.工作原理和结构3.应用场景4.最新研究进展5.比较二、Transformer架构1.简介2.基本原理和结构3.应用场景4.最新进展三、开源1.开源概念2.开源模式3.模型权重四、再谈DeepSeek前言AI一、LLMLLM(LargeLanguageModel,大语言模型)1.简介 LLM(LargeLanguageModel,大语言模型)是指使用大量文本
- 目标检测代码示例(基于Python和OpenCV)
matlab_python22
计算机视觉
引言目标检测是计算机视觉领域中的一个核心任务,其目标是在图像或视频中定位和识别特定对象。随着技术的发展,目标检测算法不断演进,从传统的基于手工特征的方法到现代的深度学习方法,再到基于Transformer的架构,目标检测技术已经取得了显著的进步。本文将总结和对比几种主要的目标检测算法,探讨它们的优势、劣势和适用场景。1.目标检测算法分类1.1单阶段检测(One-Stage)与双阶段检测(Two-S
- 用java实现word(docx)转换为pdf格式文档(简单版)
xiaoxiaobaozhu
javawordpdf
导入依赖com.documents4jdocuments4j-local1.0.3com.documents4jdocuments4j-transformer-msoffice-word1.0.3代码//word文档替换成pdf文档privatestaticvoidreplaceWordToPdf(StringwordPath,StringpdfPath){FileinputWord=newFil
- Bengio新作Aaren:探索Transformer性能与RNN效率的融合
AI记忆
深度学习论文与相关应用transformerrnn深度学习AarenBengio
论文链接:https://arxiv.org/pdf/2405.13956一、摘要总结:本文提出了一种新的注意力机制,名为Aaren,它将注意力视为一种特殊的递归神经网络(RNN),能够高效地计算其多对一RNN输出。Aaren不仅能够并行训练,而且能够在推理时高效地更新新令牌,仅需要常数内存。实验表明,Aaren在四个流行的序列问题设置(强化学习、事件预测、时间序列分类和时间序列预测)的38个数据
- 发文新思路!双通道CNN的惊人突破,准确率接近100%!
沃恩智慧
深度学习人工智能cnn人工智能神经网络
双通道CNN作为一种创新的卷积神经网络架构,正引领深度学习领域的新趋势。其核心优势在于并行卷积层设计,能够同时处理更多特征信息,从而显著提升模型的特征表示能力和识别精度。这种架构不仅提高了计算效率,还有效降低了过拟合风险,使其在复杂视觉任务中表现卓越。例如,最新的研究提出了一种名为DDTransUNet的混合网络,结合了Transformer和CNN的优势,通过双分支编码器和双重注意力机制,有效解
- 海思Hi3516CV610 -----芯片说明
菩提树下的凡夫
嵌入式Linux系统开发c++c语言
Hi3516CV610这颗超高清智慧视觉SoC芯片是由海思技术有限公司推出的,其首发量产的时间是在2024年4。标志着海思正式回归安防市场,并在IPCSoC市场中展开竞争。关键特性●4K@20,6M@30分辨率●双目实时接入,支撑枪球一体机等双目机型●1T算力NPU,Transformer特性加速,大模型端侧部署●SVAC3.0编码标准,压缩率提升20%●智能编码2.0,像素升级,存储不加量,4M
- 上下文扩展技术-详细解释Longformer和BigBird的主要创新;详细说明bert原理,并说一说他的上下文限制是怎么来的
AI生成曾小健
人工智能
答案LongformerLongformer是为有效处理长文本序列而设计的Transformer模型,它通过结合滑动窗口注意力机制和扩张注意力模式来捕捉局部和远距离的上下文信息,并通过全局注意力来捕捉整个文档的广泛背景和联系1.Keyinnovations:滑动窗口注意力Longformer使用滑动窗口方法处理本地上下文信息1.扩张注意力模式扩张注意力模式能够捕捉到远处的上下文信息,这对于处理冗长
- 视觉中的transformer:ViT
ch隔壁老张
深度学习笔记transformer深度学习计算机视觉
《》摘要transformer已经是NLP的标准。但是在cv领域用的很少,视觉里一般是和cnn一起用或者把某些conv替换成transformer(整体还是CNN)本篇文章证明纯的transformer直接在图片分类上也做得很好:在大量数据集上进行预训练的前提上,迁移到小数据集(作者说ImageNet是小数据集-_-)上也很好。Intro启发现在NLP里的transformer都是在大量数据集上进
- ViT和Transformer
Landon9
transformer深度学习人工智能
AttentionIsAllYouNeedVit在图像领域直接使用transformer,如果将2d图像直接转为一维向量,会面临参数两过大的问题。后来会思考在卷积之后再使用transformer,例如resNet50模型中,最后一层仅为14×14大小的矩阵。而本文是直接采用transformer模型,只需要对图片做一下预处理。ViT是将图像分为多个16×16的patch一张图像可以被分成多个小的图
