- 卷积神经网络之AlexNet经典神经网络,实现手写数字0~9识别
知识鱼丸
深度学习神经网络cnn人工智能深度学习AlexNet经典神经网络
深度学习中较为常见的神经网络模型AlexNet,AlexNet是一个采用GPU训练的深层CNN,本质是种LeNet变体。由特征提取层的5个卷积层两个下采样层和分类器中的三个全连接层构成。先看原理:AlexNet网络特点采用ReLU激活函数,使训练速度提升6倍采用dropout层,防止模型过拟合通过平移和翻转的方式对数据进行增强采用LRN局部响应归一化,限制数据大小,防止梯度消失和爆炸。但后续证明批
- python实现将RGB相机与事件相机的照片信息进行融合以进行目标检测
go5463158465
python算法python数码相机目标检测
要将RGB相机与事件相机的照片信息进行融合以进行目标检测,我们可以按以下步骤进行:整体思路数据读取:分别读取RGB图像和事件相机数据。数据预处理:对RGB图像和事件数据进行必要的预处理,如调整尺寸、归一化等。数据融合:将预处理后的RGB图像和事件数据进行融合。目标检测:使用融合后的数据进行目标检测。代码实现importcv2importnumpyasnpimporttorchfromtorchvi
- CCF-CSP真题202206-归一化处理/寻宝大冒险
chaser&upper
一研为定Algorithm算法c++
CCF-CSP真题202206归一化处理寻宝大冒险Rederence归一化处理数学题:直接计算平均值、方差、按公式计算即可!7-42930-22126541000-0.74855103790736130.04504284674812264-0.7378629047806881-0.7966476369773906-0.70579850540066861.00964686143037751.9341
- Hu矩的原理及应用
Ring__Rain
算法人工智能机器学习
什么是Hu矩Hu矩是一种描述图像形状特征的数学工具,核心思想:提取图像的形状信息,并对这些信息进行归一化,使得它们对图像的平移、旋转和缩放具有不变性。简单说,Hu矩就是一串数字,这串数字可以唯一的描述图像的形状特征,而且不管图像怎么移动、旋转和缩放,这组数字都不变。Hu矩的原理1,几何矩:图像的像素值的加权和,可以用来描述图像的形状。如:零阶矩(面积):图像中所有像素值的总和;一阶矩(质心):图像
- Pytorch实现论文之一种基于扰动卷积层和梯度归一化的生成对抗网络
这张生成的图像能检测吗
GAN系列优质GAN模型训练自己的数据集pytorch人工智能机器学习生成对抗网络神经网络计算机视觉深度学习
简介简介:提出了一种针对鉴别器的梯度惩罚方法和在鉴别器中采用扰动卷积,拟解决锐梯度空间引起的训练不稳定性问题和判别器的记忆问题。论文题目:APerturbedConvolutionalLayerandGradientNormalizationbasedGenerativeAdversarialNetwork(一种基于扰动卷积层和梯度归一化的生成对抗网络)会议:20244thInternationa
- 【目标检测】多模态航空目标检测:A SIMPLE AERIAL DETECTION BASELINE OF MULTIMODAL LANGUAGE MODELS
慕容紫英问情
目标检测目标检测人工智能计算机视觉
阅读并理解一篇论文:ASIMPLEAERIALDETECTIONBASELINEOFMULTIMODALLANGUAGEMODELS该文首次提出了一种将多模态语言模型应用于航空检测的简单基线方法,名为LMMRotate。贡献:具体而言,首先引入一种归一化方法,将检测输出转换为文本输出,以适配多模态语言模型框架。接着,提出一种评估方法,确保多模态语言模型与传统目标检测模型之间能够进行公平比较。通过微
- 智能优化算法应用:基于群居蜘蛛算法与双伽马校正的图像自适应增强算法
智能算法研学社(Jack旭)
智能优化算法应用图像增强算法计算机视觉人工智能
智能优化算法应用:基于群居蜘蛛算法与双伽马校正的图像自适应增强算法-附代码文章目录智能优化算法应用:基于群居蜘蛛算法与双伽马校正的图像自适应增强算法-附代码1.全局双伽马校正2.群居蜘蛛算法3.适应度函数设计4.实验与算法结果5.参考文献6.Matlab代码摘要:本文主要介绍基于群居蜘蛛算法与双伽马校正的图像自适应增强算法。1.全局双伽马校正设图像的灰度值范围被归一化到[0,1]范围之内,基于全局
- 机器学习 网络安全
网络安全Max
机器学习web安全人工智能
实现机械学习网络安全的流程概述在实现“机器学习网络安全”这个任务中,我们需要经历一系列步骤,从数据准备、训练到模型评估。在这篇文章中,我将详细介绍每个步骤的具体操作,并附上相应的代码示例和解释。步骤下面是实现机器学习网络安全的流程,简单概括如下:步骤描述1.数据采集从网络安全日志或其他数据源中采集数据2.数据预处理对数据进行清洗、归一化和特征提取等操作3.模型选择选择适合网络安全场景的机器学习模型
