- nosql数据库技术与应用知识点
皆过客,揽星河
NoSQLnosql数据库大数据数据分析数据结构非关系型数据库
Nosql知识回顾大数据处理流程数据采集(flume、爬虫、传感器)数据存储(本门课程NoSQL所处的阶段)Hdfs、MongoDB、HBase等数据清洗(入仓)Hive等数据处理、分析(Spark、Flink等)数据可视化数据挖掘、机器学习应用(Python、SparkMLlib等)大数据时代存储的挑战(三高)高并发(同一时间很多人访问)高扩展(要求随时根据需求扩展存储)高效率(要求读写速度快)
- 全面指南:用户行为从前端数据采集到实时处理的最佳实践
数字沉思
营销流量运营系统架构前端内容运营大数据
引言在当今的数据驱动世界,实时数据采集和处理已经成为企业做出及时决策的重要手段。本文将详细介绍如何通过前端JavaScript代码采集用户行为数据、利用API和Kafka进行数据传输、通过Flink实时处理数据的完整流程。无论你是想提升产品体验还是做用户行为分析,这篇文章都将为你提供全面的解决方案。设计一个通用的ClickHouse表来存储用户事件时,需要考虑多种因素,包括事件类型、时间戳、用户信
- 详解 Flink 的常见部署方式
文刀小桂
Flinkflink大数据
一、常见部署模式分类1.按是否依赖外部资源调度1.1Standalone模式独立模式(Standalone)是独立运行的,不依赖任何外部的资源管理平台,只需要运行所有Flink组件服务1.2Yarn模式Yarn模式是指客户端把Flink应用提交给Yarn的ResourceManager,Yarn的ResourceManager会在Yarn的NodeManager上创建容器。在这些容器上,Flink
- 大数据之flink与hive
星辰_mya
大数据flinkhive
其实吧我不太想写flink,因为线上经验确实不多,这也是我需要补的地方,没有条件创造条件,先来一篇吧flink:高性能低延迟流批一体的分布式计算框架基于事件时间对实时数据精准处理快速响应支持批处理,高效离线分析和数据挖掘数据仓库的引擎丰富数据源/接收器,集成多种数据存储格式和源,比较常见就是咱们今天的主题hive了checkpoint恢复机制,故障恢复快速恢复计算任务分布式弹性扩展,据业务灵活增加
- Java中的大数据处理框架对比分析
省赚客app开发者
java开发语言
Java中的大数据处理框架对比分析大家好,我是微赚淘客系统3.0的小编,是个冬天不穿秋裤,天冷也要风度的程序猿!今天,我们将深入探讨Java中常用的大数据处理框架,并对它们进行对比分析。大数据处理框架是现代数据驱动应用的核心,它们帮助企业处理和分析海量数据,以提取有价值的信息。本文将重点介绍ApacheHadoop、ApacheSpark、ApacheFlink和ApacheStorm这四种流行的
- 一文搞懂 Flink Task 数据交互之数据写源码
mn_kw
flink交互java
一文搞懂FlinkTask数据交互之数据写源码1.RecordWriterOutput2.RecordWriter3.数据分区器ChannelSelector4.数据输出模型ResultPartition5.子模型ResultSubpartition6.本地buffer池LocalBufferPool7.获取buffer8.将buffer添加到ResultSubpartitionFlink重要源码
- 概率图模型(PGM)综述
医学影像处理
概率图模型概率图模型综述
RefLink:http://www.sigvc.org/bbs/thread-728-1-1.htmlGraphicalModel的基本类型基本的GraphicalModel可以大致分为两个类别:贝叶斯网络(BayesianNetwork)和马尔可夫随机场(MarkovRandomField)。它们的主要区别在于采用不同类型的图来表达变量之间的关系:贝叶斯网络采用有向无环图(DirectedAc
- Python基础知识进阶之正则表达式_头歌python正则表达式进阶
前端陈萨龙
程序员python学习面试
最后硬核资料:关注即可领取PPT模板、简历模板、行业经典书籍PDF。技术互助:技术群大佬指点迷津,你的问题可能不是问题,求资源在群里喊一声。面试题库:由技术群里的小伙伴们共同投稿,热乎的大厂面试真题,持续更新中。知识体系:含编程语言、算法、大数据生态圈组件(Mysql、Hive、Spark、Flink)、数据仓库、Python、前端等等。网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是
- 大数据新视界 --大数据大厂之Flink强势崛起:大数据新视界的璀璨明珠
