说明:这是一个机器学习实战项目(附带数据+代码+文档+视频讲解),如需数据+代码+文档+视频讲解可以直接到文章最后获取。
2019年Heidari等人提出哈里斯鹰优化算法(Harris Hawk Optimization, HHO),该算法有较强的全局搜索能力,并且需要调节的参数较少的优点。
本项目通过HHO哈里斯鹰优化算法寻找最优的参数值来优化LSTM回归模型。
本次建模数据来源于网络(本项目撰写人整理而成),数据项统计如下:
数据详情如下(部分展示):
使用Pandas工具的head()方法查看前五行数据:
关键代码:
使用Pandas工具的info()方法查看数据信息:
从上图可以看到,总共有11个变量,数据中无缺失值,共2000条数据。
关键代码:
通过Pandas工具的describe()方法来查看数据的平均值、标准差、最小值、分位数、最大值。
关键代码如下:
用Matplotlib工具的hist()方法绘制直方图:
从上图可以看到,y变量主要集中在-200~200之间。
从上图中可以看到,数值越大相关性越强,正值是正相关、负值是负相关。
关键代码如下:
通过train_test_split()方法按照80%训练集、20%测试集进行划分,关键代码如下:
训练集和测试集数据样本增维后的样本形状如下:
主要使用HHO哈里斯鹰优化算法优化LSTM回归算法,用于目标回归。
关键代码:
每次迭代的过程数据:
最优参数:
评估指标主要包括可解释方差值、平均绝对误差、均方误差、R方值等等。
从上表可以看出,R方0.9127,为模型效果良好。
关键代码如下:
从上图可以看出真实值和预测值波动基本一致,模型拟合效果良好。
综上所述,本文采用了HHO哈里斯鹰优化算法寻找LSTM回归算法的最优参数值来构建回归模型,最终证明了我们提出的模型效果良好。此模型可用于日常产品的预测。
本次机器学习项目实战所需的资料,项目资源如下:
项目说明:
链接:https://pan.baidu.com/s/1c6mQ_1YaDINFEttQymp2UQ
提取码:thgk
更多项目实战,详见机器学习项目实战合集列表:
机器学习项目实战合集列表_机器学习实战项目_胖哥真不错的博客-CSDN博客