- 科研绘图系列:R语言扩展物种堆积图(Extended Stacked Barplot)
生信学习者1
SCI科研绘图系列r语言数据可视化数据分析
介绍R语言的扩展物种堆积图是一种数据可视化工具,它不仅展示了物种的堆积结果,还整合了不同样本分组之间的差异性分析结果。这种图形表示方法能够直观地比较不同物种在各个分组中的显著性差异,为研究者提供了一种有效的数据解读方式。加载R包knitr::opts_chunk$set(warning=F,message=F)library(tidyverse)library(phyloseq)library(g
- 科研绘图系列:R语言组合堆积图(stacked barplot with multiple groups)
生信学习者2
R语言可视化r语言数据可视化
介绍通常堆积图的X轴表示样本,样本可能会存在较多的分组信息,通过组合堆积图和样本标签分组信息,我们可以得到一张能展示更多信息的可发表图形。加载R包knitr::opts_chunk$set(warning=F,message=F)library(tidyverse)library(cowplot)library(patchwork)导入数据数据可从以下链接下载(画图所需要的所有数据):百度云盘链接
- 用自编码器检测小波散射异常 MATLAB
闪闪发亮的小星星
数字信号处理与分析matlab开发语言
小波散射LSTM自编码器卷积自编码器卷积自编码器比LSTM自编码器快!modwpt主要参考:https://ww2.mathworks.cn/help/wavelet/ug/detect-anomalies-using-wavelet-scattering-with-autoencoders.html代码及部分注释%加载数据parentDir='';%ifexist(fullfile(parent
- Mastering Convolutional Neural Networks: A Comprehensive Practical Exploration
Bio大恐龙
人工智能深度学习数据可视化机器学习
ConvolutionalNeuralNetworks(CNNs)haverevolutionizedthefieldofcomputervisionandimagerecognition,enablinggroundbreakingadvancementsinvariousdomains.Thesepowerfuldeeplearningmodelshaveproventheirprowessi
- ConvE——二维卷积知识图谱横空出世
时光诺言
机器学习—图神经网络知识图谱人工智能python卷积神经网络
《Convolutional2DKnowledgeGraphEmbeddings》论文理解+代码复现本论文理解不再翻译原文,只写上我对于论文原生态的理解,应该会比较详细,请读者放心。一.作者为什么要提出ConvE?传统的R-GCN和DistMult的参数量过大,并且模型深度不够深,只能处理较小的知识图谱,所以作者将CNN引入到图神经网络中。二.一维卷积与二维卷积的对比2.1一维卷积当a,b特征简单
- Stream Query Denoising for Vectorized HD Map Construction
m_buddy
BEVPerception#LaneDetection自动驾驶计算机视觉
参考代码:截止2024.02未开源动机与出发点这篇文章是在StreamMapNet的基础上做的,为了在局部地图感知任务上提升时序上的感知稳定性,参考DN-DETR中的去噪方案,为局部地图感知提出一种针对局部地图元素的加噪声方案以及去噪逻辑。注意的是,这里DN去噪操作是在上一帧GT的基础上做的,原因是上一帧的感知结果存在相对GT存在更大不确定性(感知结果质量、地图元素新增和去除),为了训练的稳定性。
- [论文精读]Intelligence Quotient Scores Prediction in rs-fMRI via Graph Convolutional Regression Network
夏莉莉iy
论文精读人工智能机器学习深度学习计算机视觉学习笔记图论
论文网址:IntelligenceQuotientScoresPredictioninrs-fMRIviaGraphConvolutionalRegressionNetwork|SpringerLink英文是纯手打的!论文原文的summarizingandparaphrasing。可能会出现难以避免的拼写错误和语法错误,若有发现欢迎评论指正!文章偏向于笔记,谨慎食用!目录1.省流版1.1.心得1.
- Convolutional Neural Networks for No-Reference Image Quality Assessment 论文翻译
亚里
论文阅读NR-IQA使用卷积网络进行图像质量评价
ConvolutionalNeuralNetworksforNo-ReferenceImageQualityAssessment论文翻译TranslationAbstract1Introduction2RelatedWork3CNNforNR-IQA3.1NetworkArchitecture3.2LocalNormalization3.3Pooling3.4ReLUNonlinearity3.5
- 数据处理方法—— 7 种数据降维操作 !!