- GCN推导合集
mumukehao
研究生笔记异配图深度学习
读论文,发现看论文最重要的是推导,因此写了这篇文章,记录重要的推导过程(个人人为的)(持续更新)SGC以及最常见优化的推到邻接矩阵归一化:A~=D~−1/2A~D~−1/2\tilde{A}=\tilde{D}^{-1/2}\tilde{A}\tilde{D}^{-1/2}A~=D~−1/2A~D~−1/2对应::A=In+D−1/2AD−1/2A=I_{n}+D^{-1/2}AD^{-1/2}A
- 一杯咖啡的时间学习大模型(LLM):LLaMA解读之旋转编码RoPE(含代码实现)
Bug_makerACE
llamapython人工智能nlppytorch深度学习transformer
文章目录一、LLaMA的核心改进全景二、旋转位置编码(RoPE)2.1改进动机2.2数学原理2.3源码实现一、LLaMA的核心改进全景Meta开源的LLaMA模型凭借其卓越的性能表现成为大模型发展的重要里程碑。相较于标准Transformer架构,LLaMA主要在以下几个方面进行了关键改进:位置编码升级:采用旋转位置编码(RotaryPositionEmbedding,RoPE)归一化革新:对每个
- 大型语言模型的核心机制解析
耶耶Norsea
网络杂烩人工智能Deepseek
摘要大型语言模型的核心机制依赖于Transformer架构,该架构通过嵌入层将输入数据转换为向量形式,并结合位置编码以保留序列中单词的顺序信息。随后,这些向量进入多头自注意力层,能够同时关注输入序列的不同部分。自注意力层的输出经过残差连接和层归一化处理,以增强模型的学习能力和稳定性。接着,数据流经前馈网络进一步处理,最终再次通过残差连接和层归一化,得到编码器层的输出。模型性能高度依赖大规模和高质量
- 【2024年华为OD机试】 (C卷,200分)- 寻找最优的路测线路(JavaScript&Java & Python&C/C++)
妄北y
算法汇集笔记总结(保姆级)华为odc语言javascriptjava中文分词python
一、问题描述网络信号质量评估与最优路线问题题目描述为了评估网络的信号质量,可以将网络划分为栅格,并对每个栅格的信号质量进行计算。路测时,目标是选择一条信号最优的路线(由相连的栅格组成)进行演示。给定一个R行C列的整数数组Cov,其中每个单元格的数值S代表该栅格的信号质量。信号质量已经归一化,无单位,数值越大信号越好。规则路径限制:路径只能上下左右四个方向移动,不能对角线移动。路径评分:路径的评分取
- 基于最优输运思想的分组奖励策略优化算法详解
步子哥
AGI通用人工智能算法人工智能
摘要近年来,最优输运(OptimalTransport,OT)理论因其在分布对齐、概率测度比较等问题上的卓越表现受到广泛关注。本文从“世界不断演进遵循最小代价策略”这一自然哲理出发,详细阐述了一种基于最优输运思想的分组奖励策略优化算法(GroupedRewardPolicyOptimization,GRPO)。我们将详细讨论算法的采样机制、奖励归一化、局部优势函数构造、Token级路径积分奖励分配
- Python工具箱系列:Pandas 数据清洗与预处理详解
傻啦嘿哟
关于python那些事儿pythonpandas开发语言
目录一、数据清洗与预处理的重要性二、Pandas简介三、Pandas数据清洗与预处理技巧1.读取数据2.查看数据3.处理缺失值4.处理重复值5.处理异常值6.处理数据类型不一致7.处理数据格式不一致8.数据标准化和归一化9.数据编码四、案例:使用Pandas进行数据清洗与预处理总结数据清洗与预处理是数据分析中的关键步骤,其目的是确保数据的质量,提高数据分析的准确性和可靠性。Pandas是Pytho
- 深度学习|表示学习|Batch Normalization 详解:数学、代码与经验总结|22
漂亮_大男孩
表示学习深度学习batch人工智能神经网络cnn
如是我闻:在深度学习模型中,BatchNormalization(简称BN)是一种常用的技术,能有效加速训练并提高模型的稳定性。BN通过对mini-batch数据进行归一化,使每层的输入数据分布保持稳定,从而缓解梯度消失/爆炸问题,同时减少对权重初始化的敏感性。在本篇文章中,我们将从数学推导、代码实现和经验总结三个方面,详细探讨BatchNormalization的工作原理,并分析为什么BN应该放
- 数值型特征处理 - 归一化和分桶
Ivanqhz
设计模式javaspark大数据分布式