- 详细说说VIT架构和Transformer架构的异同
AI生成曾小健
大模型LLM面试指南多模态MLLM大模型面试指南架构transformer深度学习
GPT-4oVisionTransformer(ViT)和Transformer架构之间的关系非常紧密,因为ViT是直接将Transformer应用到视觉任务中的一种方法。不过,由于图像数据与自然语言数据的特性不同,ViT在实现上对标准Transformer架构做了一些调整。以下是ViT和Transformer架构的异同点详细分析:1.Transformer架构的回顾Transformer是一种用
- js动画html标签(持续更新中)
843977358
htmljs动画mediaopacity
1.jQuery 效果 - animate() 方法 改变 "div" 元素的高度: $(".btn1").click(function(){ $("#box").animate({height:"300px
- springMVC学习笔记
caoyong
springMVC
1、搭建开发环境
a>、添加jar文件,在ioc所需jar包的基础上添加spring-web.jar,spring-webmvc.jar
b>、在web.xml中配置前端控制器
<servlet>
&nbs
- POI中设置Excel单元格格式
107x
poistyle列宽合并单元格自动换行
引用:http://apps.hi.baidu.com/share/detail/17249059
POI中可能会用到一些需要设置EXCEL单元格格式的操作小结:
先获取工作薄对象:
HSSFWorkbook wb = new HSSFWorkbook();
HSSFSheet sheet = wb.createSheet();
HSSFCellStyle setBorder = wb.
- jquery 获取A href 触发js方法的this参数 无效的情况
一炮送你回车库
jquery
html如下:
<td class=\"bord-r-n bord-l-n c-333\">
<a class=\"table-icon edit\" onclick=\"editTrValues(this);\">修改</a>
</td>"
j
- md5
3213213333332132
MD5
import java.security.MessageDigest;
import java.security.NoSuchAlgorithmException;
public class MDFive {
public static void main(String[] args) {
String md5Str = "cq
- 完全卸载干净Oracle11g
sophia天雪
orale数据库卸载干净清理注册表
完全卸载干净Oracle11g
A、存在OUI卸载工具的情况下:
第一步:停用所有Oracle相关的已启动的服务;
第二步:找到OUI卸载工具:在“开始”菜单中找到“oracle_OraDb11g_home”文件夹中
&
- apache 的access.log 日志文件太大如何解决
darkranger
apache
CustomLog logs/access.log common 此写法导致日志数据一致自增变大。
直接注释上面的语法
#CustomLog logs/access.log common
增加:
CustomLog "|bin/rotatelogs.exe -l logs/access-%Y-%m-d.log
- Hadoop单机模式环境搭建关键步骤
aijuans
分布式
Hadoop环境需要sshd服务一直开启,故,在服务器上需要按照ssh服务,以Ubuntu Linux为例,按照ssh服务如下:
sudo apt-get install ssh
sudo apt-get install rsync
编辑HADOOP_HOME/conf/hadoop-env.sh文件,将JAVA_HOME设置为Java
- PL/SQL DEVELOPER 使用的一些技巧
atongyeye
javasql
1 记住密码
这是个有争议的功能,因为记住密码会给带来数据安全的问题。 但假如是开发用的库,密码甚至可以和用户名相同,每次输入密码实在没什么意义,可以考虑让PLSQL Developer记住密码。 位置:Tools菜单--Preferences--Oracle--Logon HIstory--Store with password
2 特殊Copy
在SQL Window
- PHP:在对象上动态添加一个新的方法
bardo
方法动态添加闭包
有关在一个对象上动态添加方法,如果你来自Ruby语言或您熟悉这门语言,你已经知道它是什么...... Ruby提供给你一种方式来获得一个instancied对象,并给这个对象添加一个额外的方法。
好!不说Ruby了,让我们来谈谈PHP
PHP未提供一个“标准的方式”做这样的事情,这也是没有核心的一部分...