JOYCE_Leo16
Python数据降维python数据处理
文章目录数据降维1.主成分分析(PCA)2.线性判别分析(LDA)3.t-分布随机邻域嵌入(t-SNE)4.局部线性嵌入(LLE)5.多维缩放(MDS)6.奇异值分解(SVD)7.自动编码器(Autoencoders)总结数据降维数据降维是一种将高维数据转换为低纬数据的技术,同时尽量保留原始数据的重要信息。这对于处理大规模数据集非常有用,因为它有助于减少计算资源的需要,并提高算法的效率。以下是一些
- 实例分割论文阅读之:FCN:《Fully Convolutional Networks for Semantica Segmentation》
交换喜悲
mdetection系列论文阅读目标检测人工智能实例分割计算机视觉卷积神经网络
论文地址:https://openaccess.thecvf.com/content_cvpr_2015/papers/Long_Fully_Convolutional_Networks_2015_CVPR_paper.pdf代码链接:https://github.com/pytorch/vision摘要卷积网络是强大的视觉模型,可以产生特征层次结构。我们证明,经过端到端、像素到像素训练的卷积网络
- 语义分割系列之FCN、DeeplabV1、V2、V3、V3Plus论文学习
Diros1g
学习深度学习计算机视觉
FCNFullyConvolutionalNetworks论文:FullyConvolutionalNetworksforSemanticSegmentation地址:https://openaccess.thecvf.com/content_cvpr_2015/papers/Long_Fully_Convolutional_Networks_2015_CVPR_paper.pdf特点:用全卷积替
- Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering
怕狗子的福哥
图网络卷积
ConvolutionalNeuralNetworksonGraphswithFastLocalizedSpectralFiltering1、主要贡献2、算法介绍2.1学习局部化谱filtersk阶近似与ChebNet2.2图池化图粗化快速pooling整个GCN过程1、主要贡献1、谱方法的卷积公式。一种基于谱方法的CNN的形式化表述,基于GSP2、严格的局部化的filters。局部化就是定义了一
- 论文分享-- GCN -- Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering
村头陶员外
论文图表示学习gnn自然语言处理图神经网络论文
本次要总结的论文是ConvolutionalNeuralNetworksonGraphswithFastLocalizedSpectralFiltering,论文链接GCN,参考的代码实现GCN-code。不得不说,读懂这篇论文难度较大,因为里面有许多数学推导,要了解较多的数学知识。本人数学一般,因此在读本论文的同时参考了网上部分较优秀的讲解,这里会结合我对论文的理解,对本论文下总结,文末会详细列
- 2-5 异常检测 Anomaly detection with robust deep autoencoders 笔记
Siberia_
一、基本信息 题目:Anomalydetectionwithrobustdeepautoencoders 期刊/会议:ACMSIGKDD 发表时间:2017年 引用次数:26二、论文总结2.1研究方向 提高自编码模型的抗噪声能力2.2写作动机 受鲁棒PCA的启发,将原始数据分成正常数据和噪声、异常数据两部分,然后进行交替训练。2.3创新之处 除了使用传统的L1正则化去约束噪声部分之外
- Convolutional Neural Networks CNN -- Explained
许喜远
机器学习——通俗易懂机器学习python神经网络
ConvolutionalNeuralNetworksCNN--Explained为什么要卷积神经网络?卷积神经网络如何工作?特征映射和多个通道池化基础大步前进和下采样Stridesanddown-sampling填充Padding为什么在卷积神经网络中使用池化?最后的图片全连接层在PyTorch中实现卷积神经网络加载数据集建立模型训练模型测试模型为什么要卷积神经网络?仅有几层的全连接网络只能做很
- Convolutional Neural Network (CNN) 识别手写数字字体
取名真难.