青云交
大数据新视界Flink大数据数据类型实时处理流处理框架对比应用场景数据处理大数据新视界数据库
亲爱的朋友们,热烈欢迎你们来到青云交的博客!能与你们在此邂逅,我满心欢喜,深感无比荣幸。在这个瞬息万变的时代,我们每个人都在苦苦追寻一处能让心灵安然栖息的港湾。而我的博客,正是这样一个温暖美好的所在。在这里,你们不仅能够收获既富有趣味又极为实用的内容知识,还可以毫无拘束地畅所欲言,尽情分享自己独特的见解。我真诚地期待着你们的到来,愿我们能在这片小小的天地里共同成长,共同进步。本博客的精华专栏:Ja
- flink增量检查点降低状态依赖实现的详细步骤
goTsHgo
Flink大数据分布式flink大数据
增量检查点启动恢复的时间是很久的,业务上不能接受,所以可以通过降低状态依赖来减少恢复的时间。降低状态依赖尽可能减少状态的复杂性和依赖关系,通过拆分状态或将状态外部化到其他服务中,从而降低恢复的开销。实施措施:将状态分割为更小的单元,减少每次恢复的状态量。使用外部状态存储服务,减少Flink状态后端的负担。拆分状态和将状态外部化到其他服务可以帮助减少作业的状态依赖,从而降低恢复时间和复杂度。以下是详
- flink table factory基础知识
loukey_j
一、概述在flink中很多组件都是TableFactory的子类。比如序列化,反序列化,tableSinkFactory,tableSourceFactory.TableFactory是用来创建序列化,反序列器,tableSource和tableSink的工厂。二、TableFactory源码在flink框架中,TableFactory的子类并不是程序员自己随心new出来的。flink的提供给程序
- 2024年最全使用Python求解方程_python解方程(1),字节面试官迟到
2401_84569545
程序员python学习面试
最后硬核资料:关注即可领取PPT模板、简历模板、行业经典书籍PDF。技术互助:技术群大佬指点迷津,你的问题可能不是问题,求资源在群里喊一声。面试题库:由技术群里的小伙伴们共同投稿,热乎的大厂面试真题,持续更新中。知识体系:含编程语言、算法、大数据生态圈组件(Mysql、Hive、Spark、Flink)、数据仓库、Python、前端等等。网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是
- 01-Flink安装部署及入门案例(仅供学习),音视频时代你还不会NDK开发
小猪佩琪962
2024年程序员学习flink学习大数据
先自我介绍一下,小编浙江大学毕业,去过华为、字节跳动等大厂,目前阿里P7深知大多数程序员,想要提升技能,往往是自己摸索成长,但自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前!因此收集整理了一份《2024年最新大数据全套学习资料》,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友。既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵
- 比较Spark与Flink
傲雪凌霜,松柏长青
大数据后端sparkflink大数据
ApacheSpark和ApacheFlink都是目前非常流行的大数据处理引擎,但它们在架构、处理模式、应用场景等方面有一些显著的区别。下面是二者的对比:1.处理模式Spark:主要支持批处理(BatchProcessing),也能通过SparkStreaming处理流式数据,但SparkStreaming本质上是通过微批(micro-batching)的方式处理流数据,延迟相对较高。SparkS
- Apache Flink:实时流处理与批处理的统一框架
小码快撩
flink大数据
导语在大数据处理领域,流处理和批处理是两种主要的处理方式。然而,传统的系统通常将这两者视为独立的任务,需要不同的工具和框架来处理。ApacheFlink是一个开源的流处理框架,它打破了这种界限,提供了一个统一的平台来处理实时流数据和批处理数据。一、基本概念与架构ApacheFlink的基本概念与架构主要包括以下几个核心组成部分:基本概念1.流处理模型:无界流(UnboundedStreams):数
- flink独立集群部署
嘎子吱吱吱吱
flinkhadooplinux
#flink独立集群部署说明安装环境三台服务器47.106.23.1(master)47.112.173.2(worker1)47.115.162.3(worker1)提前装好jdk和ssh,以下操作最好不要用root账号提前下载好flink的包并解压设置三台服务器之间ssh免密登录生成本机秘钥以47.106.23.1为例(其他两台参考本服务器)#生成本机秘钥cd;ssh-keygen-trsa-
