- 简化版奇异值分解(SVD)方法详解
DuHz
数理统计学知识机器学习人工智能算法信息与通信信号处理
简化版奇异值分解(SVD)方法详解奇异值分解(SVD)是一个强大的矩阵分解工具,广泛应用于数据降维、图像压缩、机器学习等领域。然而,对于大规模数据或高维矩阵,计算和存储的开销非常大,因此提出了多种简化版的SVD方法。这些简化版方法在保证解的精度的同时,能够显著减少计算量和内存占用。本文将详细介绍几种简化版SVD方法,包括经济型SVD、随机化SVD、增量SVD、分块SVD和偏最小二乘法(PLS),并
- 私有AI对话系统实战:基于Ollama+OpenWebUI的DeepSeek-R1本地化部署手把手教学(可共享访问)
Developer-YC
DeekSeek-R1大模型解读与实战教学人工智能pythonjavagithubnode.js语言模型后端
引言:为什么选择本地部署大模型?在数据隐私日益重要的今天,云端AI服务的局限性逐渐显现——敏感信息泄露风险、网络延迟依赖、定制化能力不足。而通过**Ollama(模型管理框架)和OpenWebUI(可视化交互工具)**的组合,开发者可以轻松实现大模型(如DeepSeek-R1)的本地部署,兼顾性能与安全。本文将以DeepSeek-R1为例,详解从环境配置到实战应用的全流程。一、工具与模型简介1.O
- 理论一、大模型—概念
伯牙碎琴
大模型自然语言处理ai
一、总述大模型通常指的是参数规模庞大、训练难度较高的人工智能模型。随着深度学习技术的发展,研究人员和企业越来越倾向于构建更大的模型,以提高模型的性能和泛化能力。这些大模型往往需要大量的数据和计算资源来训练,并且在实际应用中通常表现出色。大模型全称是大型语言模型(LLM,LargeLanguageModel),这个“大”主要指模型结构容量大,结构中的参数多,用于预训练大模型的数据量大。一个大模型可以
- 一、大模型微调的前沿技术与应用
伯牙碎琴
大模型微调人工智能大模型微调Deepseek
大模型微调的前沿技术与应用随着大规模预训练模型(如GPT、BERT、T5等)的广泛应用,大模型微调(Fine-Tuning,FT)成为了提升模型在特定任务中性能的关键技术。通过微调,开发者可以根据实际需求调整预训练模型的参数,使其更好地适应特定应用场景。本文将介绍大模型微调技术的前沿发展,分析不同微调方法的特点、适用场景以及优缺点,并对它们进行系统分类。微调技术的重要性大模型微调能够帮助开发者根据
- 玩转代理模式
清泓y
六大常见设计模式代理模式设计模式c++
文章目录什么是代理模式举例:代理模式结构代理模式适用场景实现方式代理模式的优缺点优点:缺点:什么是代理模式代理模式,主要用途就是代理一个某一个所需要的物件,但是我们不直接使用这个物件,我们用一个代理接口来代替我们使用这个物件。举例:信用卡是银行账户的代理,银行账户则是一大捆现金的代理。它们都实现了同样的接口,均可用于进行支付。消费者会非常满意,因为不必随身携带大量现金;商店老板同样会十分高兴,因为
- Redis之父学生时代发现的ping漏洞的源码分析
Redis的作者SalvatoreSanfilippo(网名antirez)在意大利西西里岛长大,虽然从小就接触计算机,也有一些编程经验,但在大学期间却选择了建筑学院,可能当时并没有打算走职业程序员的道路吧。然而antirez应该就属于老天爷赏饭的那类人,据说仅仅因为错把显卡买成了网卡,商家又不肯退货,他就放下游戏,拿起了C语言的教材。不久之后,antirez发现了一个ping的漏洞,非root用
- 揭秘DeepSeek内幕:清华教授剖析AI模型技术原理
大模型.
人工智能chatgpt安全agigpt大模型deepseek
从ChatGPT到各种新兴的AI模型,每一次技术突破都能引发广泛的关注和讨论——而最近AI界的“新宠”,无疑是DeepSeek。在本文中,清华大学长聘副教授将深入剖析DeepSeekR1背后的大规模强化学习技术及其基本原理,并进一步展望大模型技术未来的发展方向。1、透过DeepSeekR1,看大模型技术的发展趋势今天我将从宏观角度为大家介绍DeepSeekR1所代表的大规模强化学习技术,及其基本原
- 【科普】大模型应用中一个 Token 占多少汉字?答案超乎想象!