机器学习cnn人工智能神经网络深度学习机器学习python
介绍:卷积神经网络(ConvolutionalNeuralNetwork,CNN)是一种在计算机视觉领域广泛应用的深度学习模型。它主要用于图像识别、目标检测、图像分割等任务。CNN的核心思想是利用卷积操作提取图像的特征。卷积操作是一种基于滤波器的操作,通过滑动窗口在输入图像上提取局部特征,并生成对应的特征图。这种局部感受野的操作可以有效捕捉到图像的空间结构特征,并且具有平移不变性。CNN的结构由多
- DFP-ResUNet:Convolutional Neural Network with a Dilated Convolutional Feature Pyramid for Multimo...
zelda2333
论文:ComputerMethodsandProgramsinBiomedicine2020数据集:BraTS20191.Introduction脑肿瘤由不受控制的细胞增殖引起的组织组成,在大脑中没有生理功能[1].胶质母细胞瘤是最致命的胶质瘤,占所有弥漫性胶质瘤诊断的70-75%,中位总生存时间为14-17个月[2]。它可分为低级别(LGG)和高级别胶质瘤(HGG)。因此,它是制定合适的治疗方案
- 【从零开始学习YOLOv3】5. 网络模型的构建
pprpp
前言:之前几篇讲了cfg文件的理解、数据集的构建、数据加载机制和超参数进化机制,本文将讲解YOLOv3如何从cfg文件构造模型。本文涉及到一个比较有用的部分就是bias的设置,可以提升mAP、F1、P、R等指标,还能让训练过程更加平滑。1.cfg文件在YOLOv3中,修改网络结构很容易,只需要修改cfg文件即可。目前,cfg文件支持convolutional,maxpool,unsample,ro
- Spatio-Temporal Graph Convolutional Networks: A Deep Learning Framework for Traffic Forecasting
你爻
问题背景:交通流量预测忽略时空依赖性。提出模型:Spatio-TemporalGraphConvolutionalNetworks(STGCN)。insteadof常规卷积和递归单元,本文在图上公式化问题,并使用完整的卷积结构构建模型,使得以更少的参数实现更快的训练速度。流量预测分为:短期(5-30min),中长期(>30min)。RNN迭代训练会累积误差,并且难训练,计算量大。为了解决RNN内在
- 【图像去噪/扩散模型】Deconstructing Denoising Diffusion Models for Self-Supervised Learning(l-DAE)
十小大
扩散模型论文精读人工智能计算机视觉深度学习图像处理扩散模型论文阅读论文笔记
前言论文题目:DeconstructingDenoisingDiffusionModelsforSelf-SupervisedLearning——基于自监督学习的解构去噪扩散模型论文地址:DeconstructingDenoisingDiffusionModelsforSelf-SupervisedLearning2024何凯明最新工作,去噪扩散模型!Abstract在这项研究中,我们研究了最初用
- 《Learning Spatiotemporal Features with 3D Convolutional Networks》算法详解
ce0b74704937
论文:LearningSpatiotemporalFeatureswith3DConvolutionalNetworks官方代码(caffe):http://vlg.cs.dartmouth.edu/c3d/由Facebook和Dartmouth学院提出被ICCV2015收录一、核心创新网络全部使用3D卷积和3D池化方便在不同的任务中使用,如动作识别、相同动作判断、动态场景识别等网络简单且高效二、
- 《Visual Tree Convolutional Neural Network in Image Classification》阅读笔记
AncilunKiang
论文阅读笔记论文阅读论文笔记
论文标题《VisualTreeConvolutionalNeuralNetworkinImageClassification》图像分类中的视觉树卷积神经网络作者YuntaoLiu、YongDou、RuochunJin和PengQiao来自国防科技大学并行和分布式处理国家实验室初读摘要问题:在图像分类领域,随着深度学习的快速发展,卷积神经网络(CNN)模型已经取得了高性能。然而,在图像数据集中,有些
- [DCN]Deformable Convolutional Networks
Ah丶Weii
学习
