volatile关键字无法保证线程安全的讨论

版权声明:本文为CSDN博主「Simon铭少」的原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/sinat_31841263/article/details/88310142

内存模型:

我们都知道CPU与内存之间有一个高速缓存,当程序在运行过程中,会将运算需要的数据从主存复制一份到CPU的高速缓存当中,那么CPU进行计算时就可以直接从它的高速缓存读取数据和向其中写入数据,当运算结束之后,再将高速缓存中的数据刷新到主存当中。

 缓存一致性问题:

 看如下代码

 i = i + 1

当线程执行这个语句时,会先从内存当中读取 i 的值,并复制一份到高速缓存当中,然后CPU执行指令对i进行加1操作,然后将数据写入高速缓存,最后将高速缓存中i最新的值刷新到主存当中。

这个代码在单线程中运行是没有问题的,但是在多线程中运行就会有问题了。在多核CPU中,每条线程可能运行于不同的CPU中,因此每个线程运行时有自己的高速缓存(对单核CPU来说,其实也会出现这种问题,只不过是以线程调度的形式来分别执行的)。本文我们以多核CPU为例。

比如同时有2个线程执行这段代码,假如初始时i的值为0,那么我们希望两个线程执行完之后i的值变为2。但是事实可能存在下面一种情况:初始时,两个线程分别读取i的值存入各自所在的CPU的高速缓存当中,然后线程1进行加1操作,然后把i的最新值1写入到内存。此时线程2的高速缓存当中i的值还是0,进行加1操作之后,i的值为1,然后线程2把i的值写入内存。

最终结果i的值是1,而不是2。

所以就出现了缓存一致性协议。最出名的就是Intel 的MESI协议,MESI协议保证了每个缓存中使用的共享变量的副本是一致的。它核心的思想是:当CPU写数据时,如果发现操作的变量是共享变量,即在其他CPU中也存在该变量的副本,会发出信号通知其他CPU将该变量的缓存行置为无效状态,因此当其他CPU需要读取这个变量时,发现自己缓存中缓存该变量的缓存行是无效的,那么它就会从内存重新读取

Java内存模型:

Java内存模型规定所有的变量都是存在主存当中(类似于前面说的物理内存),每个线程都有自己的工作内存(类似于前面的高速缓存)。线程对变量的所有操作都必须在工作内存中进行,而不能直接对主存进行操作。并且每个线程不能访问其他线程的工作内存。

举个简单的例子:在java中,执行下面这个语句:

    i = 10;

执行线程必须先在自己的工作线程中对变量i所在的缓存行进行赋值操作,然后再写入主存当中。而不是直接将数值10写入主存当中。

并发编程中的三个概念:

原子性:

即一个操作或者多个操作,要么全部执行并且执行的过程不会被任何因素打断,要么就都不执行。在Java中,对基本数 据类型的变量的读取和赋值操作是原子性操作,即这些操作是不可被中断的,要么执行,要么不执行。

可见性:

可见性是指当多个线程访问同一个变量时,一个线程修改了这个变量的值,其他线程能够立即看得到修改的值。对于可见性,Java提供了volatile关键字来保证可见性。当一个共享变量被volatile修饰时,它会保证修改的值会立即被更新到主存,当有其他线程需要读取时,它会去主存中读取新值。

另外,通过synchronizedLock也能够保证可见性,synchronized和Lock能保证同一时刻只有一个线程获取锁然后执行同步代码,并且在释放锁之前会将对变量的修改刷新到主存当中。因此可以保证可见性。

有序性:

即程序执行的顺序按照代码的先后顺序执行。

指令重排序,一般来说,处理器为了提高程序运行效率,可能会对输入代码进行优化,它不保证程序中各个语句的执行先后顺序同代码中的顺序一致,但是它会保证程序最终执行结果和代码顺序执行的结果是一致的。

//线程1:

context = loadContext();   //语句1

inited = true;             //语句2

//线程2:

while(!inited ){

  sleep() 

}

doSomethingwithconfig(context);

语句1与语句2没有数据依赖性,可能会被重排序,假如发生了重排序,在线程1执行过程中先执行语句2,而此时线程2会以为初始化工作已经完成,那么就会跳出while循环,去执行doSomethingwithconfig(context)方法,而此时context并没有被初始化,就会导致程序出错。

指令重排序不会影响单个线程的执行,但是会影响到线程并发执行的正确性。

在Java里面,可以通过volatile关键字来保证一定的“有序性”。另外可以通过synchronized和Lock来保证有序性,很显然,synchronized和Lock保证每个时刻是有一个线程执行同步代码,相当于是让线程顺序执行同步代码,自然就保证了有序性。

volatile关键字:

一旦一个共享变量(类的成员变量、类的静态成员变量)被volatile修饰之后,那么就具备了两层语义:

1)保证了不同线程对这个变量进行操作时的可见性,即一个线程修改
  了某个变量的值,这新值对其他线程来说是立即可见的。

2)禁止进行指令重排序,即保证了操作的有序性。

但是volatile无法保证操作的原子性!!!!这将导致volatile关键无法保证线程安全,看下面的例子:

int i = 0;

i++;

我们知道自增操作不是一个原子操作,是不具备原子性的,它包括读取变量的原始值、进行加1操作、写入工作内存三个步骤。那么久存在以下的情况:

当线程1线程1从内存中读取i=0进了缓存,然后把数据读入寄存器,之后时间片用完了,然后线程2也从内存中读取i进缓存,因为线程1还未执行写操作,内存屏障是插入在写操作之后的指令,意味着还未触发这个指令,所以不会是导致线程2的工作内存中缓存变量i失效的。然后线程2执行完毕,内存中i=1,然后线程1又开始执行,然后将数据写回缓存再写回内存,结果还是1。

volatile的原理和实现机制

前面讲述了源于volatile关键字的一些使用,下面我们来探讨一下volatile到底如何保证可见性和禁止指令重排序的。

下面这段话摘自《深入理解Java虚拟机》:

“观察加入volatile关键字和没有加入volatile关键字时所生成的汇编代码发现,加入volatile关键字时,会多出一个lock前缀指令”

lock前缀指令实际上相当于一个内存屏障(也成内存栅栏),内存屏障会提供3个功能:

  1.它确保指令重排序时不会把其后面的指令排到内存屏障之前的位置,也不会把前面的指令排到内存屏障的后面;
      即在执行到内存屏障这句指令时,在它前面的操作已经全部完成;
  2.它会强制将对缓存的修改操作立即写入主存;
  3.如果是写操作,它会导致其他CPU中对应的缓存行无效。

线程安全性

线程安全性包括两个方面,①可见性。②原子性。

从上面自增的例子中可以看出:仅仅使用volatile并不能保证线程安全性。而synchronized则可实现线程的安全性。
————————————————

你可能感兴趣的:(volatile关键字无法保证线程安全的讨论)