1、n个(28,28,1)的样本,通过第一层64个(3,3,1)卷积核卷积,得到64个特征图,即(28,28,64)
2、再通过maxpooling1,得到(14,14,64)的图像
3、再在(14,14,64)的图像的基础上,通过第二层128个(3,3,64)卷积核卷积,得到(14,14,128)的特征图
4 、再通过maxpooling2,得到(7,7,128)的图像
5、FC1: 将(7,7,128)的图像进行全连接。
6、FC2: softmax
# coding=utf-8
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
import input_data
mnist = input_data.read_data_sets('data/', one_hot=True)
trainimg = mnist.train.images
trainlabel = mnist.train.labels
testimg = mnist.test.images
testlabel = mnist.test.labels
print ("MNIST ready")
n_input = 784
n_output = 10
weights = {
'wc1': tf.Variable(tf.random_normal([3,3,1,64],stddev=0.1)),
'wc2': tf.Variable(tf.random_normal([3, 3, 64, 128],stddev=0.1)),
'wd1': tf.Variable(tf.random_normal([7*7*128, 1024],stddev=0.1)),
'wd2': tf.Variable(tf.random_normal([1024,n_output],stddev=0.1))
}
biases = {
'bc1':tf.Variable(tf.random_normal([64],stddev=0.1)),
'bc2': tf.Variable(tf.random_normal([128], stddev=0.1)),
'bd1': tf.Variable(tf.random_normal([1024], stddev=0.1)),
'bd2': tf.Variable(tf.random_normal([n_output], stddev=0.1))
}
def plot(x1,y1,y2):
plt.plot(x1, y1)
plt.plot(x1, y2)
plt.xlabel("step")
plt.ylabel("acc")
plt.text(1,0.8,'train:blue')
plt.show()
def conv_basic(_input,_w,_b,_keepratio):
# CONV LAYER 1
#x_image = tf.reshape(x, [-1, 28, 28, 1])这里是将一组图像矩阵x重建为新的矩阵,该新矩阵的维数为(a,28,28,1),其中-1表示a由实际情况来定。
#例如,x是一组图像的矩阵(假设是50张,大小为56×56),
#则执行x_image = tf.reshape(x, [-1, 28, 28, 1])可以计算a=50×56×56/28/28/1=200。即x_image的维数为(200,28,28,1)。
_input_r = tf.reshape(_input,shape=[-1,28,28,1])
# 1、卷积
# strides[bitch_size,h,w,c]bitch_size,h,w,c代表各自的步长大小
# padding
# same:给图片自动填充0以满足滑窗计算
# valid:滑窗到边界就结束,不会自动填充0
_conv1 = tf.nn.conv2d(_input_r,_w['wc1'],strides=[1,1,1,1],padding='SAME')
# 2、激活
_conv1 = tf.nn.relu(tf.nn.bias_add(_conv1,_b['bc1']))
# 3、池化层
_pool1 = tf.nn.max_pool(_conv1,ksize=[1,2,2,1],strides=[1,2,2,1],padding='SAME')
# 4、droput _keepratio 神经元保留比例
_pool_dr1 = tf.nn.dropout(_pool1,_keepratio)
# CONV LAYER 2 与第一层相同的操作
_conv2 = tf.nn.conv2d(_pool_dr1, _w['wc2'], strides=[1, 1, 1, 1], padding='SAME')
_conv2 = tf.nn.relu(tf.nn.bias_add(_conv2, _b['bc2']))
_pool2 = tf.nn.max_pool(_conv2, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
_pool_dr2 = tf.nn.dropout(_pool2, _keepratio)
# 转换成向量形式
# ***一个图片724得到[1,1024]的向量即样本特征,此向量再与[1024,n_output]得到各个类的概率结果***
_dense1 = tf.reshape(_pool_dr2,[-1,_w['wd1'].get_shape().as_list()[0]])
# 全连接层+droput
_fc1 = tf.nn.relu(tf.add(tf.matmul(_dense1,_w['wd1']),_b['bd1']))
_fc_dr1= tf.nn.dropout(_fc1,_keepratio)
_out = tf.add(tf.matmul(_fc_dr1,_w['wd2']),_b['bd2'])
