- 大数据学习(82)-数仓详解
viperrrrrrr
大数据学习数仓
大数据学习系列专栏:哲学语录:用力所能及,改变世界。如果觉得博主的文章还不错的话,请点赞+收藏⭐️+留言支持一下博主哦一、什么是数据仓库数据仓库(下文以“数仓”称),顾名思义,存放数据的仓库,它集合了各个业务系统的数据,以金融业为例,数仓包含了贷款业务、CRM、存款业务等数据。用于企业做数据分析、出报告、做决策;在有些公司也作为各业务系统的数据来源。从逻辑上理解,数据库和数仓没有区别,都是通过数据
- SvelteKit 最新中文文档教程(9)—— 部署静态站点与单页应用
前言Svelte,一个语法简洁、入门容易,面向未来的前端框架。从Svelte诞生之初,就备受开发者的喜爱,根据统计,从2019年到2024年,连续6年一直是开发者最感兴趣的前端框架No.1:Svelte以其独特的编译时优化机制著称,具有轻量级、高性能、易上手等特性,非常适合构建轻量级Web项目。为了帮助大家学习Svelte,我同时搭建了Svelte最新的中文文档站点。如果需要进阶学习,也可以入手我
- Python 学习笔记1 - 认识Python
Scora_liu
Python学习笔记python
一、什么是Python1989年圣诞节期间,荷兰数学和计算机科学研究学会的GuidovanRossum(吉多.范罗苏姆)决心开发一个新的解释程序,作为ABC语言的替代品。这门ABC语言的替代语言被取名为Python,命名来自Guido爱看的的电视剧MontyPython'sFlyingCircus(蟒蛇马戏团)。二、什么是Python(⭐⭐)Python是一门解释型语言。计算机不能识别任何除了机器
- HarmonyOS NEXT 基于原生能力获取视频缩略图
大家好,我是V哥。不得不佩服HarmonyOSNEXT原生能力的强大,如果你想在鸿蒙APP开发中获取视频缩略图,不用依赖第三方库,就可以高效和稳定的实现,AVMetadataHelper就是一个好帮手,下面V哥整理实现步骤的代码,帮助你快速理解,开整。想要学习鸿蒙开发,一定绕不开学习ArkTS语言,V哥写了三本鸿蒙开发之路的书,第一本《鸿蒙HarmonyOSNEXT开发之路卷1ArkTS篇》已上市
- 从零开始学AI——1
人工智能
前言最近总算有想法回到学习上来,这次就拿AI开刀吧。本系列叫从零开始学AI不是骗人的,我对AI的了解几乎就是道听途说,所以起了这么一个标题,希望学完从0变1(?此外,我应该不会特别关注代码实现上的内容,因为我对python也是一窍不通。本笔记为学习周志华老师《机器学习》(西瓜书)的个人学习记录,内容基于个人理解进行整理和再阐述。由于理解可能存在偏差,欢迎指正。引用模块说明:在笔记中,我会使用引用模
- 蓝桥杯算法实战:技巧、策略与进阶之路
竣雄
蓝桥杯算法职场和发展
摘要蓝桥杯作为国内颇具影响力的程序设计竞赛,对提升大学生算法思维与编程能力意义重大。本文深入剖析蓝桥杯算法竞赛,结合历年真题总结核心考点与典型题型,分享实用解题技巧与备考策略,并探讨算法优化与进阶方向。通过系统学习与实践,助力参赛者提升算法水平,在竞赛中取得优异成绩。关键词蓝桥杯;算法竞赛;解题技巧;备考策略;算法优化一、引言蓝桥杯全国软件和信息技术专业人才大赛旨在选拔优秀的软件和信息技术人才,推
- 微信小程序和uni-app的区别
cccv工程师
微信小程序uni-appnotepad++
开发语言和框架:Uni-app:Uni-app使用Vue.js框架进行开发,利用Vue的语法和生命周期函数,开发者可以使用熟悉的前端技术栈。微信小程序:微信小程序使用自己的框架,基于WXML(类似于HTML)和WXSS(样式语言)进行开发,需要学习微信小程序独有的语法和组件。平台支持:Uni-app:Uni-app是一个跨平台开发框架,可以将一套代码编译成多个平台的应用,包括微信小程序、H5、Ap
- 啸叫抑制(AFS)从算法仿真到工程源码实现-第一节-效果演示
aflyingwolf_pomelo
