- 吴恩达深度学习笔记(30)-正则化的解释
极客Array
正则化(Regularization)深度学习可能存在过拟合问题——高方差,有两个解决方法,一个是正则化,另一个是准备更多的数据,这是非常可靠的方法,但你可能无法时时刻刻准备足够多的训练数据或者获取更多数据的成本很高,但正则化通常有助于避免过拟合或减少你的网络误差。如果你怀疑神经网络过度拟合了数据,即存在高方差问题,那么最先想到的方法可能是正则化,另一个解决高方差的方法就是准备更多数据,这也是非常
- 七.正则化
愿风去了
吴恩达机器学习之正则化(Regularization)http://www.cnblogs.com/jianxinzhou/p/4083921.html从数学公式上理解L1和L2https://blog.csdn.net/b876144622/article/details/81276818虽然在线性回归中加入基函数会使模型更加灵活,但是很容易引起数据的过拟合。例如将数据投影到30维的基函数上,模
- 机器学习-------数据标准化
罔闻_spider
数据分析算法机器学习人工智能
什么是归一化,它与标准化的区别是什么?一作用在做训练时,需要先将特征值与标签标准化,可以防止梯度防炸和过拟合;将标签标准化后,网络预测出的数据是符合标准正态分布的—StandarScaler(),与真实值有很大差别。因为StandarScaler()对数据的处理是(真实值-平均值)/标准差。同时在做预测时需要将输出数据逆标准化提升模型精度:标准化/归一化使不同维度的特征在数值上更具比较性,提高分类
- 【机器学习与R语言】1-机器学习简介
苹果酱0567
面试题汇总与解析java中间件开发语言springboot后端
1.基本概念机器学习:发明算法将数据转化为智能行为数据挖掘VS机器学习:前者侧重寻找有价值的信息,后者侧重执行已知的任务。后者是前者的先期准备过程:数据——>抽象化——>一般化。或者:收集数据——推理数据——归纳数据——发现规律抽象化:训练:用一个特定模型来拟合数据集的过程用方程来拟合观测的数据:观测现象——数据呈现——模型建立。通过不同的格式来把信息概念化一般化:一般化:将抽象化的知识转换成可用
- Open3D 使用RANSAC分割平面
今夕是何年,
单目+双目计算机视觉
目录1,概述2,拟合平面3,实现过程4,主要函数:defsegment_plane(self,distance_threshold,ransac_n,num_iterations):'''5,代码实现6,结果展示1,概述随机抽样一致性算法QRANSAC(Randomsampleconsensus)是一种迭代的方法来从一系列包含有离异值的数据中计算数学模型参数的方法。RANSAC算法本质上由两步组成
- 曲线的平滑平滑处理
zq4132
c++qtc数据算法
最近在写一些数据处理的程序。经常需要对数据进行平滑处理。直接用FIR滤波器或IIR滤波器都有一个启动问题,滤波完成后总要对数据掐头去尾。因此去找了些简单的数据平滑处理的方法。在一本老版本的《数学手册》中找到了几个基于最小二乘法的数据平滑算法。将其写成了C代码,测试了一下,效果还可以。这里简单的记录一下,算是给自己做个笔记。算法的原理很简单,以五点三次平滑为例。取相邻的5个数据点,可以拟合出一条3次
- 【04】深度学习——训练的常见问题 | 过拟合欠拟合应对策略 | 过拟合欠拟合示例 | 正则化 | Dropout方法 | Dropout的代码实现 | 梯度消失和爆炸 | 模型文件的读写
花落指尖❀
#深度学习深度学习人工智能目标检测神经网络cnn
深度学习1.常见的分类问题1.1模型架构设计1.2万能近似定理1.3宽度or深度1.4过拟合问题1.5欠拟合问题1.6相互关系2.过拟合欠拟合应对策略2.1问题的本源2.2数据集大小的选择2.3数据增广2.4使用验证集2.5模型选择2.6K折交叉验证2.7提前终止3.过拟合欠拟合示例3.1导入库3.2数据生成3.3数据划分3.4模型定义3.5辅助函数3.6可视化4.正则化4.1深度学习中的正则化4
- 惩罚线性回归模型
媛苏苏
算法/模型/函数线性回归算法回归