- Flink的时间与watermarks详解
大数据技术与数仓
当我们在使用Flink的时候,避免不了要和时间(time)、水位线(watermarks)打交道,理解这些概念是开发分布式流处理应用的基础。那么Flink支持哪些时间语义?Flink是如何处理乱序事件的?什么是水位线?水位线是如何生成的?水位线的传播方式是什么?让我们带着这些问题来开始本文的内容。时间语义基本概念时间是Flink等流处理中最重要的概念之一,在Flink中Time可以分为三种:Eve
- 实时数仓之实时数仓架构(Hudi)(1)
2401_84164527
程序员架构
目前比较流行的实时数仓架构有两类,其中一类是以Flink+Doris为核心的实时数仓架构方案;另一类是以湖仓一体架构为核心的实时数仓架构方案。本文针对Flink+Hudi湖仓一体架构进行介绍,这套架构的特点是可以基于一套数据完全实现Lambda架构。实时数仓架构图如下:技术框架Kafka:用于接入数据源;FlinkCDC:如果直接接入业务数据源可以考虑CDC方式,如果通过Kafka缓冲接入业务数据
- 2024年大数据最新实时数仓之实时数仓架构(Hudi)
2401_84185556
程序员大数据架构
技术框架Kafka:用于接入数据源;FlinkCDC:如果直接接入业务数据源可以考虑CDC方式,如果通过Kafka缓冲接入业务数据可以忽略;Flink:用于数据ETL,包括接入数据、处理数据及输出数据全链路数据计算任务;Spark:用于数据ETL,包括处理数据及输出数据全链路数据计算任务;Hudi:湖仓一体数据管理框架,用来管理模型数据,包括ODS/DWD/DWS/DIM/ADS等;Doris:O
- 实时数仓之实时数仓架构(Hudi)(1),2024年最新熬夜整理华为最新大数据开发笔试题
2401_84181221
程序员架构大数据
+Hudi:湖仓一体数据管理框架,用来管理模型数据,包括ODS/DWD/DWS/DIM/ADS等;+Doris:OLAP引擎,同步数仓结果模型,对外提供数据服务支持;+Hbase:用来存储维表信息,维表数据来源一部分有Flink加工实时写入,另一部分是从Spark任务生产,其主要作用用来支持FlinkETL处理过程中的LookupJoin功能。这里选用Hbase原因主要因为Table的HbaseC
- Flink - CEP
kikiki1
Hadoop3.2集群新版本的搭建详细讲解过程,从下面第一张官方的图来看,最新版是3.2,所以大猪将使用3.2的版本来演示,过程中遇到的坑留给自己,把路留给你们,IT之路还有大猪。大猪为了把文章压缩极简方便小伙伴阅读,将使用root帐号进行所有操作。准备两台主机10.211.55.11、10.211.55.12对应的hostname为m1.example.com、m2.example.com具体命
- chapter01 Java语言概述 知识点Note
月下绯烟
Javajava开发语言
JavaSEJavaEEJavaME大数据Java基础常用技术栈mysqlJDBCSSMspring+springmvc+mybatisLinuxnacosHadoopFlinkJAVAEE消息队列rabbitMQdocker数据库redisspringbootspringcloudsshstruts+spring+hibernate过时技术栈很少用JAVA虚拟机jvm分布式微服务高并发常见dos
- 【无标题】大数据之批处理,流处理,批流一体概念
数字天下
大数据
批处理批处理是将一定量的数据集合在一起,形成一个数据批次,然后对这个批次中的数据进行处理。Spark和Flink都支持批处理,其中Spark使用的是批处理模型,即将一批数据一次性读入内存,然后对其进行处理,处理完成后再将结果写入磁盘。Flink也支持批处理,但使用的是基于流处理的批处理模式,即将一批数据分成多个数据流进行处理,可以实现更高效的内存管理和更低的延迟。流处理流式处理是一种将数据流式地处
- python flink_《Flink官方文档》Python 编程指南测试版
weixin_39846361
pythonflink
原文链接译者:hjjxd校对:清英Flink中的分析程序实现了对数据集的某些操作(例如,数据过滤,映射,合并,分组)。这些数据最初来源于特定的数据源(例如来自于读文件或数据集合)。操作执行的结果通过数据池以写入数据到(分布式)文件系统或标准输出(例如命令行终端)的形式返回。Flink程序可以运行在不同的环境中,既能够独立运行,也可以嵌入到其他程序中运行。程序可以运行在本地的JVM上,也可以运行在服