归一化概述归一化,好像是把数据缩放到某个范围内,比如0到1或者标准化处理。而分桶可能是指把连续的数值分成不同的区间,比如年龄段分成0-18,19-30这样的区间消除特征间的量纲差异,使不同特征具有可比性,适用于依赖距离或梯度的模型(如SVM、神经网络、KNN)最大最小归一化(Min-MaxScaling)将数据线性映射到[0,1]计算公式:xnorm=x−xminxmax−xminx_{norm}
- 图神经网络实战(8)——图注意力网络(Graph Attention Networks, GAT)
盼小辉丶
图神经网络从入门到项目实战图神经网络pytorch图注意力网络GNN
图神经网络实战(8)——图注意力网络0.前言1.图注意力层原理1.1线性变换1.2激活函数1.3Softmax归一化1.4多头注意力1.5改进图注意力层2.使用NumPy中实现图注意力层3.使用PyTorchGeometric实现GAT3.1在Cora数据集上训练GAT模型3.2在CiteSeer数据集上训练GAT模型3.3误差分析小结系列链接0.前言图注意力网络(GraphAttentionNe
- 【Python】将不规则凸多边形映射到单位正方形
辰尘_星启
python开发语言算法映射数学
写在前面在机器学习领域常需要将数据归一化后才能进行训练等操作,一维数据很容易处理,但对于二维的不规则数据,则需要一些手段,本文就是用来解决这个问题此外,有时候希望可以用循环遍历一个不规则的二维平面,显然难以直接实现,此时将该平面映射到一个规则的矩形范围内,就能轻松实现这个目标整体思路利用同心映射将(u,v)映射到单位圆内的点(x_disk,y_disk);计算该点的极坐标(r,θ);计算从多边形质
- 高效 DEM 拼接
我喜欢就喜欢
技术文档测绘技术
第一步:数据预处理数据清洗:删除重复、冗余或无效的数据点。去除噪声或明显错误的测量值。数据标准化:将不同源的数据转换为统一的坐标系统和投影格式。标准化高程单位和精度,确保一致性和可比性。数据归一化:对数据进行归一化处理,缩放到适合存储和计算的范围。消除量纲差异对插值算法的影响。第二步:选择合适的插值算法根据数据分布、密度和应用需求选择最优插值方法:反邻距加权(IDW):适用于均匀分布的数据,计算速
- 一、TensorFlow的建模流程
李建军
TensorFlowtensorflow人工智能python
1.数据准备与预处理:加载数据:使用内置数据集或自定义数据。预处理:归一化、调整维度、数据增强。划分数据集:训练集、验证集、测试集。转换为Dataset对象:利用tf.data优化数据流水线。importtensorflowastffromtensorflow.kerasimportlayers#加载MNIST数据集(x_train,y_train),(x_test,y_test)=tf.kera
- 深度学习篇---深度学习框架图像预处理&各部分组件
Ronin-Lotus
深度学习篇程序代码篇深度学习人工智能Python机器学习pytorchpaddlepaddle深度学习框架
文章目录前言第一部分:图像预处理PaddlePaddle图像预处理PyTorch图像预处理第二部分:框架各部分组件PaddlePaddle1.卷积层(ConvolutionalLayer)2.池化层(PoolingLayer)3.全连接层(FullyConnectedLayer)4.激活函数(ActivationFunction)5.优化器(Optimizer)6.归一化(Normalizatio
- 机器学习--学习计划
kyle~
机器学习机器学习学习人工智能
3周机器学习速成计划基于「28原则」,聚焦机器学习20%的核心概念,覆盖80%的常见应用场景。计划分为理论学习+项目实战,每周学习后通过5个递进项目巩固知识。第1周:数据与监督学习基础学习目标:掌握数据预处理、线性模型与分类任务的基础流程。核心概念(20%关键内容):数据预处理缺失值处理(均值填充、删除)特征缩放(标准化、归一化)分类变量编码(独热编码、标签编码)监督学习基础线性回归(原理、损失函
- [C++]DirectX 12 3D游戏开发实战—第9章 学习笔记03 2019.5.4
卡酷酷
DirectX12C++
@个人学习用,请勿转赞。DirectX123D游戏开发实战—第9章学习笔记03词汇内容9.11附有纹理的山川演示程序给陆地网格重复铺设草地纹理根据时间函数令流水纹理延波浪滚动起来9.11.1生成栅格纹理坐标上图是一个m*n的栅格,右侧是在归一化纹理坐标[0,1]2中与之相对应的栅格。纹理坐标中的第i行第j列顶点坐标为uij=j⋅δuu_{ij}=j·\deltauuij=
- 【python】在【机器学习】与【数据挖掘】中的应用:从基础到【AI大模型】
小李很执着
杂乱无章机器学习数据挖掘python人工智能语言模型