惩罚线性回归模型是一种常见的线性回归的变体,它在原始的线性回归模型中引入了一种惩罚项,以防止模型过拟合数据。在惩罚线性回归中,除了最小化预测值与实际值之间的平方误差(或其他损失函数)外,还会考虑模型参数的大小。惩罚项通常被加到模型的损失函数中,以限制模型参数的大小。这样做有助于减少模型对训练数据的过度拟合,提高模型的泛化能力。常见的惩罚线性回归模型包括:岭回归(RidgeRegression):岭
- 数学运用 -- 使用最小二乘与勒让德多项式拟合离散数据
sz66cm
线性代数矩阵机器学习
使用最小二乘与勒让德多项式拟合离散数据1.准备离散数据假设我们有以下离散数据集:xxxyyy0.01.00.50.81.00.51.50.22.0-0.1我们想用勒让德多项式拟合这些数据,并通过最小二乘法找到勒让德多项式的系数。2.勒让德多项式勒让德多项式的前几项为:P0(x)=1P_0(x)=1P0(x)=1P1(x)=xP_1(x)=xP1(x)=xP2(x)=12(3x2−1)P_2(x)=
- OpenCV结构分析与形状描述符(14)拟合直线函数fitLine()的使用
jndingxin
OpenCVopencv人工智能计算机视觉
操作系统:ubuntu22.04OpenCV版本:OpenCV4.9IDE:VisualStudioCode编程语言:C++11算法描述拟合一条直线到2D或3D点集。fitLine函数通过最小化∑iρ(ri)\sum_i\rho(r_i)∑iρ(ri)来拟合一条直线到2D或3D点集,其中rir_iri是第i个点到直线的距离,而ρ(r)\rho(r)ρ(r)是一个距离函数,可以是以下之一:DIST_
- Python 数学建模——假设检验
Desire.984
Python数学建模python数学建模概率论
文章目录前言参数假设检验单个总体均值的假设检验σ\sigmaσ已知σ\sigmaσ未知两个总体均值的假设检验参考代码非参数假设检验分布拟合检验——卡方检验KS检验(Kolmogorov-Smirnov检验)Wilcoxon检验Wilcoxon符号秩检验Wilcoxon秩和检验前言 假设检验是概率论中相当重要的内容。一般是先提出一个原假设H0H_0H0和一个对立的备择假设H1H_1H1,通过数学方
- 第三章-数据预处理
moke冲冲
数据预处理的主要内容包括数据清洗、数据集成、数据变换和数据规约。3.1数据清洗数据清洗主要是删除原始数据集中的无关数据,重复数据,平滑噪声数据,筛选掉与挖掘主题无关的数据,处理缺失值,异常值等。3.1.1缺失值处理处理缺失值的方法可分为三类:删除记录、数据插补和不处理常用的插补方法如下图插值法:拉格朗日插值法,牛顿插值法拉格朗日插值法详解:https://www.zhihu.com/questio
- python曲线拟合函数scipy.optimize.leastsq()
赵孝正
#scipyscipypythonmatplotlib
目录介绍Parameters:Returns:代码案例介绍scipy.optimize.leastsq(func,x0,args=(),Dfun=None,full_output=0,col_deriv=0,ftol=1.49012e-08,xtol=1.49012e-08,gtol=0.0,maxfev=0,epsfcn=None,factor=100,diag=None)最小化一组方程的平方和
- 网络安全最新SARIMA季节项时间序列分析流程+python代码
2401_84301389
程序员python人工智能机器学习
文章目录数据流程流程分割1画图2季节项和周期项的去除3平稳性检验4白噪声检验5模型拟合6模型定阶AIC/BIC准则7检查残差是否通过检验7.1若通过检验7.2若未通过检验8模型的预测9模型的评价画图均方差等总的代码参考数据数据网站:NationalAeronauticsandSpaceAdministrationGoddardInstituteforSpaceStudies主要分析的是北美陆地表面
- 6. 深度学习中的正则化技术:防止过拟合
Network_Engineer
机器学习深度学习人工智能
引言过拟合是深度学习模型在训练过程中常遇到的挑战。过拟合会导致模型在训练数据上表现良好,但在新数据上表现不佳。为了防止过拟合,研究者们提出了多种正则化技术,如L1/L2正则化、Dropout、数据增强等。这些技术通过约束模型的复杂度或增加数据的多样性,有效提高了模型的泛化能力。本篇博文将深入探讨这些正则化技术的原理、应用及其在实际深度学习任务中的效果。1.过拟合的原因与影响过拟合通常发生在模型的复