文章目录1.Motivation2.Contribution3.DeformableConvolutionalNetworks3.1DeformableConvolution3.2DeformableRoIPooling3.3Position-Sensitive(PS)RoIPooling3.4DeformableConvNets1.Motivation由于CNNs固定的几何结构,它们在建模几何变
- Deformable Convolutional Networks笔记
yanghaoplus
目标检测卷积
目录1.Introduction2.DeformableConvolutionalNetworksDeformableConvolutionDeformableRoIPoolingDeformableConvNets3.UnderstandingDeformableConvNets3.1.InContextofRelatedWorks4.Experiments5.ConclusionDilated
- deformable convolutional networks
麦兜ppig
Deeplearningdeformableconvoluti
转自:点击打开链接上一篇我们介绍了:深度学习方法(十二):卷积神经网络结构变化——SpatialTransformerNetworks,STN创造性地在CNN结构中装入了一个可学习的仿射变换,目的是增加CNN的旋转、平移、缩放、剪裁性。为什么要做这个很奇怪的结构呢?原因还是因为CNN不够鲁棒,比如把一张图片颠倒一下,可能就不认识了(这里mark一下,提高CNN的泛化能力,值得继续花很大力气,STN
- Deformable Convolutional Networks
卿云阁
深度学习人工智能
欢迎来到带你读论文博客主页:卿云阁欢迎关注点赞收藏⭐️留言本文由卿云阁原创!首发时间:2024年1月28日✉️希望可以和大家一起完成进阶之路!作者水平很有限,如果发现错误,请留言轰炸哦!万分感谢![1]github源码Deformable-ConvNets[2]论文DeformableConvolutionalNetworksDeformableconvolution文章提出了可变卷积,添加了位移
- 孪生卷积神经网络(Siamese Convolutional Neural Network)的设计思路
小桥流水---人工智能
Python程序代码机器学习算法cnn深度学习神经网络
孪生卷积神经网络(SiameseConvolutionalNeuralNetwork)是一种特殊类型的卷积神经网络,主要用于处理需要成对比较的数据,例如判断两个输入是否相似。以下是孪生卷积神经网络的基本结构:输入层:这一层负责接收输入数据。对于图像数据,输入层可能是一个包含图像数据的矩阵。两个共享的卷积层:这两个卷积层处理输入数据,并提取特征。每个卷积层通常包含一系列的卷积核,用于从输入数据中提取
- DENOISING DIFFUSION IMPLICIT MODELS 论文笔记
Unsunshine_Bigboy_?
论文阅读人工智能深度学习
前言生成模型现在主要分为两类,分别是GAN和DiffusionModel,但是GAN存在一个很棘手的问题就是训练不稳定,这也是DiffusionModel相比之下的优势。DDPM是基于Markovian扩散过程的模型,虽然在生成模型上取得了不错的效果,但是同时也存在一个大缺点,就是由于在重建生成阶段是需要一步步进行,步数通常为2000,导致推理时间非常长,需要多次迭代才能产生高质量的生成样本。基于
- Denoising diffusion implicit models 阅读笔记2
冰冰冰泠泠泠
生成模型笔记
Denoisingdiffusionprobabilisticmodels(DDPMs)从马尔科夫链中采样生成样本,需要迭代多次,速度较慢。Denoisingdiffusionimplicitmodels(DDIMs)的提出是为了在复用DDPM训练的网络的前提下,加速采样过程。加速采样的基本思路是,原本的生成过程是从[T,⋯ ,1][T,\cdots,1][T,⋯,1]的序列逐步采样,加速时考虑从
- 并发卷积神经网络(ConCNN)的英文全称是Concurrent Convolutional Neural Network (ConCNN) ,相对于普通卷积有什么优势?
神笔馬良
cnn深度学习神经网络
问题描述:并发卷积神经网络(ConCNN)的英文全称是ConcurrentConvolutionalNeuralNetwork(ConCNN),相对于普通卷积有什么优势?提示:并发卷积神经网络(ConCNN)仅需少量的训练数据集,即可快速准确地自动检测目标。ConCNN是一种利用不同尺度图像之间的关系进行实时目标分类的新型多尺度CNN(卷积神经网络)模型。问题解答:少量训练数据:ConCNN被描述
- 桌面上有多个球在同时运动,怎么实现球之间不交叉,即碰撞?