大模型.
easyui前端人工智能程序人生语言模型文心一言自然语言处理
先说答案:不同模型可能采用各自的切分方法,因此,一个Token所对应的汉字数量也会有所不同。如腾讯1token≈1.8个汉字,通义千问、千帆大模型等1token=1个汉字,对于英文文本来说,1个token通常对应3至4个字母,不同的模型对相同的输入分词,分词结果是不一样的。同样可以说,一个汉字占约0.5个Token。Token是大模型中最基础、最常见的概念,它既可以是一个完整的单词,也可以是一个
- 大模型产品Deepseek(七)、可视化本地知识库搭建详细教程(Cherry Studio)
伯牙碎琴
大模型DeepSeekAI大模型知识库
完整教程:使用CherryStudio配置OllamaAPI并搭建知识库在本节教程中,我们将通过CherryStudio配置OllamaAPI,并安装嵌入模型bge-m3,以实现知识库的搭建与智能问答功能。具体内容包括CherryStudio的安装、嵌入模型配置、OllamaAPI配置、创建知识库及基于该知识库和通用大模型的提问示例。CherryStudio介绍看这篇文章1.准备工作在开始之前,确
- 国产编辑器EverEdit - 二进制模式下观察Window/Linux/MacOs换行符差异
彩虹小黑馬
妙用编辑器编辑器linuxmacosEverEditEmEditorNotepad
1换行符格式1.1应用场景 稍微了解计算机历史的人都知道,计算机3大操作系统:Windows、Linux/Unix、MacOS,这3大系统对文本换行的定义各不相同,且互不相让,导致在文件的兼容性方面存在一些问题,比如它们对换行的定义:Windows:回车符(CR)+换行符(LF)Linux/Unix:换行符(LF)MacOS:回车符(CR)在Windows上编写的代码,默认使用CR+LF表示换行
- Forrester发布2024年五大网络安全新威胁
岛屿旅人
网络安全web安全网络安全网络安全
文章目录前言一、大选年的叙事(舆论)操控攻击二、深度伪造引发身份安全危机三、生成式人工智能数据泄露四、人工智能软件供应链攻击五、太空成为安全战略高点数据泄露平均成本高达218万美元前言人工智能正重塑网络安全格局,武器化大语言模型正成为首选攻击工具,安全团队在应对武器化人工智能攻击方面将面临日益严峻的挑战。Forrester近日发布《2024年网络安全威胁预测报告》指出,人工智能正重塑网络安全格局,
- AI —— 文字生成图片的逻辑
鱼不知海
AI写作AI作画
事情的起因是我在做一个自用软件时,需要测试文字生成图像的功能。于是就对现在能使用的ai大模型去做了一些尝试。输入几组我的描述性文字其中的一张图片令我大为震撼。(师妹师兄温酒毛驴)问题大家应该可以发现,一位图像人物的下半身时有问题的。同时从人的逻辑上,这种图缺少内核逻辑。在NLP的成熟度如此高的情况下,对描述性文字进行逻辑上的重构并不是太麻烦的事情。豆包扩充文字(在一个宁静的日子里,师兄与师妹并辔而
- DeepSeek崛起:中国AI产业的颠覆者与重构者
:MNongSciFans
人工智能
当DeepSeek以"中国版ChatGPT"的标签横空出世时,这个诞生于杭州的AI新贵仅用三个月时间就完成了从行业黑马到颠覆者的蜕变。其开源大模型DeepSeek-R1在HuggingFace开源大模型排行榜的登顶,不仅意味着技术指标的超越,更预示着中国AI产业格局的深层裂变。这场始于技术突破的产业地震,正在引发资本市场的恐慌性迁徙、技术路线的集体转向以及商业模式的根本性重构。###一、技术奇点的
- DeepSeek正重构具身大模型和人形机器人赛道!