语音信号处理算法人工智能
一、概述啸叫抑制算法也叫声反馈抑制,本专题我们讨论啸叫抑制算法的平台搭建,算法仿真和设备端的工程落地实现。完整记录一个扩声系统的搭建。更多资料和代码可以进入https://t.zsxq.com/qgmoN,同时欢迎大家提出宝贵的建议,以共同探讨学习。二、啸叫抑制算法视频演示啸叫抑制算法演示视频三、语谱图3.1产生啸叫效果3.2去啸叫后的效果四、总结这一节我们主要记录了啸叫抑制(去啸叫)算法的效果演
- Python 学习 第五册 深度学习 第1章 什么是深度学习
weixin_38135241
python学习深度学习人工智能
----用教授的方式学习。目录1.1人工智能、机器学习与深度学习1.1.1人工智能1.1.2机器学习1.1.3从数据中学习表示1.1.4深度学习之“深度”1.1.5用三张图理解深度学习的工作原理1.2深度学习之前:机器学习简史1.2.1概率建模1.2.2核方法1.2.3决策树、随机森林与梯度提升机1.2.4深度学习有何不同什么是深度学习?1.1人工智能、机器学习与深度学习三者关系:1.1.1人工智
- MySQL 奇幻之旅:从基础探秘到高级应用魔法
进阶的华夫饼进大厂
mysql数据库
MySQL奇幻之旅:从基础探秘到高级应用魔法在数据库的神秘世界里,MySQL宛如一座蕴藏无尽宝藏的城堡,我怀揣着探索的热情与求知的渴望,踏上了这趟扣人心弦的学习征程。一、MySQL基础:城堡基石的雕琢(一)数据库与表的操作:构建数据的栖息之所数据库创建与管理:绘制数据城堡的蓝图:犹如精心绘制城堡的设计图,我熟练掌握了使用CREATEDATABASE语句创建数据库的魔法咒语,像CREATEDATAB
- 普通人怎么利用AI赚钱?AI 变现的 8 种神操作,最后一个你绝对想不到!
AI设计酷卡
人工智能stablediffusionAI作画AIGCmidjourney
在国内外,几百款AI工具竞争激烈,衍生出各种需求与市场。下面我们就来盘点AI变现的八大生意,看看你能猜到几个?一、AI文本生成:打造公众号矩阵提到AI,ChatGPT无疑是最为知名的工具之一,其核心功能在于生成高质量文本,写出热门文章。许多人利用AI文本生成的能力,成功构建公众号矩阵,创造出大量10w+的文章,甚至有流量主月入过万。今年上半年,一些知名账号每分钟发布数篇文章,依靠AI技术和自动化手
- 服务器上部署springboot项目学习笔记
Warren98
服务器springboot学习后端阿里云java
Java相关命令运行jar包:在linux中,进入到jar包所在目录后,直接tab补全名称即可java-jarjar包名称查看jar包是否在运行:ps-ef|grepjava终止运行的jar包:kill#是jar包的id根据jar包名称查看运行状态psaux|grepMyBlog-0.0.1-SNAPSHOT.jar设置jar包一直运行每次启动jar包时,都需要打开SSH远程连接工具,比如fina
- 深度学习:让机器学会“思考”的魔法
AI极客Jayden
AI深度学习
文章目录引言:从“鹦鹉学舌”到“举一反三”一、深度学习是什么?1.定义:机器的“大脑”2.核心思想:从数据中“悟”出规律二、深度学习的“大脑”结构:神经网络1.神经元:深度学习的基本单元2.神经网络:多层“神经元”的组合3.深度:为什么需要多层?三、深度学习如何“学习”?1.训练过程:从“笨拙”到“熟练”2.损失函数:衡量“错误”的尺子3.反向传播:从错误中“反思”四、深度学习的“超能力”1.图像
- 我人生中最努力的200个小时(自学高项版)
不是小盆友
软考软考高项计算机考试软考苏景一软考软考高项信息系统项目管理师计算机考试pat考试PMP
在职,每天3个小时,三个月,拿下软考高项,中间多努力不用我多说了吧。下面给大家分享一些我的备考经验,希望能帮助大家提高.效率,一次上岸!-❤❤备考顺序先啃6-19章,接着20-24章,蕞后1-5章6-19章是核心板块,涵盖了大量的关键知识点,从综合知识选择题到案例分析,都是考试的重.点区域,必.须牢牢掌握-❤❤备考建议●选择题每天坚持刷题!建议用软考通、51CTO等app刷题,错题及时总结,做到举
