- H100架构解析与性能优化策略
智能计算研究中心
其他
内容概要NVIDIAH100GPU作为面向高性能计算与人工智能领域的旗舰级产品,其架构设计与优化策略在计算效率、显存带宽及并行任务处理等方面实现了显著突破。本文将从核心架构创新与典型场景调优两个维度展开:首先解析第三代TensorCore的稀疏计算加速机制、FP8混合精度支持特性及其对矩阵运算的优化效果;其次,针对显存子系统中HBM3堆栈布局、L2缓存分区策略以及数据预取算法的协同优化进行拆解;最
- 10 大中文医学数据集汇总:涵盖神农中医药、中医药古籍、医学推理、医学问答……
医疗人工智能的快速发展离不开高质量数据集的支持。从疾病诊断到药物研发,再到个性化医疗,数据集在推动机器视觉、大模型等应用于医学领域中发挥着不可或缺的作用。医学数据集的形式多样,涵盖了不同维度和领域的数据资源。例如,在疾病诊断领域,像RJUA-QA这样的问答数据集推动了复杂医学知识的自动化应用;而在中医药领域,神农中医药数据集整合了传统中医药文献、临床案例和药方数据。针对于此,本文整理了医学领域的1
- 中文对联/十二生肖/城市景点/旅游计划……年味超浓的数据集汇总
正月初三,年味正浓。新春的喜庆氛围不仅弥漫在大街小巷,也在人工智能领域引发了诸多创新应用。从AI生成春联,到春运交通标志的智能识别,再到生肖文化的深度挖掘,AI工具正赋能传统民俗,让年味更浓!在这阖家团圆,喜庆祥和的日子里,HyperAI超神经为大家整理了8个春节相关的数据集,涵盖对联、十二生肖、民族文化等热门主题,助力开发者在AI赋能春节的道路上大展拳脚!快来领取你的「新春大礼包」吧~点击查看更
- 空间智能数据集(不定期更新)
数据集
在人工智能领域的顶级会议NeurIPS上,斯坦福大学的杰出教授李飞飞发表了题为《FromSeeingtoDoing:AscendingtheLadderofVisualIntelligence》的主题演讲。在这次演讲中,李飞飞教授探讨了机器视觉的未来以及人工智能如何塑造我们的现实世界。她强调了空间智能的重要性,并将其视为全面智能的基石。李飞飞教授指出,解决空间智能问题是迈向全面智能的基础性、关键性
- 【TVM教程】为 Mobile GPU 自动调优卷积网络
ApacheTVM是一个深度的深度学习编译框架,适用于CPU、GPU和各种机器学习加速芯片。更多TVM中文文档可访问→https://tvm.hyper.ai/作者:LianminZheng,EddieYan针对特定设备的自动调优对于获得最佳性能至关重要。本文介绍如何调优整个卷积网络。TVM中MobileGPU的算子实现是以template形式编写的。该template有许多可调参数(tile因子
- 深度学习训练中GPU内存管理
@Mr_LiuYang
遇到过的问题内存管理内存溢出outofmemoryGPU内存
文章目录概述常见问题1、设备选择和数据迁移2、显存监控函数3、显存释放函数4、自适应batchsize调节5、梯度累积概述在深度学习模型训练中,主流GPU显存通常为8GB~80GB,内存不足会导致训练中断或BatchSize受限,GPU内存管理是优化性能和避免OutOfMemoryError的关键挑战。本博客简介PyTorch中GPU内存管理的核心函数、用法和实战技巧,帮助开发者高效利用显存资源。
- 深度学习pytorch之简单方法自定义9类卷积即插即用
@Mr_LiuYang
计算机视觉基础卷积类型非对称卷积深度卷积空洞卷积组卷积深度可分离卷积动态卷积
本文详细解析了PyTorch中torch.nn.Conv2d的核心参数,通过代码示例演示了如何利用这一基础函数实现多种卷积操作。涵盖的卷积类型包括:标准卷积、逐点卷积(1x1卷积)、非对称卷积(长宽不等的卷积核)、空洞卷积(扩大感受野)、深度卷积(逐通道滤波)、组卷积(分组独立处理)、深度可分离卷积(深度+逐点组合)、转置卷积(上采样)和动态卷积(动态生成卷积核),帮助读者理解如何通过调整参数灵活
- 一学就会的深度学习基础指令及操作步骤(5)使用预训练模型
小圆圆666
深度学习人工智能python卷积神经网络
文章目录使用预训练模型加载预训练模型图像加载与预处理预测使用预训练模型查看模型库和常用模型加载预训练模型fromtorchvision.modelsimportvgg16#VGG16模型架构的定义fromtorchvision.modelsimportVGG16_Weights#VGG16的预训练权重配置#loadtheVGG16network*pre-trained*ontheImageNetd