Robot251
重构机器人人工智能科技自动驾驶
中国人工智能公司DeepSeek(深度求索)以“低成本、高效率、强开放”的研发范式横空出世,火遍并震撼全球科技圈;DeepSeek展现出来的核心竞争力,除了低成本及推理能力,更重要的是开源模型能力追赶上了最新的闭源模型;而对具身智能领域影响最大的当属于其开源大模型DeepSeek-R1。2024年1月20日,公司发布全球首个完全通过强化学习训练的专注于推理任务的高性能语言模型DeepSeek-R1
- 内核的驱动模块化编程框架
Andy.w
基于Linux的驱动学习内核模块化编程
1、程序的两大空间:内核层和用户层正常写的代码都是运行在用户层,很难或者根本接触不到内核层。并且用户层看到的地址都是虚拟地址,所以用户层访问不了硬件。内核层离硬件近,虽然它的地址也不是真是的物理地址,但是它能间接访问操作真实的物理地址。其中真实的物理地址代表着硬件。2、内核层驱动的框架#include"linux/kernel.h"#include"linux/module.h"//就相当于标准头
- 大语言模型常用微调与基于SFT微调DeepSeek R1指南
知来者逆
LLM深度学习人工智能自然语言处理DeepSeekSFT微调
概述大型语言模型(LLM,LargeLanguageModel)的微调(Fine-tuning)是指在一个预训练模型的基础上,使用特定领域或任务的数据对模型进行进一步训练,以使其在该领域或任务上表现更好。微调是迁移学习的一种常见方法,能够显著提升模型在特定任务上的性能。在大型语言模型(LLM)的微调中,有几种常见的方法,包括SFT(监督微调)、LoRA(低秩适应)、P-tuningv2和**Fre
- Deepseek详细的自我介绍
welcome_123_
人工智能
###**DeepSeek:中国自研AGI大模型的深度解析**---####**1.技术背景与研发理念**DeepSeek由国内顶尖AI科学家团队领衔,核心技术成员来自清华大学、北京大学及国际顶级AI实验室,团队在NLP、分布式训练、模型压缩等领域发表顶会论文超200篇。研发理念聚焦三个核心:-**高效性**:通过模型架构创新(如MoE)实现“小参数量,大性能”。-**可控性**:内置可解释性模块
- 全国通用初中数学《50大几何模型精讲》免费分享!
小小怪下士yeah
算法
自取链接:https://pan.baidu.com/s/1Mj_nJitAqNnYdX7gWvN_qA?pwd=Qx6a提取码:Qx6a【涵盖中考必考模型】手把手教你吃透初中几何!✅8字型旋转妙解✅将军饮马最短路✅截长补短技巧大全✅手拉手模型全拆解......(共50种核心解题模板)【为什么你需要这份资料?】❶全网独家中考高频模型合集❷图解+口诀记忆零基础也能开窍❸附赠典型例题详解拒绝一听就会一
- 从DeepSeek爆火谈AI如何重塑全球医疗健康价值链
明哲AI
人工智能大模型Deepseek医疗
全球医疗系统正面临前所未有的挑战,成本持续攀升与资源日益短缺的双重压力,如同悬在全球人民头顶的达摩克利斯之剑。而中国,作为全球人口老龄化速度最快的国家之一,医疗供需矛盾显得尤为突出。在此背景下,中国的AI大模型DeepSeek以前沿技术突破与切实可行的商业模式,正悄然重塑医疗健康产业的价值链,预示着AI技术应用最具潜力的变革性场景即将到来。本文由公众号“创见数字健康“”首发,原创作者:明哲。转载请
- DeepSeek推荐未来好就业的十大专业
东锋1.3
人工智能deepseek推荐就业
一、人工智能与数据科学专业聚焦人工智能、大数据技术、计算机科学与技术、机器学习、数据科学与大数据技术等专业,构成了这一前沿领域的核心。这些专业旨在培养学生掌握从数据收集、处理到模型构建、算法优化的全流程能力。就业前景洞察人工智能已广泛渗透到医疗、金融、制造、交通等众多领域。在医疗领域,AI辅助诊断系统帮助医生更精准地识别疾病;金融行业里,智能风控模型有效防范风险。未来,算法工程师负责开发和优化各种
- 详解云桌面3种主流架构
黑客KKKing
网络工程师网络安全架构web安全安全
本文简要介绍下云桌面(云电脑)的3种主流架构:VDI、IDV和VOI,概念、原理和区别,欢迎阅读。云桌面作为桌面办公和云计算融合发展的产物,在一定程度上替代了传统的办公形式。目前阿里云、华为云、移动云、电信云,还有华三、锐捷、中兴等互联网大厂都在积极布局该领域。云桌面的技术原理总体来讲,云桌面和云主机、云手机、云游戏等其他形式的云产品类型是一样的,都是采用虚拟化技术。首先,我们会采购一大批的计算资
- C++开发IDE用VisualStudio好还是QtCreator好?