但无论如何,它并没有说我们不能做这样
- ThreadLocal与线程安全
bijian1013
javajava多线程threadLocal
首先来看一下线程安全问题产生的两个前提条件:
1.数据共享,多个线程访问同样的数据。
2.共享数据是可变的,多个线程对访问的共享数据作出了修改。
实例:
定义一个共享数据:
public static int a = 0;
- Tomcat 架包冲突解决
征客丶
tomcatWeb
环境:
Tomcat 7.0.6
win7 x64
错误表象:【我的冲突的架包是:catalina.jar 与 tomcat-catalina-7.0.61.jar 冲突,不知道其他架包冲突时是不是也报这个错误】
严重: End event threw exception
java.lang.NoSuchMethodException: org.apache.catalina.dep
- 【Scala三】分析Spark源代码总结的Scala语法一
bit1129
scala
Scala语法 1. classOf运算符
Scala中的classOf[T]是一个class对象,等价于Java的T.class,比如classOf[TextInputFormat]等价于TextInputFormat.class
2. 方法默认值
defaultMinPartitions就是一个默认值,类似C++的方法默认值
- java 线程池管理机制
BlueSkator
java线程池管理机制
编辑
Add
Tools
jdk线程池
一、引言
第一:降低资源消耗。通过重复利用已创建的线程降低线程创建和销毁造成的消耗。第二:提高响应速度。当任务到达时,任务可以不需要等到线程创建就能立即执行。第三:提高线程的可管理性。线程是稀缺资源,如果无限制的创建,不仅会消耗系统资源,还会降低系统的稳定性,使用线程池可以进行统一的分配,调优和监控。
- 关于hql中使用本地sql函数的问题(问-答)
BreakingBad
HQL存储函数
转自于:http://www.iteye.com/problems/23775
问:
我在开发过程中,使用hql进行查询(mysql5)使用到了mysql自带的函数find_in_set()这个函数作为匹配字符串的来讲效率非常好,但是我直接把它写在hql语句里面(from ForumMemberInfo fm,ForumArea fa where find_in_set(fm.userId,f
- 读《研磨设计模式》-代码笔记-迭代器模式-Iterator
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.util.Arrays;
import java.util.List;
/**
* Iterator模式提供一种方法顺序访问一个聚合对象中各个元素,而又不暴露该对象内部表示
*
* 个人觉得,为了不暴露该
- 常用SQL
chenjunt3
oraclesqlC++cC#
--NC建库
CREATE TABLESPACE NNC_DATA01 DATAFILE 'E:\oracle\product\10.2.0\oradata\orcl\nnc_data01.dbf' SIZE 500M AUTOEXTEND ON NEXT 50M EXTENT MANAGEMENT LOCAL UNIFORM SIZE 256K ;
CREATE TABLESPA
- 数学是科学技术的语言
comsci
工作活动领域模型
从小学到大学都在学习数学,从小学开始了解数字的概念和背诵九九表到大学学习复变函数和离散数学,看起来好像掌握了这些数学知识,但是在工作中却很少真正用到这些知识,为什么?