- 清华DeepSeek以手札为剑,破AI迷津雾霭,开启荣耀进阶征途
2501_91080610
pdf
清华DeepSeek:以手札为剑,破AI迷津雾霭,开启荣耀进阶征途在当下这个科技浪潮奔涌不息的时代,人工智能领域成为了无数科研人员竞逐的“战场”。在这片充满无限可能却又迷雾重重的天地中,清华DeepSeek宛如一位英勇无畏的剑客,紧握“手札”这把利剑,奋力劈开迷津雾霭,大步踏上荣耀进阶的征途。溯源:手札中的智慧传承与沉淀清华DeepSeek背后,是一群怀揣着对AI炽热梦想的清华学子与科研精英。手札
- 深度学习PyTorch之数据加载DataLoader
@Mr_LiuYang
计算机视觉基础深度学习pytorch人工智能
深度学习pytorch之简单方法自定义9类卷积即插即用文章目录数据加载基础架构1、Dataset类详解2、DataLoader核心参数解析3、数据增强数据加载基础架构核心类关系图torch.utils.data├──Dataset(抽象基类)├──DataLoader(数据加载器)├──Sampler(采样策略)├──BatchSampler(批量采样)└──IterableDataset(流式数
- 模型上下文协议(MCP):构建 AI 与数据交互的新范式
xxgshxs
人工智能chatgptprompt文心一言llamacopilot
引言在人工智能领域,大型语言模型(LLMs)的应用正从通用问答向复杂任务执行演进,但数据孤岛、工具集成碎片化及隐私安全等问题制约了其潜力。模型上下文协议(ModelContextProtocol,MCP)作为Anthropic提出的开放标准,旨在通过标准化接口连接AI应用与异构数据源及工具,重塑AI开发范式。本文从技术架构、核心功能、应用场景等维度解析MCP的设计逻辑与实践价值。一、核心概念与设计
- 量子计算如何颠覆能源优化领域:从理论到实践
Echo_Wish
人工智能前沿技术量子计算能源
量子计算如何颠覆能源优化领域:从理论到实践大家好,我是Echo_Wish,一个热爱探索前沿技术的人工智能与Python领域的技术分享者。今天,我们将深入探讨一个激动人心的话题——量子计算在能源优化中的应用。这不仅是科技领域的全新趋势,也可能为全人类的能源利用效率带来革命性突破。从理论模型到实际应用,量子计算已经在一些能源相关领域崭露头角,例如电网优化、可再生能源分配和物流节能规划。以下,让我们一步
- AI人工智能 Agent:电力系统中智能体的应用
AI天才研究院
AI大模型企业级应用开发实战DeepSeekR1&大数据AI人工智能大模型计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
AI人工智能Agent:电力系统中智能体的应用作者:禅与计算机程序设计艺术1.背景介绍1.1电力系统的挑战与机遇电力系统是现代社会运行的基石,其安全、可靠、高效运行对经济发展和人民生活至关重要。近年来,随着可再生能源的快速发展、电力需求的不断增长以及电力市场化的推进,电力系统面临着前所未有的挑战,同时也迎来了新的发展机遇。挑战:可再生能源的波动性和间歇性:太阳能和风能等可再生能源的输出功率受天气条
- Python从0到100(七十六):计算机视觉-直方图和自适应直方图均衡化
是Dream呀
python计算机视觉开发语言
前言:零基础学Python:Python从0到100最新最全教程。想做这件事情很久了,这次我更新了自己所写过的所有博客,汇集成了Python从0到100,共一百节课,帮助大家一个月时间里从零基础到学习Python基础语法、Python爬虫、Web开发、计算机视觉、机器学习、神经网络以及人工智能相关知识,成为学习学习和学业的先行者!欢迎大家订阅专栏:零基础学Python:Python从0到100最新
- autoMate - AI实现电脑任务自动化的本地工具
小众AI
AI开源人工智能自动化运维