- flink---window
搞数据的小杰
flink大数据
Window介绍DataStream:https://nightlies.apache.org/flink/flink-docs-release-1.17/zh/docs/dev/datastream/operators/windows/SQL:https://nightlies.apache.org/flink/flink-docs-release-1.17/zh/docs/dev/table/
- Flink(1.13) 的window机制(一)
万事万物
窗口概述在流处理应用中,数据是连续不断的,因此我们不可能等到所有数据都到了才开始处理。当然我们可以每来一个消息就处理一次,但是有时我们需要做一些聚合类的处理,例如:在过去的1分钟内有多少用户点击了我们的网页。在这种情况下,我们必须定义一个窗口,用来收集最近一分钟内的数据,并对这个窗口内的数据进行计算。流式计算是一种被设计用于处理无限数据集的数据处理引擎,而无限数据集是指一种不断增长的本质上无限的数
- pyflink 自定义函数
scan724
Flink实时计算python开发语言
frompyflink.datastreamimportStreamExecutionEnvironmentfrompyflink.common.typeinfoimportTypesfrompyflink.datastreamimportStreamExecutionEnvironmentfrompyflink.tableimportStreamTableEnvironmentfrompyfli
- flink 问题记录
Jhon_yh
flinkflinkhadoop大数据
文章目录1.Causedby:java.lang.UnsatisfiedLinkError:org.apache.hadoop.util.NativeCrc32.nativeComputeChunkedSums(IILjava/nio/ByteBuffer;ILjava/nio/ByteBuffer;IILjava/lang/String;JZ)V原因java.util.concurrent.Ex
- Pyflink教程(三):自定义函数
yuxj记录学习
学习笔记学习pyflink
该文章例子pyflink环境是apache-flink==1.13.6Python自定义函数是PyFlinkTableAPI中最重要的功能之一,其允许用户在PyFlinkTableAPI中使用Python语言开发的自定义函数,极大地拓宽了PythonTableAPI的使用范围。简单来说就是有的业务逻辑和需求是sql语句满足不了或太麻烦的,需要用过函数来实现。PythonUDFPythonUDF,即
- pyflink 滚动窗口实例
菜鸟社长
菜鸟的大数据进阶之路大数据进阶之路kafkabigdatapythonflink
写在前头:更多大数据相关精彩内容请进我的知识星球,每周定期更新正篇技术路线:模拟kafka生产者发送数据——>flink对kafka数据实时计算处理——>处理后的数据发送到kafka1、模拟客流数据的生产者,参考https://blog.csdn.net/qq_22611181/article/details/1199002502、flink聚合操作原理介绍,参考https://blog.csdn
- tomcat基础与部署发布
暗黑小菠萝
Tomcat java web
从51cto搬家了,以后会更新在这里方便自己查看。
做项目一直用tomcat,都是配置到eclipse中使用,这几天有时间整理一下使用心得,有一些自己配置遇到的细节问题。
Tomcat:一个Servlets和JSP页面的容器,以提供网站服务。
一、Tomcat安装
安装方式:①运行.exe安装包
&n
- 网站架构发展的过程
ayaoxinchao
数据库应用服务器网站架构
1.初始阶段网站架构:应用程序、数据库、文件等资源在同一个服务器上
2.应用服务和数据服务分离:应用服务器、数据库服务器、文件服务器
3.使用缓存改善网站性能:为应用服务器提供本地缓存,但受限于应用服务器的内存容量,可以使用专门的缓存服务器,提供分布式缓存服务器架构
4.使用应用服务器集群改善网站的并发处理能力:使用负载均衡调度服务器,将来自客户端浏览器的访问请求分发到应用服务器集群中的任何
- [信息与安全]数据库的备份问题
comsci
数据库
如果你们建设的信息系统是采用中心-分支的模式,那么这里有一个问题
如果你的数据来自中心数据库,那么中心数据库如果出现故障,你的分支机构的数据如何保证安全呢?