- 珍藏!Java SpringBoot 精品源码合集约惠来袭,获取路径大公开
秋野酱
javaspringboot开发语言
技术范围:SpringBoot、Vue、SSM、HLMT、Jsp、PHP、Nodejs、Python、爬虫、数据可视化、小程序、安卓app、大数据、物联网、机器学习等设计与开发。主要内容:免费功能设计、开题报告、任务书、中期检查PPT、系统功能实现、代码编写、论文编写和辅导、论文降重、长期答辩答疑辅导、腾讯会议一对一专业讲解辅导答辩、模拟答辩演练、和理解代码逻辑思路。文末获取源码联系文末获取源码联
- 相同的问题看看Grok3怎么回答-详细讲讲PPO & GRPO原理
释迦呼呼
AI一千问人工智能深度学习机器学习语言模型算法神经网络计算机视觉
关键要点研究表明,PPO(近端策略优化)是一种稳定高效的强化学习算法,适用于单代理或多代理场景,重点是最大化绝对奖励。GRPO(基于梯度的相对策略优化)似乎是专为多代理系统设计的,优化代理之间的相对表现,目前信息有限,可能较少为人所知。这两个算法在目标和应用领域上有显著差异,PPO更通用,GRPO更适合竞争性多代理环境。关于PPO的解释什么是PPO?PPO,全称近端策略优化,是一种强化学习算法,帮
- 第三十九个问题-详细讲讲PPO & GRPO原理
释迦呼呼
AI一千问人工智能深度学习机器学习语言模型自然语言处理算法
PPO(ProximalPolicyOptimization)原理详解PPO(近端策略优化)是OpenAI于2017年提出的强化学习算法,旨在解决传统策略梯度方法中训练不稳定和样本效率低的问题。其核心思想是通过限制策略更新的幅度,确保新策略不会偏离旧策略太远,从而稳定训练过程。1.策略梯度(PolicyGradient)基础策略梯度方法通过直接优化策略参数θθ来最大化期望回报。目标函数为:J(θ)
- 基于推理的强化学习智能体设计与开发
由数入道
人工智能人工智能多智能体强化学习知识推理
1.理论基础与核心概念1.1推理强化学习(Reasoning-EnhancedRL)定义核心思想:在传统强化学习的马尔可夫决策过程(MDP)基础上,引入符号推理、因果推断和知识引导机制,解决复杂环境中的长程依赖和稀疏奖励问题。数学建模:扩展MDP为R-MDP:⟨S,A,P
- 基于Python+Django的可视化学习系统设计与实现(毕业设计源码+技术文档+系统部署)
逐梦设计
Python毕业设计实战案例pythondjango课程设计vue.js毕业设计源码
博主简介作者简介:Java领域优质创作者、CSDN博客专家、CSDN内容合伙人、掘金特邀作者、阿里云博客专家、51CTO特邀作者、多年架构师设计经验、多年校企合作经验,被多个学校常年聘为校外企业导师,指导学生毕业设计并参与学生毕业答辩指导,有较为丰富的相关经验。期待与各位高校教师、企业讲师以及同行交流合作主要内容:Java项目、Python项目、前端项目、PHP、ASP.NET、人工智能与大数据、
- 机器学习驱动的智能化电池管理技术与应用
满木悦
电池化学机器人化学电池机器学习人工智能硕博研究生
在人工智能与电池管理技术融合的背景下,电池科技的研究和应用正迅速发展,创新解决方案层出不穷。从电池性能的精确评估到复杂电池系统的智能监控,从数据驱动的故障诊断到电池寿命的预测优化,人工智能技术正以其强大的数据处理能力和模式识别优势,推动电池管理领域的技术进步。据最新研究动态,目前在电池管理领域的人工智能应用主要集中在以下几个方面:1.状态估计:包括电池的荷电状态(SOC)和健康状态(SOH)的实时
- Centos7搭建Zabbix4.x监控HCL模拟网络设备:zabbix-server搭建及监控基础02
wusam
zabbixHCLSNMP网络监控