1号程序媛
Qt开发从零到精通C++开发大全idevisualstudioC++
在熟练使用了VisualStudio和QtCreator之后,我依然认为QtCreator作为C++项目开发IDE的便捷性真的相当杰出。当然了,VisualStudio和QtCreator本身就不是一个量级,VS越做越大,庞大的插件库也使得他能够支持从嵌入式到手机端,从web到脚本,甚至游戏,仿真等等各个领域的开发任务。所以做得大,必然导致很多细节功能没法做得好。相反,Qt的IDE工具QtCrea
- flex 布局:实现一行固定个数,超出强制换行(流式布局)
艾米栗写代码
下班一小时打卡每日复习前端css前端javascript
一、flex布局基础知识flex布局的知识想必不用多说,一些常用的属性如下:设置在父容器上的属性:display:flex,align-items,justify-content,flex-wrap。设置在子容器上的属性,通过flex:1,简写了flex-grow、flex-shrink、flex-basis三个属性。基础知识部分可参考阮大的:二、flex布局常用应用1、垂直居中通过align-i
- 文心一言 ,免费使用
悟空码字
AI百度AI百度文心一言
大家好,我是小悟。百度官方公众号发布消息,文心一言宣布自4月1日起全面免费开放,PC端和APP端用户均可体验其最新模型。随着文心大模型的迭代升级和成本不断下降,文心一言将于4月1日零时起,全面免费,所有PC端和APP端用户均可体验文心系列最新模型。与此同时,文心一言上线深度搜索功能。该功能也将于4月1日起免费开放使用。深度搜索功能,具备更强大的思考规划和使用外部工具能力,可为用户提供专家级内容回复
- 什么是 Ollama?如何安装运行?一文讲清
程序员老冉
人工智能开源语言模型学习程序员创富产品经理面试
什么是Ollama?Ollama是一个可以在本地部署和管理开源大语言模型的框架,由于它极大的简化了开源大语言模型的安装和配置细节,一经推出就广受好评,目前已在github上获得了46kstar。不管是著名的羊驼系列,还是最新的AI新贵Mistral,等等各种开源大语言模型,都可以用Ollama实现一键安装并运行,支持的更多模型的列表可以查看Ollama官网。ModelParametersSizeD
- Deepseek与中医:当全球AI遇上世界中医(一)
明哲AI
AI与医疗人工智能deepseek大模型中医
近日与多位中医朋友进行深度交流,探讨Deepseek的使用感受、在中医临床诊疗中的应用价值等。DeepSeek的爆红现象促使传统中医界重新审视AI技术的革新力量,但在实际应用过程中,行业也面临诸多挑战。本文旨在探讨:当前以DeepSeek为代表的大模型在中医辅助诊疗中的实际效能评估,以及未来中医AI发展的可能路径。本文将基于实证调研展开论述,欢迎共同探讨。(本文观点仅代表个人观点,旨在抛砖引玉,欢
- 2025年大模型与Transformer架构:技术前沿与未来趋势报告
和老莫一起学AI
transformer架构深度学习人工智能产品经理学习大模型
_“欧米伽未来研究所”关注科技未来发展趋势,研究人类向欧米伽点演化过程中面临的重大机遇与挑战。将不定期推荐和发布世界范围重要科技研究进展和未来趋势研究。在人工智能的宏大版图中,Transformer架构无疑是一颗璀璨的明星。它的出现,彻底改变了自然语言处理、计算机视觉等诸多领域的发展轨迹。《2025年大模型与Transformer架构:技术前沿与未来趋势报告》深入剖析了Transformer架构的
- AI 大模型创业:如何利用市场优势?