换个号韩国红果果
html小球碰撞
稍微想了一下,然后解决了很多bug,最后终于把它实现了。其实原理很简单。在每改变一个小球的x y坐标后,遍历整个在dom树中的其他小球,看一下它们与当前小球的距离是否小于球半径的两倍?若小于说明下一次绘制该小球(设为a)前要把他的方向变为原来相反方向(与a要碰撞的小球设为b),即假如当前小球的距离小于球半径的两倍的话,马上改变当前小球方向。那么下一次绘制也是先绘制b,再绘制a,由于a的方向已经改变
- 《高性能HTML5》读后整理的Web性能优化内容
白糖_
html5
读后感
先说说《高性能HTML5》这本书的读后感吧,个人觉得这本书前两章跟书的标题完全搭不上关系,或者说只能算是讲解了“高性能”这三个字,HTML5完全不见踪影。个人觉得作者应该首先把HTML5的大菜拿出来讲一讲,再去分析性能优化的内容,这样才会有吸引力。因为只是在线试读,没有机会看后面的内容,所以不胡乱评价了。
- [JShop]Spring MVC的RequestContextHolder使用误区
dinguangx
jeeshop商城系统jshop电商系统
在spring mvc中,为了随时都能取到当前请求的request对象,可以通过RequestContextHolder的静态方法getRequestAttributes()获取Request相关的变量,如request, response等。 在jshop中,对RequestContextHolder的
- 算法之时间复杂度
周凡杨
java算法时间复杂度效率
在
计算机科学 中,
算法 的时间复杂度是一个
函数 ,它定量描述了该算法的运行时间。这是一个关于代表算法输入值的
字符串 的长度的函数。时间复杂度常用
大O符号 表述,不包括这个函数的低阶项和首项系数。使用这种方式时,时间复杂度可被称为是
渐近 的,它考察当输入值大小趋近无穷时的情况。
这样用大写O()来体现算法时间复杂度的记法,
- Java事务处理
g21121
java
一、什么是Java事务 通常的观念认为,事务仅与数据库相关。 事务必须服从ISO/IEC所制定的ACID原则。ACID是原子性(atomicity)、一致性(consistency)、隔离性(isolation)和持久性(durability)的缩写。事务的原子性表示事务执行过程中的任何失败都将导致事务所做的任何修改失效。一致性表示当事务执行失败时,所有被该事务影响的数据都应该恢复到事务执行前的状
- Linux awk命令详解
510888780
linux
一. AWK 说明
awk是一种编程语言,用于在linux/unix下对文本和数据进行处理。数据可以来自标准输入、一个或多个文件,或其它命令的输出。它支持用户自定义函数和动态正则表达式等先进功能,是linux/unix下的一个强大编程工具。它在命令行中使用,但更多是作为脚本来使用。
awk的处理文本和数据的方式:它逐行扫描文件,从第一行到
- android permission
布衣凌宇
Permission
<uses-permission android:name="android.permission.ACCESS_CHECKIN_PROPERTIES" ></uses-permission>允许读写访问"properties"表在checkin数据库中,改值可以修改上传
<uses-permission android:na
- Oracle和谷歌Java Android官司将推迟
aijuans
javaoracle
北京时间 10 月 7 日,据国外媒体报道,Oracle 和谷歌之间一场等待已久的官司可能会推迟至 10 月 17 日以后进行,这场官司的内容是 Android 操作系统所谓的 Java 专利权之争。本案法官 William Alsup 称根据专利权专家 Florian Mueller 的预测,谷歌 Oracle 案很可能会被推迟。 该案中的第二波辩护被安排在 10 月 17 日出庭,从目前看来
- linux shell 常用命令
antlove
linuxshellcommand
grep [options] [regex] [files]
/var/root # grep -n "o" *
hello.c:1:/* This C source can be compiled with:
- Java解析XML配置数据库连接(DOM技术连接 SAX技术连接)
百合不是茶
sax技术Java解析xml文档dom技术XML配置数据库连接
XML配置数据库文件的连接其实是个很简单的问题,为什么到现在才写出来主要是昨天在网上看了别人写的,然后一直陷入其中,最后发现不能自拔 所以今天决定自己完成 ,,,,现将代码与思路贴出来供大家一起学习
XML配置数据库的连接主要技术点的博客;
JDBC编程 : JDBC连接数据库