GitHub:https://github.com/yuruotong1/autoMate更多AI开源软件:发现分享好用的AI工具、AI开源软件、AI模型、AI变现-小众AIautoMate是一款由开源开发的本地自动化工具,以AI+RPA(人工智能+机器人流程自动化)为核心特色。它将大型语言模型的智能理解与RPA的流程执行能力结合,用户只需用自然语言描述任务,如“整理桌面文件”或“生成周报”,即可
- 深度学习:马氏距离
壹十壹
深度学习深度学习人工智能
马氏距离(MahalanobisDistance)是一种用于计算不同维度数据点之间距离的度量方法。它考虑了数据的协方差结构,因此在处理具有相关性的多维数据时更加有效。与欧氏距离不同,马氏距离不仅考虑了各个变量的量纲,还考虑了它们之间的相关性。公式马氏距离计算两个向量(x)和(y)之间的距离,定义为:DM(x,y)=(x−y)TS−1(x−y)\D_M(x,y)=\sqrt{(x-y)^TS^{-1
- 深度学习:CPU和GPU算力
壹十壹
深度学习深度学习gpu算力人工智能
一、算力“算力”(ComputingPower)通常是指计算机或计算系统执行计算任务的能力。它是衡量系统处理数据、运行算法以及执行计算任务效率的重要指标。根据上下文,算力可以在以下几种场景中具体化:1.单机算力CPU算力:中央处理器的计算能力,通常用核心数量(cores)、时钟频率(GHz)、以及每秒浮点运算次数(FLOPS)等指标衡量。GPU算力:图形处理单元用于并行处理的能力,尤其是在深度学习
- 深度学习:偏差和方差
壹十壹
深度学习深度学习人工智能python机器学习
偏差(Bias)偏差衡量了模型预测值的平均值与真实值之间的差距。换句话说,偏差描述了模型预测的准确度。一个高偏差的模型容易出现欠拟合,即模型无法捕捉数据中的真实关系,因为它对数据的特征做出了错误的假设。特征:高偏差的模型通常是过于简单的模型,无法对数据中的复杂关系进行准确建模。高偏差模型的训练误差和测试误差可能都较高。解决方法:增加模型复杂度:例如增加多项式的阶数、增加神经网络的层数等。使用更多的
- 从零开始构建大模型(LLM)应用
和老莫一起学AI
人工智能ai大模型语言模型llm自然语言处理学习
大模型(LLM)已经成为当前人工智能的重要部分。但是,在这个领域还没有固定的操作标准,开发者们往往没有明确的指导,需要不断尝试和摸索。在过去两年中,我帮助了许多公司利用LLM来开发了很多创新的应用产品。基于这些经验,我形成了一套实用的方法,并准备在这篇文章中与大家分享。这套方法将提供一些步骤,帮助需要的小伙伴在LLM应用开发的复杂环境中找到方向。从最初的构思到PoC、评估再到产品化,了解如何将创意
- 机器学习之线性代数
珠峰日记
AI理论与实践机器学习线性代数人工智能
文章目录一、引言:线性代数为何是AI的基石二、向量:AI世界的基本构建块(一)向量的定义(二)向量基础操作(三)重要概念三、矩阵:AI数据的强大容器(一)矩阵的定义(二)矩阵运算(三)矩阵特性(四)矩阵分解(五)Python示例(使用NumPy库)四、线性代数在AI中的应用(一)数据表示(二)降维:PCA(三)线性回归(四)计算机视觉(五)自然语言处理一、引言:线性代数为何是AI的基石在人工智能领
- 基于transformer实现机器翻译(日译中)
小白_laughter
课程学习transformer机器翻译深度学习
文章目录一、引言二、使用编码器—解码器和注意力机制来实现机器翻译模型2.0含注意力机制的编码器—解码器2.1读取和预处理数据2.2含注意力机制的编码器—解码器2.3训练模型2.4预测不定长的序列2.5评价翻译结果三、使用Transformer架构和PyTorch深度学习库来实现的日中机器翻译模型3.1、导入必要的库3.2、数据集准备3.3、准备分词器3.4、构建TorchText词汇表对象,并将句
- 【NLP 39、激活函数 ⑤ Swish激活函数】
L_cl
NLP自然语言处理人工智能
我的孤独原本是座荒岛,直到你称成潮汐,原来爱是让个体失序的永恒运动——25.2.25Swish激活函数是一种近年来在深度学习中广泛应用的激活函数,由GoogleBrain团队在2017年提出。其核心设计结合了Sigmoid门控机制和线性输入的乘积,通过引入平滑性和非单调性来提升模型性能。一、数学定义与变体1.基础形式Swish的标准表达式为:Swish(x)=x⋅σ(βx)其中:σ(x)是Sigm
- AI大模型零基础金融人如何一周自学大模型,从零基础到入门,看这篇就够了!