SuperAGI2025
计算机软件编程原理与应用实践javapythonjavascriptkotlingolang架构人工智能
AI大模型创业:如何利用市场优势?1.背景介绍随着人工智能技术的不断发展,大模型(LargeModels)在商业化应用中日益受到关注。大模型是指在特定领域中应用广泛、参数量巨大的神经网络模型,如BERT、GPT-3、DALL-E等。这些大模型通过在大规模数据集上进行预训练,具备强大的泛化能力和适应性,能够广泛应用于自然语言处理(NLP)、计算机视觉(CV)、生成对抗网络(GAN)等多个领域。然而,
- 自学网络安全(黑客技术)2024年 —100天学习计划
帝王挥剑指天下
C++web安全学习网络
基于入门网络安全/黑客打造的:前言什么是网络安全网络安全可以基于攻击和防御视角来分类,我们经常听到的“红队”、“渗透测试”等就是研究攻击技术,而“蓝队”、“安全运营”、“安全运维”则研究防御技术。如何成为一名黑客很多朋友在学习安全方面都会半路转行,因为不知如何去学,在这里,我将这个整份答案分为黑客(网络安全)入门必备、黑客(网络安全)职业指南、黑客(网络安全)学习导航三大章节,涉及价值观、方法论、
- 软考高级信息系统项目管理师第四版目录
月梦工作室
软考高级信息系统项目管理师专栏信息系统项目管理师
软考高级信息系统项目管理师教程《信息系统项目管理师教程第4版》,全书共24个章节,页数为731页,相比第三版教程页数有所减少(第3版教程有900多页)。根据第4版教程目录来看(详细目录请看下文),大幅度增加了技术部分内容(前面5章都是技术知识),而管理部分还是以十大管理领域为框架,并没有参考最新的PMP第7版来,所以虽然新版教程出来了,但是大部分管理部分知识与第3版是相差不大的。信息系统项目管理师
- java数字签名三种方式
知了ing
javajdk
以下3钟数字签名都是基于jdk7的
1,RSA
String password="test";
// 1.初始化密钥
KeyPairGenerator keyPairGenerator = KeyPairGenerator.getInstance("RSA");
keyPairGenerator.initialize(51
- Hibernate学习笔记
caoyong
Hibernate
1>、Hibernate是数据访问层框架,是一个ORM(Object Relation Mapping)框架,作者为:Gavin King
2>、搭建Hibernate的开发环境
a>、添加jar包:
aa>、hibernatte开发包中/lib/required/所
- 设计模式之装饰器模式Decorator(结构型)
漂泊一剑客
Decorator
1. 概述
若你从事过面向对象开发,实现给一个类或对象增加行为,使用继承机制,这是所有面向对象语言的一个基本特性。如果已经存在的一个类缺少某些方法,或者须要给方法添加更多的功能(魅力),你也许会仅仅继承这个类来产生一个新类—这建立在额外的代码上。
- 读取磁盘文件txt,并输入String
一炮送你回车库
String
public static void main(String[] args) throws IOException {
String fileContent = readFileContent("d:/aaa.txt");
System.out.println(fileContent);
- js三级联动下拉框
3213213333332132
三级联动
//三级联动
省/直辖市<select id="province"></select>
市/省直辖<select id="city"></select>
县/区 <select id="area"></select>
- erlang之parse_transform编译选项的应用
616050468
parse_transform游戏服务器属性同步abstract_code
最近使用erlang重构了游戏服务器的所有代码,之前看过C++/lua写的服务器引擎代码,引擎实现了玩家属性自动同步给前端和增量更新玩家数据到数据库的功能,这也是现在很多游戏服务器的优化方向,在引擎层面去解决数据同步和数据持久化,数据发生变化了业务层不需要关心怎么去同步给前端。由于游戏过程中玩家每个业务中玩家数据更改的量其实是很少
- JAVA JSON的解析
darkranger
java
// {
// “Total”:“条数”,
// Code: 1,
//
// “PaymentItems”:[
// {
// “PaymentItemID”:”支款单ID”,
// “PaymentCode”:”支款单编号”,
// “PaymentTime”:”支款日期”,
// ”ContractNo”:”合同号”,
//
- POJ-1273-Drainage Ditches
aijuans
ACM_POJ
POJ-1273-Drainage Ditches
http://poj.org/problem?id=1273
基本的最大流,按LRJ的白书写的
#include<iostream>
#include<cstring>
#include<queue>
using namespace std;