- python 傅里叶曲线拟合
大霸王龙
python傅里叶python机器学习
先看一段效果代码结构拟合曲线的方程将原始数据和拟合结果绘制到一张图上,并保存图片合成视频import部分说明fromscipy.optimizeimportcurve_fitimportmatplotlib.pyplotaspltimportnumpyasnpimportsysimportos拟合方程如下deffourier(x,*args):w=2*np.pi/200ret=0fordeginr
- C#语言实现最小二乘法算法
2401_86528135
算法c#最小二乘法
最小二乘法(LeastSquaresMethod)是一种常用的拟合方法,用于在数据点之间找到最佳的直线(或其他函数)拟合。以下是一个用C#实现简单线性回归(即一元最小二乘法)的示例代码。1.最小二乘法简介对于一组数据点(x1,y1),(x2,y2),…,(xn,yn)(x_1,y_1),(x_2,y_2),\ldots,(x_n,y_n)(x1,y1),(x2,y2),…,(xn,yn),最小二乘
- KAN网络技术最全解析——最热KAN能否干掉MLP和Transformer?(收录于GPT-4/ChatGPT技术与产业分析)
u013250861
#LLM/Transformertransformerchatgpt深度学习
KAN网络结构思路来自Kolmogorov-Arnold表示定理。MLP在节点(“神经元”)上具有固定的激活函数,而KAN在边(“权重”)上具有可学习的激活函数。在数据拟合和PDE求解中,较小的KAN可以比较大的MLP获得更好的准确性。相对MLP,KAN也具备更好的可解释性,适合作为数学和物理研究中的辅助模型,帮助发现和寻找更基础的数值规律。(点赞是我们分享的动力)MLP与KAN对比与传统的MLP
- PYTHON:Scipy的曲线适合NxM阵列?
潮易
pythonscipy开发语言
在Python中,`scipy.optimize`模块中的`curve_fit`函数可以用来拟合一维曲线到数据点,而它并不直接适用于处理二维数组(NxM矩阵)的数据。但是,我们可以将二维矩阵视为N个一维数据集,然后对每个一维数据集应用`curve_fit`来找到对应的一维曲线拟合参数。以下是一个示例代码,展示了如何处理NxM矩阵中的每一行作为一维数据进行曲线拟合:```pythonimportnu
- 第二章可通行栅格建立(PCA方法)
喜欢躺着玩
点云处理与导航3dc++
系列文章目录这一篇主要讲怎么通过PCA建立栅格可通行栅格,这部分其实有非常多的方法,这也只是当时前期使用的一个简单demo文章目录系列文章目录前言一、栅格地图二、RTK定位1.更新位置2.将点云读入到栅格地图中3.对每个栅格进行PCA判断总结前言提示:这里可以添加本文要记录的大概内容:对于做工程来说,一般地面分割使用PCA,生长算法以及RANSAC拟合平面较多,但是ransac的波动较为敏感,生长
- Datawhale X 李宏毅苹果书 AI夏令营 入门 Task3-机器学习框架
沙雕是沙雕是沙雕
人工智能机器学习
目录实践方法论1.模型偏差2.优化问题3.过拟合4.交叉验证5.不匹配实践方法论1.模型偏差当一个模型由于其结构的限制,无法捕捉数据中的真实关系时,即使找到了最优的参数,模型的损失依然较高。可以通过增加输入特征、使用更复杂的模型结构或采用深度学习等方法来新设计模型,增加模型的灵活性。2.优化问题在机器学习模型训练过程中,即使模型的灵活性足够高,也可能由于优化算法的问题导致训练数据的损失不够低。为了
- 数学建模-插值算法原理笔记
Faye_C_66
数学建模数学建模
文章目录目的概念分类一般插值多项式拉格朗日插值法分段线性插值分段二次插值牛顿插值法埃尔米特插值原理分段三次埃米尔特插值三次样条插值这里是根据清风数学建模视频课程记录的笔记,我不是清风本人。想系统学习数学建模的可以移步B站搜索相关视频目的比赛中常常需要根据已知的函数点进行数据、模型的处理和分析,而有时候现有的数据是极少的,不足以支撑分析的进行,这时就可以使用一些方法“模拟产生”一些新的但又比较靠谱的