DOM解析XML: DOM解析XML文件
SA
- underscore.js 学习(二)
bijian1013
JavaScriptunderscore
Array Functions 所有数组函数对参数对象一样适用。1.first _.first(array, [n]) 别名: head, take 返回array的第一个元素,设置了参数n,就
- plSql介绍
bijian1013
oracle数据库plsql
/*
* PL/SQL 程序设计学习笔记
* 学习plSql介绍.pdf
* 时间:2010-10-05
*/
--创建DEPT表
create table DEPT
(
DEPTNO NUMBER(10),
DNAME NVARCHAR2(255),
LOC NVARCHAR2(255)
)
delete dept;
select
- 【Nginx一】Nginx安装与总体介绍
bit1129
nginx
启动、停止、重新加载Nginx
nginx 启动Nginx服务器,不需要任何参数u
nginx -s stop 快速(强制)关系Nginx服务器
nginx -s quit 优雅的关闭Nginx服务器
nginx -s reload 重新加载Nginx服务器的配置文件
nginx -s reopen 重新打开Nginx日志文件
- spring mvc开发中浏览器兼容的奇怪问题
bitray
jqueryAjaxspringMVC浏览器上传文件
最近个人开发一个小的OA项目,属于复习阶段.使用的技术主要是spring mvc作为前端框架,mybatis作为数据库持久化技术.前台使用jquery和一些jquery的插件.
在开发到中间阶段时候发现自己好像忽略了一个小问题,整个项目一直在firefox下测试,没有在IE下测试,不确定是否会出现兼容问题.由于jquer
- Lua的io库函数列表
ronin47
lua io
1、io表调用方式:使用io表,io.open将返回指定文件的描述,并且所有的操作将围绕这个文件描述
io表同样提供三种预定义的文件描述io.stdin,io.stdout,io.stderr
2、文件句柄直接调用方式,即使用file:XXX()函数方式进行操作,其中file为io.open()返回的文件句柄
多数I/O函数调用失败时返回nil加错误信息,有些函数成功时返回nil
- java-26-左旋转字符串
bylijinnan
java
public class LeftRotateString {
/**
* Q 26 左旋转字符串
* 题目:定义字符串的左旋转操作:把字符串前面的若干个字符移动到字符串的尾部。
* 如把字符串abcdef左旋转2位得到字符串cdefab。
* 请实现字符串左旋转的函数。要求时间对长度为n的字符串操作的复杂度为O(n),辅助内存为O(1)。
*/
pu
- 《vi中的替换艺术》-linux命令五分钟系列之十一
cfyme
linux命令
vi方面的内容不知道分类到哪里好,就放到《Linux命令五分钟系列》里吧!
今天编程,关于栈的一个小例子,其间我需要把”S.”替换为”S->”(替换不包括双引号)。
其实这个不难,不过我觉得应该总结一下vi里的替换技术了,以备以后查阅。
1
所有替换方案都要在冒号“:”状态下书写。
2
如果想将abc替换为xyz,那么就这样
:s/abc/xyz/
不过要特别
- [轨道与计算]新的并行计算架构
comsci
并行计算
我在进行流程引擎循环反馈试验的过程中,发现一个有趣的事情。。。如果我们在流程图的每个节点中嵌入一个双向循环代码段,而整个流程中又充满着很多并行路由,每个并行路由中又包含着一些并行节点,那么当整个流程图开始循环反馈过程的时候,这个流程图的运行过程是否变成一个并行计算的架构呢?
- 重复执行某段代码
dai_lm
android
用handler就可以了
private Handler handler = new Handler();
private Runnable runnable = new Runnable() {
public void run() {
update();
handler.postDelayed(this, 5000);
}
};
开始计时
h
- Java实现堆栈(list实现)
datageek
数据结构——堆栈
public interface IStack<T> {
//元素出栈,并返回出栈元素
public T pop();
//元素入栈
public void push(T element);
//获取栈顶元素
public T peek();
//判断栈是否为空
public boolean isEmpty
- 四大备份MySql数据库方法及可能遇到的问题
dcj3sjt126com
DBbackup
一:通过备份王等软件进行备份前台进不去?