#define INF 0x7fffffff
int ma
- 工作流Activiti5表的命名及含义
atongyeye
工作流Activiti
activiti5 - http://activiti.org/designer/update在线插件安装
activiti5一共23张表
Activiti的表都以ACT_开头。 第二部分是表示表的用途的两个字母标识。 用途也和服务的API对应。
ACT_RE_*: 'RE'表示repository。 这个前缀的表包含了流程定义和流程静态资源 (图片,规则,等等)。
A
- android的广播机制和广播的简单使用
百合不是茶
android广播机制广播的注册
Android广播机制简介 在Android中,有一些操作完成以后,会发送广播,比如说发出一条短信,或打出一个电话,如果某个程序接收了这个广播,就会做相应的处理。这个广播跟我们传统意义中的电台广播有些相似之处。之所以叫做广播,就是因为它只负责“说”而不管你“听不听”,也就是不管你接收方如何处理。另外,广播可以被不只一个应用程序所接收,当然也可能不被任何应
- Spring事务传播行为详解
bijian1013
javaspring事务传播行为
在service类前加上@Transactional,声明这个service所有方法需要事务管理。每一个业务方法开始时都会打开一个事务。
Spring默认情况下会对运行期例外(RunTimeException)进行事务回滚。这
- eidtplus operate
征客丶
eidtplus
开启列模式: Alt+C 鼠标选择 OR Alt+鼠标左键拖动
列模式替换或复制内容(多行):
右键-->格式-->填充所选内容-->选择相应操作
OR
Ctrl+Shift+V(复制多行数据,必须行数一致)
-------------------------------------------------------
- 【Kafka一】Kafka入门
bit1129
kafka
这篇文章来自Spark集成Kafka(http://bit1129.iteye.com/blog/2174765),这里把它单独取出来,作为Kafka的入门吧
下载Kafka
http://mirror.bit.edu.cn/apache/kafka/0.8.1.1/kafka_2.10-0.8.1.1.tgz
2.10表示Scala的版本,而0.8.1.1表示Kafka
- Spring 事务实现机制
BlueSkator
spring代理事务
Spring是以代理的方式实现对事务的管理。我们在Action中所使用的Service对象,其实是代理对象的实例,并不是我们所写的Service对象实例。既然是两个不同的对象,那为什么我们在Action中可以象使用Service对象一样的使用代理对象呢?为了说明问题,假设有个Service类叫AService,它的Spring事务代理类为AProxyService,AService实现了一个接口
- bootstrap源码学习与示例:bootstrap-dropdown(转帖)
BreakingBad
bootstrapdropdown
bootstrap-dropdown组件是个烂东西,我读后的整体感觉。
一个下拉开菜单的设计:
<ul class="nav pull-right">
<li id="fat-menu" class="dropdown">
- 读《研磨设计模式》-代码笔记-中介者模式-Mediator
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/*
* 中介者模式(Mediator):用一个中介对象来封装一系列的对象交互。
* 中介者使各对象不需要显式地相互引用,从而使其耦合松散,而且可以独立地改变它们之间的交互。
*
* 在我看来,Mediator模式是把多个对象(
- 常用代码记录
chenjunt3
UIExcelJ#
1、单据设置某行或某字段不能修改
//i是行号,"cash"是字段名称
getBillCardPanelWrapper().getBillCardPanel().getBillModel().setCellEditable(i, "cash", false);
//取得单据表体所有项用以上语句做循环就能设置整行了
getBillC
- 搜索引擎与工作流引擎
comsci
算法工作搜索引擎网络应用
最近在公司做和搜索有关的工作,(只是简单的应用开源工具集成到自己的产品中)工作流系统的进一步设计暂时放在一边了,偶然看到谷歌的研究员吴军写的数学之美系列中的搜索引擎与图论这篇文章中的介绍,我发现这样一个关系(仅仅是猜想)
-----搜索引擎和流程引擎的基础--都是图论,至少像在我在JWFD中引擎算法中用到的是自定义的广度优先
- oracle Health Monitor
daizj
oracleHealth Monitor
About Health Monitor
Beginning with Release 11g, Oracle Database includes a framework called Health Monitor for running diagnostic checks on the database.