兰生幽谷,不为莫服而不芳;君子行义,不为莫知而止休。2.HCL网络设备的远程登录及snmp-agent配置华三网络设备的snmp-agent设置方法(1)配置Agent#配置Agent的IP地址为1.1.1.1/24,并确保Agent与NMS之间路由可达。(配置步骤略)#设置Agent使用的SNMP版本为v1/v2c、只读团体名为public,读写团体名为private。system-view[A
- 目标检测YOLO实战应用案例100讲-基于深度学习的无人机目标检测算法轻量化研究(中)
林聪木
目标检测YOLO深度学习
目录基于改进YOLOv5的无人机图像实时目标检测4.1引言4.2基于改进YOLOv5的目标检测模型结构4.3消融实验及结果分析4.4算法迁移验证实验基于Jetson-Xavier的模型优化部署5.1引言5.2基于人在回路的目标检测模型裁剪5.3嵌入式实时目标检测交互软件基于深度学习的无人机目标检测算法轻量化研究知识拓展基于YOLOv8/YOLOv7/YOLOv6/YOLOv5的无人机目标检测1.数
- 梯度下降法理论理解
伶星37
机器学习人工智能
梯度下降法:看似原始却透露着机器学习的本质前提:在研究梯度下降方法之前,你要理解矩阵运算(解析解)的方法矩阵运算目前的缺点只能进行对线性函数经行分析,无法对复杂的函数经行分析什么是梯度,以及梯度向量梯度下降的形象例子以及基本思想有三个兄弟被困在山上,得要死,他们目标是看谁尽快找到山谷中的水源老大比较后选择最陡的方向随便探索一下,就朝较低处走去探测几下就走陡峭的方向梯度下降算法的核心思想就是沿着负梯
- MybatisPlus
伶星37
springboot后端
代码部分添加依赖该代码添加位置:就是在springboot配置文件里面的pom.xml里面要添加的东西对新手说的话,如果这一步没有看懂的话,可以去看一下基础,否则这样的话不能做到理解学习//mybatis-plus的一个插件com.baomidoumybatis-plus-boot-starter3.4.2//这个是关于mysql的一种依赖mysqlmysql-connector-java5.1.
- 英伟达开源超强模型Nemotron-70B;OpenAI推出Windows版ChatGPT桌面客户端
go2coding
AI日报chatgpt
AI新闻英伟达开源超强模型Nemotron-70B摘要:英伟达近日开源了新型AI模型Nemotron-70B,迅速超越GPT-4o和Claude3.5Sonnet,成为AI社区的新宠。该模型在多项基准测试中表现优异,采用混合训练方法和人类反馈强化学习,模型权重已在HuggingFace发布。Niemotron-70B的开发基于Llama-3.1,且开源数据集加强其训练效果。分析指出,英伟达的策略是
- 头歌实践教学平台 Python程序设计 实训答案(三)
学习的锅
头哥实践教学平台实训答案python
第七阶段文件实验一文本文件的读取第1关:学习-Python文件之文本文件的读取任务描述本关任务:使用open函数以只写的方式打开文件,打印文件的打开方式。相关知识为了完成本关任务,你需要掌握:文本文件;open函数及其参数;文件打开模式;文件对象常用属性;关闭文件close函数。#请在下面的Begin-End之间按照注释中给出的提示编写正确的代码##########Begin###########
- React Native:跨平台移动应用开发的强大框架
冬冬小圆帽
reactnativereact.jsjavascript
ReactNative介绍ReactNative是由Facebook开发并开源的一款基于JavaScript和React的跨平台移动应用开发框架。它允许开发者使用React的语法和组件模型来构建原生移动应用(iOS和Android)。ReactNative的核心思想是“LearnOnce,WriteAnywhere”,即学习一次,编写多端应用。1.核心特点跨平台开发:使用JavaScript和Re
- AI大模型产品经理学习路线,2025最新,从AI产品经理零基础入门到精通,非常详细收藏我这一篇够了!