目录一、Python在数据挖掘中的应用1.1数据预处理数据清洗数据变换数据归一化高级预处理技术1.2特征工程特征选择特征提取特征构造二、Python在机器学习中的应用2.1监督学习分类回归2.2非监督学习聚类降维三、Python在深度学习中的应用3.1深度学习框架TensorFlowPyTorch四、Python在AI大模型中的应用4.1大模型简介4.2GPT-4o实例五、实例验证5.1数据集介绍
- Python 机器学习 基础 之 【常用机器学习库】 NumPy 数值计算库
仙魁XAN
Python机器学习基础+实战案例python机器学习numpy数值计算
Python机器学习基础之【常用机器学习库】NumPy数值计算库目录Python机器学习基础之【常用机器学习库】NumPy数值计算库一、简单介绍二、Numpy基础1、安装NumPy2、导入NumPy3、创建数组4、数组操作5、常用函数6、矩阵运算7、广播机制8、随机数三、在机器学习中使用到Numpy的简单示例1、数据预处理1.1数据归一化1.2数据标准化2、特征工程1.1多项式特征3、简单线性回归
- 为AI聊天工具添加一个知识系统 之77 详细设计之18 正则表达式 之5
一水鉴天
人工语言软件智能智能制造人工智能正则表达式
本文要点昨天讨论了本项目(AI聊天工具添加一个知识系统)中正则表达式模板的设计中可能要考虑到的一些问题(讨论到的内容比较随意,暂时无法确定那些考虑是否应该是正则表达式模板设计要考虑的以及是否完整)。今天我们在正则表达式更高设计层次上看看本项目的整个正则表达式应该是怎样的。先给出综述:开发时/运行时/生产时(三世归一化时间投影X-piece-scale,三代连坐时间并行升级换代)的三界标准化空间(位
- 大语言模型原理与工程实践:残差连接与层归一化
AI大模型应用之禅
AI大模型与大数据计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
1.背景介绍随着自然语言处理(NLP)的发展,深度学习在过去几年中取得了令人瞩目的成果。其中,循环神经网络(RNN)和卷积神经网络(CNN)在图像和文本分类、语义角色标注、机器翻译等领域表现出色。然而,这些网络在训练过程中经常遭遇梯度消失和梯度爆炸的问题。为了解决这些问题,我们引入了残差连接(ResidualConnections)和层归一化(BatchNormalization)来改善模型性能。
- Transformer架构原理详解:残差连接和层归一化(Residual Connection an
AI天才研究院
AI大模型企业级应用开发实战Python实战大数据AI人工智能javapythonjavascriptkotlingolang架构人工智能大厂程序员硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLM系统架构设计软件哲学Agent程序员实现财富自由
《Transformer架构原理详解:残差连接和层归一化(ResidualConnectionandLayerNormalization)》文章关键词Transformer残差连接层归一化自注意力机制序列模型编码器与解码器摘要本文将深入解析Transformer架构的核心原理,特别是残差连接和层归一化技术。通过详细阐述这些关键组件的作用、数学模型和具体实现,读者将能够理解Transformer在处
- YOLOv8改进策略【Backbone/主干网络】| 替换骨干网络为2023-CVPR ConvNeXt V2 (附网络详解和完整配置步骤)
Limiiiing
YOLOv8改进专栏YOLO深度学习计算机视觉目标检测
一、本文介绍本文记录的是将ConvNeXtV2应用到YOLOv8中的改进方法研究。本文将ConvNeXtV2应用于YOLOv8,一方面利用全卷积掩码自动编码器在训练时优化特征学习,减少模型对大规模标注数据的依赖;另一方面,通过全局响应归一化层增强特征竞争,缓解特征坍塌问题,提高特征多样性。本文在YOLOv8的基础上配置了原论文中convnextv2_atto,convnextv2_femto,co
- SLAM源码分析(八)
wang_yq0728
1024程序员节slam
[email protected],ComputeH21函数,用DLT方法求解单应矩阵H。vP1:参考帧中归一化后的特征点;vP2:当前帧中归一化后的特征点;基本原理:|x'||h1h2h3||x||y'|=a|h4h5h6||y|简写:x'=aHx,a为一个尺度因子1||h7h8h9||1|使用DLT(directlineartranform)求解该模型x'=aHx--->(x
- 矩阵求逆(JAVA)初等行变换
qiuwanchi
矩阵求逆(JAVA)
package gaodai.matrix;
import gaodai.determinant.DeterminantCalculation;
import java.util.ArrayList;
import java.util.List;
import java.util.Scanner;