- 数学建模之插值算法
阿米诺s
数学建模数学建模算法
注:本文面向应用,参考了清风大大的资料以及司守奎老师的《数学建模算法与应用》,属作者的个人学习总结。一.算法应用背景当已知函数点非常少的时候,我们经常要模拟产生一些新的函数值来支撑后续数据分析。这就是插值算法的应用目的。*插值算法还可以用来实现短期预测,但我们往往使用拟合算法以及时间序列算法来实现预测。二.插值问题的分类插值问题一般分为一维插值问题和多维插值问题。三.插值法(一)数学定义设函数f(
- 第四讲:拟合算法
云 无 心 以 出 岫
数学建模数学建模算法
与插值问题不同,在拟合问题中不需要曲线一定经过给定的点。拟合问题的目标是寻求一个函数(曲线)使得该曲线在某种准则下与所有的数据点最为接近,即曲线拟合的最好(最小化损失函数)。插值算法中,得到的多项式f(x)要经过所有样本点。但是如果样本点太多,那么这个多项式次数过高,会造成龙格现象。尽管我们可以选择分段的方法避免这种现象,但是更多时候我们更倾向于得到-个确定的曲线,尽管这条曲线不能经过每一个样本点
- 计量经济学中的检验——F检验(概念、检验假设、适用条件及操作流程)
佛系研go
计量经济学笔记
接之前的t检验博文F检验的适用场景从两研究总体中随机抽取样本,要对这两个样本进行比较的时候,首先要判断两总体方差是否相同,即方差齐性。若两总体方差相等,则直接用t检验,若不等,可采用t检验或变量变换或秩和检验等方法。什么是F检验F检验是在零假设下检验统计量具有F分布的统计检验。它最常用于比较已拟合到数据集的统计模型,以识别最适合数据抽样总体的模型。精确的“F检验”主要出现在当模型用最小二乘法拟合数
- 遗传进化算法进行高效特征选择
广东数字化转型
算法人工智能
在构建机器学习模型时,特征选择是一个关键的预处理步骤。使用全部特征往往会导致过拟合、增加计算复杂度等问题。因此,我们需要从原始特征集中选择一个最优子集,以提高模型的泛化性能和效率。特征选择的目标是找到一个二元掩码向量,对应每个特征的保留(1)或剔除(0)。例如,对于10个特征,这个掩码向量可能是[1,0,1,1,0,0,1,0,1,0]。我们需要通过某种优化方法,寻找一个使目标函数(如模型的贝叶斯
- python奇数平方和_平方和
weixin_39807352
python奇数平方和
平方和误差和最大后验2020-12-2119:32:19多项式曲线拟合问题中的最大后验与最小化正则和平方和误差之间的关系简单证明多项式回归的最大后验等价于最小正则化和平方和误差;主要内容:多项式回归高斯分布贝叶斯定理对数函数计算1.简单回顾一下多项式回归y组合模型方法2020-12-0813:01:57不同的定性预测模型方法或定量预测模型方法各有其优点和缺点,它们之间并不是相互排斥的,而是相互联系
- Origin 2022软件安装包下载及安装教程 免激活永久使用
2401_87084737
vim
Origin是一款由美国OriginLab公司开发的科学绘图软件,旨在帮助科学家快速绘制和分析各种数据图表。Origin可以支持多种数据格式、统计分析、曲线拟合等功能,在科研、工程设计、教学等领域广泛应用。OriginLab公司成立于1992年,当时主要从事数据分析软件的研发和销售。随着科研和工程设计对数据分析和可视化的需求不断增加,OriginLab公司开始研发可视化和科学绘图软件,其中Orig
- 模型评估:可决系数与纳什效率系数
~hello world~
学习笔记机器学习python人工智能
1、可决系数R2 可决系数(Coefficientofdetermination,R)是用来度量一个统计模型的拟合优度的。其数学表达式如下:式中:yi是变量观测值;y‾\overline{y}y是变量观测值的均值; y^i\hat{y}_iy^i是统计模型的变量模拟值; R2的取值范围为[0,1]。2、纳什效率系数NSE 纳什效率系数(Nash-SutcliffeEfficiency,NS
- 备战2024数学建模国赛(模型十八):拟合模型 优秀案例(二)高温作业服设计
2024年数学建模国赛
备战2024数学建模国赛备战2024数学建模数学建模2024年数学建模国赛数学建模国赛算法拟合模型