AGI-杠哥
人工智能产品经理学习语言模型agi自然语言处理
随着人工智能技术的发展,尤其是大模型(LargeModel)的兴起,越来越多的企业开始重视这一领域的投入。作为大模型产品经理,你需要具备一系列跨学科的知识和技能,以便有效地推动产品的开发、优化和市场化。以下是一份详细的大模型产品经理学习路线,旨在帮助你构建所需的知识体系,从零基础到精通。一、基础知识阶段1.计算机科学基础数据结构与算法:理解基本的数据结构(如数组、链表、树、图等)和常用算法(如排序
- Java 大视界 -- 基于 Java 的大数据机器学习模型的多模态融合技术与应用(143)
青云交
大数据新视界Java大视界java大数据机器学习多模态融合智能安防智能客服数据处理
亲爱的朋友们,热烈欢迎来到青云交的博客!能与诸位在此相逢,我倍感荣幸。在这飞速更迭的时代,我们都渴望一方心灵净土,而我的博客正是这样温暖的所在。这里为你呈上趣味与实用兼具的知识,也期待你毫无保留地分享独特见解,愿我们于此携手成长,共赴新程!一、欢迎加入【福利社群】点击快速加入:青云交灵犀技韵交响盛汇福利社群点击快速加入2:2024CSDN博客之星创作交流营(NEW)二、本博客的精华专栏:大数据新视
- 2025年第二届机器学习与神经网络国际学术会议(MLNN 2025)
分享学术科研与论文的禁小默
机器学习神经网络人工智能
重要信息官网:www.icmlnn.org时间:2025年4月22-24日地点:中国-重庆简介2025年第二届机器学习与神经网络国际学术会议(MLNN2025)围绕学习系统与神经网络的核心理论、关键技术和应用展开讨论,涵盖深度学习、计算机视觉、自然语言处理、强化学习等多个子领域,通过特邀报告、主题演讲、海报展示等形式,展示相关领域的最新研究成果和技术创新。征稿主题神经网络机器学习深度学习算法及应用
- 基本数据类型和引用类型的初始值
3213213333332132
java基础
package com.array;
/**
* @Description 测试初始值
* @author FuJianyong
* 2015-1-22上午10:31:53
*/
public class ArrayTest {
ArrayTest at;
String str;
byte bt;
short s;
int i;
long
- 摘抄笔记--《编写高质量代码:改善Java程序的151个建议》
白糖_
高质量代码
记得3年前刚到公司,同桌同事见我无事可做就借我看《编写高质量代码:改善Java程序的151个建议》这本书,当时看了几页没上心就没研究了。到上个月在公司偶然看到,于是乎又找来看看,我的天,真是非常多的干货,对于我这种静不下心的人真是帮助莫大呀。
看完整本书,也记了不少笔记
- 【备忘】Django 常用命令及最佳实践
dongwei_6688
django
注意:本文基于 Django 1.8.2 版本
生成数据库迁移脚本(python 脚本)
python manage.py makemigrations polls
说明:polls 是你的应用名字,运行该命令时需要根据你的应用名字进行调整
查看该次迁移需要执行的 SQL 语句(只查看语句,并不应用到数据库上):
python manage.p
- 阶乘算法之一N! 末尾有多少个零
周凡杨
java算法阶乘面试效率
&n
- spring注入servlet
g21121
Spring注入
传统的配置方法是无法将bean或属性直接注入到servlet中的,配置代理servlet亦比较麻烦,这里其实有比较简单的方法,其实就是在servlet的init()方法中加入要注入的内容:
ServletContext application = getServletContext();
WebApplicationContext wac = WebApplicationContextUtil
- Jenkins 命令行操作说明文档
510888780
centos
假设Jenkins的URL为http://22.11.140.38:9080/jenkins/
基本的格式为
java
基本的格式为
java -jar jenkins-cli.jar [-s JENKINS_URL] command [options][args]
下面具体介绍各个命令的作用及基本使用方法
1. &nb
- UnicodeBlock检测中文用法
布衣凌宇
UnicodeBlock
/** * 判断输入的是汉字 */ public static boolean isChinese(char c) { Character.UnicodeBlock ub = Character.UnicodeBlock.of(c);
- java下实现调用oracle的存储过程和函数
aijuans
javaorale
1.创建表:STOCK_PRICES
2.插入测试数据:
3.建立一个返回游标:
PKG_PUB_UTILS
4.创建和存储过程:P_GET_PRICE
5.创建函数:
6.JAVA调用存储过程返回结果集