冻感糕人~
人工智能金融AI大模型LLM大模型技术大模型学习路线大模型基础
前几天参加了字节跳动在上海举办的火山引擎Force原动力大会,OpenAI也连续开了12天发布会,最近堪称科技界的春晚了。如果说2022年ChatGPT横空出世把人工智能的发展带上了一个新的台阶,那么2024年末,大模型对工作、生活的全面“侵入”让我们越来越接近库兹韦尔所描述的那个奇点时刻。作为金融民工,我们想通过这篇文章讲讲从用户的角度如何一周快速掌握大模型,以及为什么我建议每一个金融从业人员(
- SeisMoLLM: Advancing Seismic Monitoring via Cross-modal Transfer with Pre-trained Large Language
UnknownBody
LLMDailyMultimodal语言模型人工智能自然语言处理
摘要深度学习的最新进展给地震监测带来了革命性变化,但开发一个能在多个复杂任务中表现出色的基础模型仍然充满挑战,尤其是在处理信号退化或数据稀缺的情况时。本文提出SeisMoLLM,这是首个利用跨模态迁移进行地震监测的基础模型,它无需在地震数据集上进行直接预训练,就能充分发挥大规模预训练大语言模型的强大能力。通过精心设计的波形标记化处理和对预训练GPT-2模型的微调,SeisMoLLM在DiTing和
- 如何通过深度学习优化操作系统中的故障诊断与恢复机制
金枝玉叶9
程序员知识储备1程序员知识储备2程序员知识储备3深度学习人工智能
如何通过深度学习优化操作系统中的故障诊断与恢复机制(副标题:智能监控、自适应诊断与自动恢复——操作系统故障自愈的新方向)摘要随着现代操作系统在多核、高并发和分布式环境中的广泛应用,系统故障及其恢复问题日益成为影响系统稳定性和业务连续性的关键挑战。传统的故障诊断方法依赖于预设规则和人工干预,难以应对复杂多变的故障场景。本文提出了一种基于深度学习的故障诊断与恢复机制,通过对大量历史日志、监控数据和故障
- LWC-KD:图结构感知的推荐系统增量学习对比知识蒸馏
宇直不会放弃
GKD-Middlelayer人工智能pythonchatgptgpu算力深度学习机器学习神经网络
LWC-KD:图结构感知的推荐系统增量学习对比知识蒸馏《GraphStructureAwareContrastiveKnowledgeDistillationforIncrementalLearninginRecommenderSystems》2021作者是YueningWang、YingxueZhang和MarkCoates论文地址:https://dl.acm.org/doi/10.1145/
- 成功案例丨开发时间从1小时缩短到3分钟:如何利用历史数据训练AI模型,预测设计性能?
Altair澳汰尔
PhysicsAI仿真AI机器学习HyperWorks数据分析
案例简介PhysicsAI™助力HEROMOTOCORP实现设计效率提升99%印度领先的跨国摩托车和踏板车制造商HeroMotoCorpLtd.(以下简称Hero)致力于通过将人工智能(AI)和机器学习技术融入有限元分析(FEA)流程,以加速产品开发周期。在其首个AI驱动项目——摩托车把手设计优化中,Hero采用了PhysicsAI™几何深度学习解决方案,利用历史数据训练AI模型并预测设计性能。A
- 关于两次项目的学习感悟
罗婕斯特
大数据
经过这两次项目,我学到了以下几点:1.模块化与结构化思维:代码展示了如何将深度学习任务分解为多个模块(如数据加载、模型定义、训练循环、评估等)。这种模块化的思维方式不仅适用于编程,也可以应用于解决复杂问题时的结构化思考。2.细节决定成败:代码中涉及了许多细节,如数据预处理、学习率调整、损失函数的选择等。这些细节对模型的最终性能有着重要影响。这提醒我们,在解决实际问题时,细节往往决定成败,需要耐心和
- 数据分析与AI丨AI Fabric:数据和人工智能架构的未来
Altair澳汰尔
数据分析aiRapidMiner知识图谱人工智能
AIFabric架构是模块化、可扩展且面向未来的,是现代商业环境中企业实现卓越的关键。在当今商业环境中,数据分析和人工智能领域发展可谓日新月异。几乎每天都有新兴技术诞生,新的应用场景不断涌现,前沿探索持续拓展。可遗憾的是,众多企业在利用数据和人工智能方面,脚步总是滞后。这是每个行业进行创新和获得竞争优势的冲刺阶段,但正如大多数企业时常感受到的那样,大规模实施下一代数据和AI工具说起来容易做起来难。
- Manus演示案例: 英伟达财务估值建模 解锁投资洞察的深度剖析
ylfhpy
Manus深度学习人工智能机器学习机器翻译Manus
在当今瞬息万变的金融投资领域,精准剖析企业价值是投资者决胜市场的关键。英伟达(NVIDIA),作为科技行业的耀眼明星,其在人工智能和半导体领域的卓越表现备受瞩目。Manus凭借专业的财务估值建模能力,深入挖掘英伟达的潜在价值,为投资者提供了一份极具价值的分析报告。Manus在接到为英伟达进行详细财务估值建模的任务后,迅速且有条不紊地开展工作。数据收集是建模的基石,其重要性不言而喻。在收集英伟达公司
- 对于规范和实现,你会混淆吗?