用备份王等软件进行备份是大多老站长的选择,这种方法方便快捷,只要上传备份软件到空间一步步操作就可以,但是许多刚接触备份王软件的客用户来说还原后会出现一个问题:因为新老空间数据库用户名和密码不统一,网站文件打包过来后因没有修改连接文件,还原数据库是好了,可是前台会提示数据库连接错误,网站从而出现打不开的情况。
解决方法:学会修改网站配置文件,大多是由co
- github做webhooks:[1]钩子触发是否成功测试
dcj3sjt126com
githubgitwebhook
转自: http://jingyan.baidu.com/article/5d6edee228c88899ebdeec47.html
github和svn一样有钩子的功能,而且更加强大。例如我做的是最常见的push操作触发的钩子操作,则每次更新之后的钩子操作记录都会在github的控制板可以看到!
工具/原料
github
方法/步骤
- ">的作用" target="_blank">JSP中的作用
蕃薯耀
JSP中<base href="<%=basePath%>">的作用
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
- linux下SAMBA服务安装与配置
hanqunfeng
linux
局域网使用的文件共享服务。
一.安装包:
rpm -qa | grep samba
samba-3.6.9-151.el6.x86_64
samba-common-3.6.9-151.el6.x86_64
samba-winbind-3.6.9-151.el6.x86_64
samba-client-3.6.9-151.el6.x86_64
samba-winbind-clients
- guava cache
IXHONG
cache
缓存,在我们日常开发中是必不可少的一种解决性能问题的方法。简单的说,cache 就是为了提升系统性能而开辟的一块内存空间。
缓存的主要作用是暂时在内存中保存业务系统的数据处理结果,并且等待下次访问使用。在日常开发的很多场合,由于受限于硬盘IO的性能或者我们自身业务系统的数据处理和获取可能非常费时,当我们发现我们的系统这个数据请求量很大的时候,频繁的IO和频繁的逻辑处理会导致硬盘和CPU资源的
- Query的开始--全局变量,noconflict和兼容各种js的初始化方法
kvhur
JavaScriptjquerycss
这个是整个jQuery代码的开始,里面包含了对不同环境的js进行的处理,例如普通环境,Nodejs,和requiredJs的处理方法。 还有jQuery生成$, jQuery全局变量的代码和noConflict代码详解 完整资源:
http://www.gbtags.com/gb/share/5640.htm jQuery 源码:
(
- 美国人的福利和中国人的储蓄
nannan408
今天看了篇文章,震动很大,说的是美国的福利。
美国医院的无偿入院真的是个好措施。小小的改善,对于社会是大大的信心。小孩,税费等,政府不收反补,真的体现了人文主义。
美国这么高的社会保障会不会使人变懒?答案是否定的。正因为政府解决了后顾之忧,人们才得以倾尽精力去做一些有创造力,更造福社会的事情,这竟成了美国社会思想、人
- N阶行列式计算(JAVA)
qiuwanchi
N阶行列式计算
package gaodai;
import java.util.List;
/**
* N阶行列式计算
* @author 邱万迟
*
*/
public class DeterminantCalculation {
public DeterminantCalculation(List<List<Double>> determina
- C语言算法之打渔晒网问题
qiufeihu
c算法
如果一个渔夫从2011年1月1日开始每三天打一次渔,两天晒一次网,编程实现当输入2011年1月1日以后任意一天,输出该渔夫是在打渔还是在晒网。
代码如下:
#include <stdio.h>
int leap(int a) /*自定义函数leap()用来指定输入的年份是否为闰年*/
{
if((a%4 == 0 && a%100 != 0
- XML中DOCTYPE字段的解析
wyzuomumu
xml
DTD声明始终以!DOCTYPE开头,空一格后跟着文档根元素的名称,如果是内部DTD,则再空一格出现[],在中括号中是文档类型定义的内容. 而对于外部DTD,则又分为私有DTD与公共DTD,私有DTD使用SYSTEM表示,接着是外部DTD的URL. 而公共DTD则使用PUBLIC,接着是DTD公共名称,接着是DTD的URL.
私有DTD
<!DOCTYPErootSYST