是否应该在这种信息系统结构的基础上进行改造,容许分支机构的信息系统也备份一个中心数据库的文件呢?
&n
- 使用maven tomcat plugin插件debug关联源代码
商人shang
mavendebug查看源码tomcat-plugin
*首先需要配置好'''maven-tomcat7-plugin''',参见[[Maven开发Web项目]]的'''Tomcat'''部分。
*配置好后,在[[Eclipse]]中打开'''Debug Configurations'''界面,在'''Maven Build'''项下新建当前工程的调试。在'''Main'''选项卡中点击'''Browse Workspace...'''选择需要开发的
- 大访问量高并发
oloz
大访问量高并发
大访问量高并发的网站主要压力还是在于数据库的操作上,尽量避免频繁的请求数据库。下面简
要列出几点解决方案:
01、优化你的代码和查询语句,合理使用索引
02、使用缓存技术例如memcache、ecache将不经常变化的数据放入缓存之中
03、采用服务器集群、负载均衡分担大访问量高并发压力
04、数据读写分离
05、合理选用框架,合理架构(推荐分布式架构)。
- cache 服务器
小猪猪08
cache
Cache 即高速缓存.那么cache是怎么样提高系统性能与运行速度呢?是不是在任何情况下用cache都能提高性能?是不是cache用的越多就越好呢?我在近期开发的项目中有所体会,写下来当作总结也希望能跟大家一起探讨探讨,有错误的地方希望大家批评指正。
1.Cache 是怎么样工作的?
Cache 是分配在服务器上
- mysql存储过程
香水浓
mysql
Description:插入大量测试数据
use xmpl;
drop procedure if exists mockup_test_data_sp;
create procedure mockup_test_data_sp(
in number_of_records int
)
begin
declare cnt int;
declare name varch
- CSS的class、id、css文件名的常用命名规则
agevs
JavaScriptUI框架Ajaxcss
CSS的class、id、css文件名的常用命名规则
(一)常用的CSS命名规则
头:header
内容:content/container
尾:footer
导航:nav
侧栏:sidebar
栏目:column
页面外围控制整体布局宽度:wrapper
左右中:left right
- 全局数据源
AILIKES
javatomcatmysqljdbcJNDI
实验目的:为了研究两个项目同时访问一个全局数据源的时候是创建了一个数据源对象,还是创建了两个数据源对象。
1:将diuid和mysql驱动包(druid-1.0.2.jar和mysql-connector-java-5.1.15.jar)copy至%TOMCAT_HOME%/lib下;2:配置数据源,将JNDI在%TOMCAT_HOME%/conf/context.xml中配置好,格式如下:&l
- MYSQL的随机查询的实现方法
baalwolf
mysql
MYSQL的随机抽取实现方法。举个例子,要从tablename表中随机提取一条记录,大家一般的写法就是:SELECT * FROM tablename ORDER BY RAND() LIMIT 1。但是,后来我查了一下MYSQL的官方手册,里面针对RAND()的提示大概意思就是,在ORDER BY从句里面不能使用RAND()函数,因为这样会导致数据列被多次扫描。但是在MYSQL 3.23版本中,
- JAVA的getBytes()方法
bijian1013
javaeclipseunixOS
在Java中,String的getBytes()方法是得到一个操作系统默认的编码格式的字节数组。这个表示在不同OS下,返回的东西不一样!