专栏内容(赛前预售价99,比赛期间299):2024数学建模国赛期间会发布思路、代码和优秀论文。(本专栏达不到国一的水平,适用于有一点点基础冲击省奖的同学,近两年有二十几个国二,但是达不到国一,普遍获得省奖,请勿盲目订阅)python全套教程(一百篇博客):从新手到掌握使用python,可以对数学建模问题进行建模分析。35套模型算法(优秀论文示例):马尔科夫模型、遗传算法、逻辑回归、逐步回归、蚁群
- 关于旗正规则引擎下载页面需要弹窗保存到本地目录的问题
何必如此
jsp超链接文件下载窗口
生成下载页面是需要选择“录入提交页面”,生成之后默认的下载页面<a>标签超链接为:<a href="<%=root_stimage%>stimage/image.jsp?filename=<%=strfile234%>&attachname=<%=java.net.URLEncoder.encode(file234filesourc
- 【Spark九十八】Standalone Cluster Mode下的资源调度源代码分析
bit1129
cluster
在分析源代码之前,首先对Standalone Cluster Mode的资源调度有一个基本的认识:
首先,运行一个Application需要Driver进程和一组Executor进程。在Standalone Cluster Mode下,Driver和Executor都是在Master的监护下给Worker发消息创建(Driver进程和Executor进程都需要分配内存和CPU,这就需要Maste
- linux上独立安装部署spark
daizj
linux安装spark1.4部署
下面讲一下linux上安装spark,以 Standalone Mode 安装
1)首先安装JDK
下载JDK:jdk-7u79-linux-x64.tar.gz ,版本是1.7以上都行,解压 tar -zxvf jdk-7u79-linux-x64.tar.gz
然后配置 ~/.bashrc&nb
- Java 字节码之解析一
周凡杨
java字节码javap
一: Java 字节代码的组织形式
类文件 {
OxCAFEBABE ,小版本号,大版本号,常量池大小,常量池数组,访问控制标记,当前类信息,父类信息,实现的接口个数,实现的接口信息数组,域个数,域信息数组,方法个数,方法信息数组,属性个数,属性信息数组
}
&nbs
- java各种小工具代码
g21121
java
1.数组转换成List
import java.util.Arrays;
Arrays.asList(Object[] obj); 2.判断一个String型是否有值
import org.springframework.util.StringUtils;
if (StringUtils.hasText(str)) 3.判断一个List是否有值
import org.spring
- 加快FineReport报表设计的几个心得体会
老A不折腾
finereport
一、从远程服务器大批量取数进行表样设计时,最好按“列顺序”取一个“空的SQL语句”,这样可提高设计速度。否则每次设计时模板均要从远程读取数据,速度相当慢!!
二、找一个富文本编辑软件(如NOTEPAD+)编辑SQL语句,这样会很好地检查语法。有时候带参数较多检查语法复杂时,结合FineReport中生成的日志,再找一个第三方数据库访问软件(如PL/SQL)进行数据检索,可以很快定位语法错误。
- mysql linux启动与停止
墙头上一根草
如何启动/停止/重启MySQL一、启动方式1、使用 service 启动:service mysqld start2、使用 mysqld 脚本启动:/etc/inint.d/mysqld start3、使用 safe_mysqld 启动:safe_mysqld&二、停止1、使用 service 启动:service mysqld stop2、使用 mysqld 脚本启动:/etc/inin
- Spring中事务管理浅谈
aijuans
spring事务管理
Spring中事务管理浅谈
By Tony Jiang@2012-1-20 Spring中对事务的声明式管理
拿一个XML举例
[html]
view plain
copy
print
?