out = { 'input_r': _input_r, 'conv1': _conv1, 'pool1': _pool1, 'pool1_dr1': _pool_dr1,
'conv2': _conv2, 'pool2': _pool2, 'pool_dr2': _pool_dr2, 'dense1': _dense1,
'fc1': _fc1, 'fc_dr1': _fc_dr1, 'out': _out
}
return out
print("CNN ready")
# 搭建计算框架
x = tf.placeholder(tf.float32,[None,n_input])
y = tf.placeholder(tf.float32,[None,n_output])
keepratio = tf.placeholder(tf.float32)
_pred = conv_basic(x,weights,biases,keepratio)['out']
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=_pred,labels=y))
optm = tf.train.AdamOptimizer(learning_rate=0.0001).minimize(cost)
pred_ret = tf.arg_max(_pred,1)
_corr = tf.equal(tf.arg_max(_pred,1),tf.arg_max(y,1))
accr = tf.reduce_mean(tf.cast(_corr,tf.float32))
init = tf.global_variables_initializer()
save_step = 1
saver = tf.train.Saver(max_to_keep=1)
print("Graph ready")
do_train = 1
sess = tf.Session()
sess.run(init)
trarning_epochs = 20
batch_size = 50
step = 3
x1 = []
plot_y1 =[]
plot_y2 =[]
epoch_num = 0
if do_train == 1 :
for epoch in range(trarning_epochs):
avg_cost = 0. # 每个epoch的平均误差
# epoch_num = int(mnist.train.num_examples/batch_size)
epoch_num = 20
for i in range(epoch_num):
# print ("training:%03d/%03d %03d/%d"%(i,epoch_num,epoch,trarning_epochs))
batch_xs,batch_yx = mnist.train.next_batch(batch_size)
sess.run(optm,feed_dict={x:batch_xs,y:batch_yx,keepratio:0.8})
avg_cost += sess.run(cost,feed_dict={x:batch_xs,y:batch_yx,keepratio:1.})/epoch_num
if epoch % step == 0 :
print ("epoch:%03d/%03d cost:%.9f"%(epoch,epoch_num,avg_cost))
train_acc = sess.run(accr,feed_dict={x:batch_xs,y:batch_yx,keepratio:1.})
print ("train accuracy: %.3f"%(train_acc))
test_xs, test_ys = mnist.train.next_batch(2000)
test_acc = sess.run(accr, feed_dict={x: test_xs, y: test_ys, keepratio: 1.})
print ("test accuracy: %.3f" % (test_acc))
plot_y1.append(train_acc)
plot_y2.append(test_acc)
x1.append(len(plot_y1))
if epoch % save_step == 0:
saver.save(sess,"save/nets/cnn_mnist_basic.ckpt-"+str(epoch))
plot(x1,plot_y1,plot_y2)
print ("optimization finshed")
if do_train == 0:
epoch = trarning_epochs - 1
saver.restore(sess,"save/nets/cnn_mnist_basic.ckpt-" + str(epoch))
test_xs, test_ys = mnist.train.next_batch(1000)
test_acc = sess.run(accr, feed_dict={x: test_xs, y: test_ys, keepratio: 1.})
print ("test accuracy:%.3f"%(test_acc))
测试时候占用内存过多会导致错误:
terminate called after throwing an instance of ‘std::bad_alloc’
sess.run(test_accr,feed_dict={x:test.images.,y:test.labels,keepratio:0.8})
改成即可解决:
test_xs, test_ys = mnist.train.next_batch(2000)
test_acc = sess.run(accr, feed_dict={x: test_xs, y: test_ys, keepratio: 1.})