String.getBytes(String decode)方法会根据指定的decode编码返回某字符串在该编码下的byte数组表示,如:
byte[] b_gbk = "
- AngularJS中操作Cookies
bijian1013
JavaScriptAngularJSCookies
如果你的应用足够大、足够复杂,那么你很快就会遇到这样一咱种情况:你需要在客户端存储一些状态信息,这些状态信息是跨session(会话)的。你可能还记得利用document.cookie接口直接操作纯文本cookie的痛苦经历。
幸运的是,这种方式已经一去不复返了,在所有现代浏览器中几乎
- [Maven学习笔记五]Maven聚合和继承特性
bit1129
maven
Maven聚合
在实际的项目中,一个项目通常会划分为多个模块,为了说明问题,以用户登陆这个小web应用为例。通常一个web应用分为三个模块:
1. 模型和数据持久化层user-core,
2. 业务逻辑层user-service以
3. web展现层user-web,
user-service依赖于user-core
user-web依赖于user-core和use
- 【JVM七】JVM知识点总结
bit1129
jvm
1. JVM运行模式
1.1 JVM运行时分为-server和-client两种模式,在32位机器上只有client模式的JVM。通常,64位的JVM默认都是使用server模式,因为server模式的JVM虽然启动慢点,但是,在运行过程,JVM会尽可能的进行优化
1.2 JVM分为三种字节码解释执行方式:mixed mode, interpret mode以及compiler
- linux下查看nginx、apache、mysql、php的编译参数
ronin47
在linux平台下的应用,最流行的莫过于nginx、apache、mysql、php几个。而这几个常用的应用,在手工编译完以后,在其他一些情况下(如:新增模块),往往想要查看当初都使用了那些参数进行的编译。这时候就可以利用以下方法查看。
1、nginx
[root@361way ~]# /App/nginx/sbin/nginx -V
nginx: nginx version: nginx/
- unity中运用Resources.Load的方法?
brotherlamp
unity视频unity资料unity自学unityunity教程
问:unity中运用Resources.Load的方法?
答:Resources.Load是unity本地动态加载资本所用的方法,也即是你想动态加载的时分才用到它,比方枪弹,特效,某些实时替换的图像什么的,主张此文件夹不要放太多东西,在打包的时分,它会独自把里边的一切东西都会集打包到一同,不论里边有没有你用的东西,所以大多数资本应该是自个建文件放置
1、unity实时替换的物体即是依据环境条件
- 线段树-入门
bylijinnan
java算法线段树
/**
* 线段树入门
* 问题:已知线段[2,5] [4,6] [0,7];求点2,4,7分别出现了多少次
* 以下代码建立的线段树用链表来保存,且树的叶子结点类似[i,i]
*
* 参考链接:http://hi.baidu.com/semluhiigubbqvq/item/be736a33a8864789f4e4ad18
* @author lijinna
- 全选与反选
chicony
全选
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<head>
<title>全选与反选</title>
- vim一些简单记录
chenchao051
vim
mac在/usr/share/vim/vimrc linux在/etc/vimrc
1、问:后退键不能删除数据,不能往后退怎么办?
答:在vimrc中加入set backspace=2
2、问:如何控制tab键的缩进?
答:在vimrc中加入set tabstop=4 (任何
- Sublime Text 快捷键
daizj
快捷键sublime
[size=large][/size]Sublime Text快捷键:Ctrl+Shift+P:打开命令面板Ctrl+P:搜索项目中的文件Ctrl+G:跳转到第几行Ctrl+W:关闭当前打开文件Ctrl+Shift+W:关闭所有打开文件Ctrl+Shift+V:粘贴并格式化Ctrl+D:选择单词,重复可增加选择下一个相同的单词Ctrl+L:选择行,重复可依次增加选择下一行Ctrl+Shift+L:
- php 引用(&)详解
dcj3sjt126com
PHP
在PHP 中引用的意思是:不同的名字访问同一个变量内容. 与C语言中的指针是有差别的.C语言中的指针里面存储的是变量的内容在内存中存放的地址 变量的引用 PHP 的引用允许你用两个变量来指向同一个内容 复制代码代码如下:
<?