/**
* 矩阵求逆(初等行变换)
* @author 邱万迟
*
- JDK timer
antlove
javajdkschedulecodetimer
1.java.util.Timer.schedule(TimerTask task, long delay):多长时间(毫秒)后执行任务
2.java.util.Timer.schedule(TimerTask task, Date time):设定某个时间执行任务
3.java.util.Timer.schedule(TimerTask task, long delay,longperiod
- JVM调优总结 -Xms -Xmx -Xmn -Xss
coder_xpf
jvm应用服务器
堆大小设置JVM 中最大堆大小有三方面限制:相关操作系统的数据模型(32-bt还是64-bit)限制;系统的可用虚拟内存限制;系统的可用物理内存限制。32位系统下,一般限制在1.5G~2G;64为操作系统对内存无限制。我在Windows Server 2003 系统,3.5G物理内存,JDK5.0下测试,最大可设置为1478m。
典型设置:
java -Xmx
- JDBC连接数据库
Array_06
jdbc
package Util;
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.ResultSet;
import java.sql.SQLException;
import java.sql.Statement;
public class JDBCUtil {
//完
- Unsupported major.minor version 51.0(jdk版本错误)
oloz
java
java.lang.UnsupportedClassVersionError: cn/support/cache/CacheType : Unsupported major.minor version 51.0 (unable to load class cn.support.cache.CacheType)
at org.apache.catalina.loader.WebappClassL
- 用多个线程处理1个List集合
362217990
多线程threadlist集合
昨天发了一个提问,启动5个线程将一个List中的内容,然后将5个线程的内容拼接起来,由于时间比较急迫,自己就写了一个Demo,希望对菜鸟有参考意义。。
import java.util.ArrayList;
import java.util.List;
import java.util.concurrent.CountDownLatch;
public c
- JSP简单访问数据库
香水浓
sqlmysqljsp
学习使用javaBean,代码很烂,仅为留个脚印
public class DBHelper {
private String driverName;
private String url;
private String user;
private String password;
private Connection connection;
privat
- Flex4中使用组件添加柱状图、饼状图等图表
AdyZhang
Flex
1.添加一个最简单的柱状图
? 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
<?xml version=
"1.0"&n
- Android 5.0 - ProgressBar 进度条无法展示到按钮的前面
aijuans
android
在低于SDK < 21 的版本中,ProgressBar 可以展示到按钮前面,并且为之在按钮的中间,但是切换到android 5.0后进度条ProgressBar 展示顺序变化了,按钮再前面,ProgressBar 在后面了我的xml配置文件如下:
[html]
view plain
copy
<RelativeLa
- 查询汇总的sql
baalwolf
sql
select list.listname, list.createtime,listcount from dream_list as list , (select listid,count(listid) as listcount from dream_list_user group by listid order by count(
- Linux du命令和df命令区别
BigBird2012
linux
1,两者区别
du,disk usage,是通过搜索文件来计算每个文件的大小然后累加,du能看到的文件只是一些当前存在的,没有被删除的。他计算的大小就是当前他认为存在的所有文件大小的累加和。
- AngularJS中的$apply,用还是不用?