About Health Monitor Checks
Health M
- JSON字符串转换为对象
dieslrae
javajson
作为前言,首先是要吐槽一下公司的脑残编译部署方式,web和core分开部署本来没什么问题,但是这丫居然不把json的包作为基础包而作为web的包,导致了core端不能使用,而且我们的core是可以当web来用的(不要在意这些细节),所以在core中处理json串就是个问题.没办法,跟编译那帮人也扯不清楚,只有自己写json的解析了.
- C语言学习八结构体,综合应用,学生管理系统
dcj3sjt126com
C语言
实现功能的代码:
# include <stdio.h>
# include <malloc.h>
struct Student
{
int age;
float score;
char name[100];
};
int main(void)
{
int len;
struct Student * pArr;
int i,
- vagrant学习笔记
dcj3sjt126com
vagrant
想了解多主机是如何定义和使用的, 所以又学习了一遍vagrant
1. vagrant virtualbox 下载安装
https://www.vagrantup.com/downloads.html
https://www.virtualbox.org/wiki/Downloads
查看安装在命令行输入vagrant
2.
- 14.性能优化-优化-软件配置优化
frank1234
软件配置性能优化
1.Tomcat线程池
修改tomcat的server.xml文件:
<Connector port="8080" protocol="HTTP/1.1" connectionTimeout="20000" redirectPort="8443" maxThreads="1200" m
- 一个不错的shell 脚本教程 入门级
HarborChung
linuxshell
一个不错的shell 脚本教程 入门级
建立一个脚本 Linux中有好多中不同的shell,但是通常我们使用bash (bourne again shell) 进行shell编程,因为bash是免费的并且很容易使用。所以在本文中笔者所提供的脚本都是使用bash(但是在大多数情况下,这些脚本同样可以在 bash的大姐,bourne shell中运行)。 如同其他语言一样
- Spring4新特性——核心容器的其他改进
jinnianshilongnian
spring动态代理spring4依赖注入
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- Linux设置tomcat开机启动
liuxingguome
tomcatlinux开机自启动
执行命令sudo gedit /etc/init.d/tomcat6
然后把以下英文部分复制过去。(注意第一句#!/bin/sh如果不写,就不是一个shell文件。然后将对应的jdk和tomcat换成你自己的目录就行了。
#!/bin/bash
#
# /etc/rc.d/init.d/tomcat
# init script for tomcat precesses
- 第13章 Ajax进阶(下)
onestopweb
Ajax
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- Troubleshooting Crystal Reports off BW
blueoxygen
BO
http://wiki.sdn.sap.com/wiki/display/BOBJ/Troubleshooting+Crystal+Reports+off+BW#TroubleshootingCrystalReportsoffBW-TracingBOE
Quite useful, especially this part:
SAP BW connectivity
For t
- Java开发熟手该当心的11个错误
tomcat_oracle
javajvm多线程单元测试
#1、不在属性文件或XML文件中外化配置属性。比如,没有把批处理使用的线程数设置成可在属性文件中配置。你的批处理程序无论在DEV环境中,还是UAT(用户验收
测试)环境中,都可以顺畅无阻地运行,但是一旦部署在PROD 上,把它作为多线程程序处理更大的数据集时,就会抛出IOException,原因可能是JDBC驱动版本不同,也可能是#2中讨论的问题。如果线程数目 可以在属性文件中配置,那么使它成为
- 正则表达式大全
yang852220741
html编程正则表达式
今天向大家分享正则表达式大全,它可以大提高你的工作效率
正则表达式也可以被当作是一门语言,当你学习一门新的编程语言的时候,他们是一个小的子语言。初看时觉得它没有任何的意义,但是很多时候,你不得不阅读一些教程,或文章来理解这些简单的描述模式。
一、校验数字的表达式
数字:^[0-9]*$
n位的数字:^\d{n}$
至少n位的数字:^\d{n,}$
m-n位的数字:^\d{m,n}$