<?xml version="1.0" encoding="UTF-8"?>&nb
- php中隐形字符65279(utf-8的BOM头)问题
alxw4616
php中隐形字符65279(utf-8的BOM头)问题
今天遇到一个问题. php输出JSON 前端在解析时发生问题:parsererror.
调试:
1.仔细对比字符串发现字符串拼写正确.怀疑是 非打印字符的问题.
2.逐一将字符串还原为unicode编码. 发现在字符串头的位置出现了一个 65279的非打印字符.
 
- 调用对象是否需要传递对象(初学者一定要注意这个问题)
百合不是茶
对象的传递与调用技巧
类和对象的简单的复习,在做项目的过程中有时候不知道怎样来调用类创建的对象,简单的几个类可以看清楚,一般在项目中创建十几个类往往就不知道怎么来看
为了以后能够看清楚,现在来回顾一下类和对象的创建,对象的调用和传递(前面写过一篇)
类和对象的基础概念:
JAVA中万事万物都是类 类有字段(属性),方法,嵌套类和嵌套接
- JDK1.5 AtomicLong实例
bijian1013
javathreadjava多线程AtomicLong
JDK1.5 AtomicLong实例
类 AtomicLong
可以用原子方式更新的 long 值。有关原子变量属性的描述,请参阅 java.util.concurrent.atomic 包规范。AtomicLong 可用在应用程序中(如以原子方式增加的序列号),并且不能用于替换 Long。但是,此类确实扩展了 Number,允许那些处理基于数字类的工具和实用工具进行统一访问。
 
- 自定义的RPC的Java实现
bijian1013
javarpc
网上看到纯java实现的RPC,很不错。
RPC的全名Remote Process Call,即远程过程调用。使用RPC,可以像使用本地的程序一样使用远程服务器上的程序。下面是一个简单的RPC 调用实例,从中可以看到RPC如何
- 【RPC框架Hessian一】Hessian RPC Hello World
bit1129
Hello world
什么是Hessian
The Hessian binary web service protocol makes web services usable without requiring a large framework, and without learning yet another alphabet soup of protocols. Because it is a binary p
- 【Spark九十五】Spark Shell操作Spark SQL
bit1129
shell
在Spark Shell上,通过创建HiveContext可以直接进行Hive操作
1. 操作Hive中已存在的表
[hadoop@hadoop bin]$ ./spark-shell
Spark assembly has been built with Hive, including Datanucleus jars on classpath
Welcom
- F5 往header加入客户端的ip
ronin47
when HTTP_RESPONSE {if {[HTTP::is_redirect]}{ HTTP::header replace Location [string map {:port/ /} [HTTP::header value Location]]HTTP::header replace Lo
- java-61-在数组中,数字减去它右边(注意是右边)的数字得到一个数对之差. 求所有数对之差的最大值。例如在数组{2, 4, 1, 16, 7, 5,
bylijinnan
java
思路来自:
http://zhedahht.blog.163.com/blog/static/2541117420116135376632/
写了个java版的
public class GreatestLeftRightDiff {
/**
* Q61.在数组中,数字减去它右边(注意是右边)的数字得到一个数对之差。
* 求所有数对之差的最大值。例如在数组
- mongoDB 索引
开窍的石头
mongoDB索引
在这一节中我们讲讲在mongo中如何创建索引
得到当前查询的索引信息
db.user.find(_id:12).explain();
cursor: basicCoursor 指的是没有索引
&
- [硬件和系统]迎峰度夏
comsci
系统
从这几天的气温来看,今年夏天的高温天气可能会维持在一个比较长的时间内
所以,从现在开始准备渡过炎热的夏天。。。。
每间房屋要有一个落地电风扇,一个空调(空调的功率和房间的面积有密切的关系)
坐的,躺的地方要有凉垫,床上要有凉席
电脑的机箱
- 基于ThinkPHP开发的公司官网
cuiyadll
行业系统
后端基于ThinkPHP,前端基于jQuery和BootstrapCo.MZ 企业系统
轻量级企业网站管理系统
运行环境:PHP5.3+, MySQL5.0
系统预览
系统下载:http://www.tecmz.com
预览地址:http://co.tecmz.com
各种设备自适应
响应式的网站设计能够对用户产生友好度,并且对于
- Transaction and redelivery in JMS (JMS的事务和失败消息重发机制)
darrenzhu