bijian1013
JavaScriptAngularJS$apply
在AngularJS开发中,何时应该调用$scope.$apply(),何时不应该调用。下面我们透彻地解释这个问题。
但是首先,让我们把$apply转换成一种简化的形式。
scope.$apply就像一个懒惰的工人。它需要按照命
- [Zookeeper学习笔记十]Zookeeper源代码分析之ClientCnxn数据序列化和反序列化
bit1129
zookeeper
ClientCnxn是Zookeeper客户端和Zookeeper服务器端进行通信和事件通知处理的主要类,它内部包含两个类,1. SendThread 2. EventThread, SendThread负责客户端和服务器端的数据通信,也包括事件信息的传输,EventThread主要在客户端回调注册的Watchers进行通知处理
ClientCnxn构造方法
&
- 【Java命令一】jmap
bit1129
Java命令
jmap命令的用法:
[hadoop@hadoop sbin]$ jmap
Usage:
jmap [option] <pid>
(to connect to running process)
jmap [option] <executable <core>
(to connect to a
- Apache 服务器安全防护及实战
ronin47
此文转自IBM.
Apache 服务简介
Web 服务器也称为 WWW 服务器或 HTTP 服务器 (HTTP Server),它是 Internet 上最常见也是使用最频繁的服务器之一,Web 服务器能够为用户提供网页浏览、论坛访问等等服务。
由于用户在通过 Web 浏览器访问信息资源的过程中,无须再关心一些技术性的细节,而且界面非常友好,因而 Web 在 Internet 上一推出就得到
- unity 3d实例化位置出现布置?
brotherlamp
unity教程unityunity资料unity视频unity自学
问:unity 3d实例化位置出现布置?
答:实例化的同时就可以指定被实例化的物体的位置,即 position
Instantiate (original : Object, position : Vector3, rotation : Quaternion) : Object
这样你不需要再用Transform.Position了,
如果你省略了第二个参数(
- 《重构,改善现有代码的设计》第八章 Duplicate Observed Data
bylijinnan
java重构
import java.awt.Color;
import java.awt.Container;
import java.awt.FlowLayout;
import java.awt.Label;
import java.awt.TextField;
import java.awt.event.FocusAdapter;
import java.awt.event.FocusE
- struts2更改struts.xml配置目录
chiangfai
struts.xml
struts2默认是读取classes目录下的配置文件,要更改配置文件目录,比如放在WEB-INF下,路径应该写成../struts.xml(非/WEB-INF/struts.xml)
web.xml文件修改如下:
<filter>
<filter-name>struts2</filter-name>
<filter-class&g
- redis做缓存时的一点优化
chenchao051
redishadooppipeline
最近集群上有个job,其中需要短时间内频繁访问缓存,大概7亿多次。我这边的缓存是使用redis来做的,问题就来了。
首先,redis中存的是普通kv,没有考虑使用hash等解结构,那么以为着这个job需要访问7亿多次redis,导致效率低,且出现很多redi
- mysql导出数据不输出标题行
daizj
mysql数据导出去掉第一行去掉标题
当想使用数据库中的某些数据,想将其导入到文件中,而想去掉第一行的标题是可以加上-N参数
如通过下面命令导出数据:
mysql -uuserName -ppasswd -hhost -Pport -Ddatabase -e " select * from tableName" > exportResult.txt
结果为:
studentid
- phpexcel导出excel表简单入门示例
dcj3sjt126com
PHPExcelphpexcel
先下载PHPEXCEL类文件,放在class目录下面,然后新建一个index.php文件,内容如下
<?php
error_reporting(E_ALL);
ini_set('display_errors', TRUE);