最近在研究一种开源软件-CARROT2的源代码的时候,又一次感觉到数学在计算机技术中的不可动摇的基础作用,CARROT2是一种用于自动语言分类(聚类)的工具性软件,用JAVA语言编写,它
- Linux系统手动安装rzsz 软件包
daizj
linuxszrz
1、下载软件 rzsz-3.34.tar.gz。登录linux,用命令
wget http://freeware.sgi.com/source/rzsz/rzsz-3.48.tar.gz下载。
2、解压 tar zxvf rzsz-3.34.tar.gz
3、安装 cd rzsz-3.34 ; make posix 。注意:这个软件安装与常规的GNU软件不
- 读源码之:ArrayBlockingQueue
dieslrae
java
ArrayBlockingQueue是concurrent包提供的一个线程安全的队列,由一个数组来保存队列元素.通过
takeIndex和
putIndex来分别记录出队列和入队列的下标,以保证在出队列时
不进行元素移动.
//在出队列或者入队列的时候对takeIndex或者putIndex进行累加,如果已经到了数组末尾就又从0开始,保证数
- C语言学习九枚举的定义和应用
dcj3sjt126com
c
枚举的定义
# include <stdio.h>
enum WeekDay
{
MonDay, TuesDay, WednesDay, ThursDay, FriDay, SaturDay, SunDay
};
int main(void)
{
//int day; //day定义成int类型不合适
enum WeekDay day = Wedne
- Vagrant 三种网络配置详解
dcj3sjt126com
vagrant
Forwarded port
Private network
Public network
Vagrant 中一共有三种网络配置,下面我们将会详解三种网络配置各自优缺点。
端口映射(Forwarded port),顾名思义是指把宿主计算机的端口映射到虚拟机的某一个端口上,访问宿主计算机端口时,请求实际是被转发到虚拟机上指定端口的。Vagrantfile中设定语法为:
c
- 16.性能优化-完结
frank1234
性能优化
性能调优是一个宏大的工程,需要从宏观架构(比如拆分,冗余,读写分离,集群,缓存等), 软件设计(比如多线程并行化,选择合适的数据结构), 数据库设计层面(合理的表设计,汇总表,索引,分区,拆分,冗余等) 以及微观(软件的配置,SQL语句的编写,操作系统配置等)根据软件的应用场景做综合的考虑和权衡,并经验实际测试验证才能达到最优。
性能水很深, 笔者经验尚浅 ,赶脚也就了解了点皮毛而已,我觉得
- Word Search
hcx2013
search
Given a 2D board and a word, find if the word exists in the grid.
The word can be constructed from letters of sequentially adjacent cell, where "adjacent" cells are those horizontally or ve
- Spring4新特性——Web开发的增强
jinnianshilongnian
springspring mvcspring4
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- CentOS安装配置tengine并设置开机启动
liuxingguome
centos
yum install gcc-c++
yum install pcre pcre-devel
yum install zlib zlib-devel
yum install openssl openssl-devel
Ubuntu上可以这样安装
sudo aptitude install libdmalloc-dev libcurl4-opens
- 第14章 工具函数(上)
onestopweb
函数
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- Xelsius 2008 and SAP BW at a glance
blueoxygen
BOXelsius
Xelsius提供了丰富多样的数据连接方式,其中为SAP BW专属提供的是BICS。那么Xelsius的各种连接的优缺点比较以及Xelsius是如何直接连接到BEx Query的呢? 以下Wiki文章应该提供了全面的概览。
http://wiki.sdn.sap.com/wiki/display/BOBJ/Xcelsius+2008+and+SAP+NetWeaver+BW+Co
- oracle表空间相关
tongsh6
oracle
在oracle数据库中,一个用户对应一个表空间,当表空间不足时,可以采用增加表空间的数据文件容量,也可以增加数据文件,方法有如下几种:
1.给表空间增加数据文件
ALTER TABLESPACE "表空间的名字" ADD DATAFILE
'表空间的数据文件路径' SIZE 50M;
&nb
- .Net framework4.0安装失败
yangjuanjava
.netwindows
上午的.net framework 4.0,各种失败,查了好多答案,各种不靠谱,最后终于找到答案了
和Windows Update有关系,给目录名重命名一下再次安装,即安装成功了!
下载地址:http://www.microsoft.com/en-us/download/details.aspx?id=17113
方法:
1.运行cmd,输入net stop WuAuServ
2.点击开