$a="ABC";
$b =&$a;
echo
- SVN中trunk,branches,tags用法详解
dcj3sjt126com
SVN
Subversion有一个很标准的目录结构,是这样的。比如项目是proj,svn地址为svn://proj/,那么标准的svn布局是svn://proj/|+-trunk+-branches+-tags这是一个标准的布局,trunk为主开发目录,branches为分支开发目录,tags为tag存档目录(不允许修改)。但是具体这几个目录应该如何使用,svn并没有明确的规范,更多的还是用户自己的习惯。
- 对软件设计的思考
e200702084
设计模式数据结构算法ssh活动
软件设计的宏观与微观
软件开发是一种高智商的开发活动。一个优秀的软件设计人员不仅要从宏观上把握软件之间的开发,也要从微观上把握软件之间的开发。宏观上,可以应用面向对象设计,采用流行的SSH架构,采用web层,业务逻辑层,持久层分层架构。采用设计模式提供系统的健壮性和可维护性。微观上,对于一个类,甚至方法的调用,从计算机的角度模拟程序的运行情况。了解内存分配,参数传
- 同步、异步、阻塞、非阻塞
geeksun
非阻塞
同步、异步、阻塞、非阻塞这几个概念有时有点混淆,在此文试图解释一下。
同步:发出方法调用后,当没有返回结果,当前线程会一直在等待(阻塞)状态。
场景:打电话,营业厅窗口办业务、B/S架构的http请求-响应模式。
异步:方法调用后不立即返回结果,调用结果通过状态、通知或回调通知方法调用者或接收者。异步方法调用后,当前线程不会阻塞,会继续执行其他任务。
实现:
- Reverse SSH Tunnel 反向打洞實錄
hongtoushizi
ssh
實際的操作步驟:
# 首先,在客戶那理的機器下指令連回我們自己的 Server,並設定自己 Server 上的 12345 port 會對應到幾器上的 SSH port
ssh -NfR 12345:localhost:22
[email protected]
# 然後在 myhost 的機器上連自己的 12345 port,就可以連回在客戶那的機器
ssh localhost -p 1
- Hibernate中的缓存
Josh_Persistence
一级缓存Hiberante缓存查询缓存二级缓存
Hibernate中的缓存
一、Hiberante中常见的三大缓存:一级缓存,二级缓存和查询缓存。
Hibernate中提供了两级Cache,第一级别的缓存是Session级别的缓存,它是属于事务范围的缓存。这一级别的缓存是由hibernate管理的,一般情况下无需进行干预;第二级别的缓存是SessionFactory级别的缓存,它是属于进程范围或群集范围的缓存。这一级别的缓存
- 对象关系行为模式之延迟加载
home198979
PHP架构延迟加载
形象化设计模式实战 HELLO!架构
一、概念
Lazy Load:一个对象,它虽然不包含所需要的所有数据,但是知道怎么获取这些数据。
延迟加载貌似很简单,就是在数据需要时再从数据库获取,减少数据库的消耗。但这其中还是有不少技巧的。
二、实现延迟加载
实现Lazy Load主要有四种方法:延迟初始化、虚
- xml 验证
pengfeicao521
xmlxml解析
有些字符,xml不能识别,用jdom或者dom4j解析的时候就报错
public static void testPattern() {
// 含有非法字符的串
String str = "Jamey친ÑԂ
- div设置半透明效果
spjich
css半透明
为div设置如下样式:
div{filter:alpha(Opacity=80);-moz-opacity:0.5;opacity: 0.5;}
说明:
1、filter:对win IE设置半透明滤镜效果,filter:alpha(Opacity=80)代表该对象80%半透明,火狐浏览器不认2、-moz-opaci
- 你真的了解单例模式么?
w574240966
java单例设计模式jvm
单例模式,很多初学者认为单例模式很简单,并且认为自己已经掌握了这种设计模式。但事实上,你真的了解单例模式了么。
一,单例模式的5中写法。(回字的四种写法,哈哈。)
1,懒汉式
(1)线程不安全的懒汉式
public cla