JDBCoracle10G_INVO
- Velocity Toolbox
antlove
模板toolboxvelocity
velocity.VelocityUtil
package velocity;
import org.apache.velocity.Template;
import org.apache.velocity.app.Velocity;
import org.apache.velocity.app.VelocityEngine;
import org.apache.velocity.c
- JAVA正则表达式匹配基础
百合不是茶
java正则表达式的匹配
正则表达式;提高程序的性能,简化代码,提高代码的可读性,简化对字符串的操作
正则表达式的用途;
字符串的匹配
字符串的分割
字符串的查找
字符串的替换
正则表达式的验证语法
[a] //[]表示这个字符只出现一次 ,[a] 表示a只出现一
- 是否使用EL表达式的配置
bijian1013
jspweb.xmlELEasyTemplate
今天在开发过程中发现一个细节问题,由于前端采用EasyTemplate模板方法实现数据展示,但老是不能正常显示出来。后来发现竟是EL将我的EasyTemplate的${...}解释执行了,导致我的模板不能正常展示后台数据。
网
- 精通Oracle10编程SQL(1-3)PLSQL基础
bijian1013
oracle数据库plsql
--只包含执行部分的PL/SQL块
--set serveroutput off
begin
dbms_output.put_line('Hello,everyone!');
end;
select * from emp;
--包含定义部分和执行部分的PL/SQL块
declare
v_ename varchar2(5);
begin
select
- 【Nginx三】Nginx作为反向代理服务器
bit1129
nginx
Nginx一个常用的功能是作为代理服务器。代理服务器通常完成如下的功能:
接受客户端请求
将请求转发给被代理的服务器
从被代理的服务器获得响应结果
把响应结果返回给客户端
实例
本文把Nginx配置成一个简单的代理服务器
对于静态的html和图片,直接从Nginx获取
对于动态的页面,例如JSP或者Servlet,Nginx则将请求转发给Res
- Plugin execution not covered by lifecycle configuration: org.apache.maven.plugin
blackproof
maven报错
转:http://stackoverflow.com/questions/6352208/how-to-solve-plugin-execution-not-covered-by-lifecycle-configuration-for-sprin
maven报错:
Plugin execution not covered by lifecycle configuration:
- 发布docker程序到marathon
ronin47
docker 发布应用
1 发布docker程序到marathon 1.1 搭建私有docker registry 1.1.1 安装docker regisry
docker pull docker-registry
docker run -t -p 5000:5000 docker-registry
下载docker镜像并发布到私有registry
docker pull consol/tomcat-8.0
- java-57-用两个栈实现队列&&用两个队列实现一个栈
bylijinnan
java
import java.util.ArrayList;
import java.util.List;
import java.util.Stack;
/*
* Q 57 用两个栈实现队列
*/
public class QueueImplementByTwoStacks {
private Stack<Integer> stack1;
pr
- Nginx配置性能优化
cfyme
nginx
转载地址:http://blog.csdn.net/xifeijian/article/details/20956605
大多数的Nginx安装指南告诉你如下基础知识——通过apt-get安装,修改这里或那里的几行配置,好了,你已经有了一个Web服务器了。而且,在大多数情况下,一个常规安装的nginx对你的网站来说已经能很好地工作了。然而,如果你真的想挤压出Nginx的性能,你必
- [JAVA图形图像]JAVA体系需要稳扎稳打,逐步推进图像图形处理技术
comsci
java
对图形图像进行精确处理,需要大量的数学工具,即使是从底层硬件模拟层开始设计,也离不开大量的数学工具包,因为我认为,JAVA语言体系在图形图像处理模块上面的研发工作,需要从开发一些基础的,类似实时数学函数构造器和解析器的软件包入手,而不是急于利用第三方代码工具来实现一个不严格的图形图像处理软件......