jms事务承认MQacknowledge
JMS Message Delivery Reliability and Acknowledgement Patterns
http://wso2.com/library/articles/2013/01/jms-message-delivery-reliability-acknowledgement-patterns/
Transaction and redelivery in
- Centos添加硬盘完全教程
dcj3sjt126com
linuxcentoshardware
Linux的硬盘识别:
sda 表示第1块SCSI硬盘
hda 表示第1块IDE硬盘
scd0 表示第1个USB光驱
一般使用“fdisk -l”命
- yii2 restful web服务路由
dcj3sjt126com
PHPyii2
路由
随着资源和控制器类准备,您可以使用URL如 http://localhost/index.php?r=user/create访问资源,类似于你可以用正常的Web应用程序做法。
在实践中,你通常要用美观的URL并采取有优势的HTTP动词。 例如,请求POST /users意味着访问user/create动作。 这可以很容易地通过配置urlManager应用程序组件来完成 如下所示
- MongoDB查询(4)——游标和分页[八]
eksliang
mongodbMongoDB游标MongoDB深分页
转载请出自出处:http://eksliang.iteye.com/blog/2177567 一、游标
数据库使用游标返回find的执行结果。客户端对游标的实现通常能够对最终结果进行有效控制,从shell中定义一个游标非常简单,就是将查询结果分配给一个变量(用var声明的变量就是局部变量),便创建了一个游标,如下所示:
> var
- Activity的四种启动模式和onNewIntent()
gundumw100
android
Android中Activity启动模式详解
在Android中每个界面都是一个Activity,切换界面操作其实是多个不同Activity之间的实例化操作。在Android中Activity的启动模式决定了Activity的启动运行方式。
Android总Activity的启动模式分为四种:
Activity启动模式设置:
<acti
- 攻城狮送女友的CSS3生日蛋糕
ini
htmlWebhtml5csscss3
在线预览:http://keleyi.com/keleyi/phtml/html5/29.htm
代码如下:
<!DOCTYPE html>
<html>
<head>
<meta charset="UTF-8">
<title>攻城狮送女友的CSS3生日蛋糕-柯乐义<
- 读源码学Servlet(1)GenericServlet 源码分析
jzinfo
tomcatWebservlet网络应用网络协议
Servlet API的核心就是javax.servlet.Servlet接口,所有的Servlet 类(抽象的或者自己写的)都必须实现这个接口。在Servlet接口中定义了5个方法,其中有3个方法是由Servlet 容器在Servlet的生命周期的不同阶段来调用的特定方法。
先看javax.servlet.servlet接口源码:
package
- JAVA进阶:VO(DTO)与PO(DAO)之间的转换
snoopy7713
javaVOHibernatepo
PO即 Persistence Object VO即 Value Object
VO和PO的主要区别在于: VO是独立的Java Object。 PO是由Hibernate纳入其实体容器(Entity Map)的对象,它代表了与数据库中某条记录对应的Hibernate实体,PO的变化在事务提交时将反应到实际数据库中。
实际上,这个VO被用作Data Transfer
- mongodb group by date 聚合查询日期 统计每天数据(信息量)
qiaolevip
每天进步一点点学习永无止境mongodb纵观千象
/* 1 */
{
"_id" : ObjectId("557ac1e2153c43c320393d9d"),
"msgType" : "text",
"sendTime" : ISODate("2015-06-12T11:26:26.000Z")
- java之18天 常用的类(一)
Luob.
MathDateSystemRuntimeRundom
System类
import java.util.Properties;
/**
* System:
* out:标准输出,默认是控制台
* in:标准输入,默认是键盘
*
* 描述系统的一些信息
* 获取系统的属性信息:Properties getProperties();
*
*
*
*/
public class Sy
- maven
wuai
maven
1、安装maven:解压缩、添加M2_HOME、添加环境变量path
2、创建maven_home文件夹,创建项目mvn_ch01,在其下面建立src、pom.xml,在src下面简历main、test、main下面建立java文件夹
3、编写类,在java文件夹下面依照类的包逐层创建文件夹,将此类放入最后一级文件夹
4、进入mvn_ch01
4.1、mvn compile ,执行后会在