ini_set('display_startup_errors', TRUE);
if (PHP_SAPI == 'cli')
die('
- 爱情格言
dcj3sjt126com
格言
1) I love you not because of who you are, but because of who I am when I am with you. 我爱你,不是因为你是一个怎样的人,而是因为我喜欢与你在一起时的感觉。 2) No man or woman is worth your tears, and the one who is, won‘t
- 转 Activity 详解——Activity文档翻译
e200702084
androidUIsqlite配置管理网络应用
activity 展现在用户面前的经常是全屏窗口,你也可以将 activity 作为浮动窗口来使用(使用设置了 windowIsFloating 的主题),或者嵌入到其他的 activity (使用 ActivityGroup )中。 当用户离开 activity 时你可以在 onPause() 进行相应的操作 。更重要的是,用户做的任何改变都应该在该点上提交 ( 经常提交到 ContentPro
- win7安装MongoDB服务
geeksun
mongodb
1. 下载MongoDB的windows版本:mongodb-win32-x86_64-2008plus-ssl-3.0.4.zip,Linux版本也在这里下载,下载地址: http://www.mongodb.org/downloads
2. 解压MongoDB在D:\server\mongodb, 在D:\server\mongodb下创建d
- Javascript魔法方法:__defineGetter__,__defineSetter__
hongtoushizi
js
转载自: http://www.blackglory.me/javascript-magic-method-definegetter-definesetter/
在javascript的类中,可以用defineGetter和defineSetter_控制成员变量的Get和Set行为
例如,在一个图书类中,我们自动为Book加上书名符号:
function Book(name){
- 错误的日期格式可能导致走nginx proxy cache时不能进行304响应
jinnianshilongnian
cache
昨天在整合某些系统的nginx配置时,出现了当使用nginx cache时无法返回304响应的情况,出问题的响应头: Content-Type:text/html; charset=gb2312 Date:Mon, 05 Jan 2015 01:58:05 GMT Expires:Mon , 05 Jan 15 02:03:00 GMT Last-Modified:Mon, 05
- 数据源架构模式之行数据入口
home198979
PHP架构行数据入口
注:看不懂的请勿踩,此文章非针对java,java爱好者可直接略过。
一、概念
行数据入口(Row Data Gateway):充当数据源中单条记录入口的对象,每行一个实例。
二、简单实现行数据入口
为了方便理解,还是先简单实现:
<?php
/**
* 行数据入口类
*/
class OrderGateway {
/*定义元数
- Linux各个目录的作用及内容
pda158
linux脚本
1)根目录“/” 根目录位于目录结构的最顶层,用斜线(/)表示,类似于
Windows
操作系统的“C:\“,包含Fedora操作系统中所有的目录和文件。 2)/bin /bin 目录又称为二进制目录,包含了那些供系统管理员和普通用户使用的重要
linux命令的二进制映像。该目录存放的内容包括各种可执行文件,还有某些可执行文件的符号连接。常用的命令有:cp、d
- ubuntu12.04上编译openjdk7
ol_beta
HotSpotjvmjdkOpenJDK
获取源码
从openjdk代码仓库获取(比较慢)
安装mercurial Mercurial是一个版本管理工具。 sudo apt-get install mercurial
将以下内容添加到$HOME/.hgrc文件中,如果没有则自己创建一个: [extensions] forest=/home/lichengwu/hgforest-crew/forest.py fe
- 将数据库字段转换成设计文档所需的字段
vipbooks
设计模式工作正则表达式
哈哈,出差这么久终于回来了,回家的感觉真好!
PowerDesigner的物理数据库一出来,设计文档中要改的字段就多得不计其数,如果要把PowerDesigner中的字段一个个Copy到设计文档中,那将会是一件非常痛苦的事情。