&nb
- MonkeyRunner的使用
dai_lm
androidMonkeyRunner
要使用MonkeyRunner,就要学习使用Python,哎
先抄一段官方doc里的代码
作用是启动一个程序(应该是启动程序默认的Activity),然后按MENU键,并截屏
# Imports the monkeyrunner modules used by this program
from com.android.monkeyrunner import MonkeyRun
- Hadoop-- 海量文件的分布式计算处理方案
datamachine
mapreducehadoop分布式计算
csdn的一个关于hadoop的分布式处理方案,存档。
原帖:http://blog.csdn.net/calvinxiu/article/details/1506112。
Hadoop 是Google MapReduce的一个Java实现。MapReduce是一种简化的分布式编程模式,让程序自动分布到一个由普通机器组成的超大集群上并发执行。就如同ja
- 以資料庫驗證登入
dcj3sjt126com
yii
以資料庫驗證登入
由於 Yii 內定的原始框架程式, 採用綁定在UserIdentity.php 的 demo 與 admin 帳號密碼: public function authenticate() { $users=array( &nbs
- github做webhooks:[2]php版本自动触发更新
dcj3sjt126com
githubgitwebhooks
上次已经说过了如何在github控制面板做查看url的返回信息了。这次就到了直接贴钩子代码的时候了。
工具/原料
git
github
方法/步骤
在github的setting里面的webhooks里把我们的url地址填进去。
钩子更新的代码如下: error_reportin
- Eos开发常用表达式
蕃薯耀
Eos开发Eos入门Eos开发常用表达式
Eos开发常用表达式
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 2014年8月18日 15:03:35 星期一
&
- SpringSecurity3.X--SpEL 表达式
hanqunfeng
SpringSecurity
使用 Spring 表达式语言配置访问控制,要实现这一功能的直接方式是在<http>配置元素上添加 use-expressions 属性:
<http auto-config="true" use-expressions="true">
这样就会在投票器中自动增加一个投票器:org.springframework
- Redis vs Memcache
IXHONG
redis
1. Redis中,并不是所有的数据都一直存储在内存中的,这是和Memcached相比一个最大的区别。
2. Redis不仅仅支持简单的k/v类型的数据,同时还提供list,set,hash等数据结构的存储。
3. Redis支持数据的备份,即master-slave模式的数据备份。
4. Redis支持数据的持久化,可以将内存中的数据保持在磁盘中,重启的时候可以再次加载进行使用。
Red
- Python - 装饰器使用过程中的误区解读
kvhur
JavaScriptjqueryhtml5css
大家都知道装饰器是一个很著名的设计模式,经常被用于AOP(面向切面编程)的场景,较为经典的有插入日志,性能测试,事务处理,Web权限校验, Cache等。
原文链接:http://www.gbtags.com/gb/share/5563.htm
Python语言本身提供了装饰器语法(@),典型的装饰器实现如下:
@function_wrapper
de
- 架构师之mybatis-----update 带case when 针对多种情况更新
nannan408
case when
1.前言.
如题.
2. 代码.
<update id="batchUpdate" parameterType="java.util.List">
<foreach collection="list" item="list" index=&
- Algorithm算法视频教程
栏目记者
Algorithm算法
课程:Algorithm算法视频教程
百度网盘下载地址: http://pan.baidu.com/s/1qWFjjQW 密码: 2mji
程序写的好不好,还得看算法屌不屌!Algorithm算法博大精深。
一、课程内容:
课时1、算法的基本概念 + Sequential search
课时2、Binary search
课时3、Hash table
课时4、Algor
- C语言算法之冒泡排序
qiufeihu
c算法
任意输入10个数字由小到大进行排序。
代码:
#include <stdio.h>
int main()
{
int i,j,t,a[11]; /*定义变量及数组为基本类型*/
for(i = 1;i < 11;i++){
scanf("%d",&a[i]); /*从键盘中输入10个数*/
}
for
- JSP异常处理
wyzuomumu
Webjsp
1.在可能发生异常的网页中通过指令将HTTP请求转发给另一个专门处理异常的网页中:
<%@ page errorPage="errors.jsp"%>
2.在处理异常的网页中做如下声明:
errors.jsp:
<%@ page isErrorPage="true"%>,这样设置完后就可以在网页中直接访问exc