yangshangchuan
HotSpot
昨晚和朋友聊天,喝了点咖啡,由于我经常喝茶,很长时间没喝咖啡了,所以失眠了,于是起床读JVM规范,读完后在朋友圈发了一条信息:
JVM Run-Time Data Areas:The Java Virtual Machine defines various run-time data areas that are used during execution of a program. So
- android 网络
百合不是茶
网络
android的网络编程和java的一样没什么好分析的都是一些死的照着写就可以了,所以记录下来 方便查找 , 服务器使用的是TomCat
服务器代码; servlet的使用需要在xml中注册
package servlet;
import java.io.IOException;
import java.util.Arr
- [读书笔记]读法拉第传
comsci
读书笔记
1831年的时候,一年可以赚到1000英镑的人..应该很少的...
要成为一个科学家,没有足够的资金支持,很多实验都无法完成
但是当钱赚够了以后....就不能够一直在商业和市场中徘徊......
- 随机数的产生
沐刃青蛟
随机数
c++中阐述随机数的方法有两种:
一是产生假随机数(不管操作多少次,所产生的数都不会改变)
这类随机数是使用了默认的种子值产生的,所以每次都是一样的。
//默认种子
for (int i = 0; i < 5; i++)
{
cout<<
- PHP检测函数所在的文件名
IT独行者
PHP函数
很简单的功能,用到PHP中的反射机制,具体使用的是ReflectionFunction类,可以获取指定函数所在PHP脚本中的具体位置。 创建引用脚本。
代码:
[php]
view plain
copy
// Filename: functions.php
<?php&nbs
- 银行各系统功能简介
文强chu
金融
银行各系统功能简介 业务系统 核心业务系统 业务功能包括:总账管理、卡系统管理、客户信息管理、额度控管、存款、贷款、资金业务、国际结算、支付结算、对外接口等 清分清算系统 以清算日期为准,将账务类交易、非账务类交易的手续费、代理费、网络服务费等相关费用,按费用类型计算应收、应付金额,经过清算人员确认后上送核心系统完成结算的过程 国际结算系
- Python学习1(pip django 安装以及第一个project)
小桔子
pythondjangopip
最近开始学习python,要安装个pip的工具。听说这个工具很强大,安装了它,在安装第三方工具的话so easy!然后也下载了,按照别人给的教程开始安装,奶奶的怎么也安装不上!
第一步:官方下载pip-1.5.6.tar.gz, https://pypi.python.org/pypi/pip easy!
第二部:解压这个压缩文件,会看到一个setup.p
- php 数组
aichenglong
PHP排序数组循环多维数组
1 php中的创建数组
$product = array('tires','oil','spark');//array()实际上是语言结构而不 是函数
2 如果需要创建一个升序的排列的数字保存在一个数组中,可以使用range()函数来自动创建数组
$numbers=range(1,10)//1 2 3 4 5 6 7 8 9 10
$numbers=range(1,10,
- 安装python2.7
AILIKES
python
安装python2.7
1、下载可从 http://www.python.org/进行下载#wget https://www.python.org/ftp/python/2.7.10/Python-2.7.10.tgz
2、复制解压
#mkdir -p /opt/usr/python
#cp /opt/soft/Python-2
- java异常的处理探讨
百合不是茶
JAVA异常
//java异常
/*
1,了解java 中的异常处理机制,有三种操作
a,声明异常
b,抛出异常
c,捕获异常
2,学会使用try-catch-finally来处理异常
3,学会如何声明异常和抛出异常
4,学会创建自己的异常
*/
//2,学会使用try-catch-finally来处理异常
- getElementsByName实例
bijian1013
element
实例1:
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/x
- 探索JUnit4扩展:Runner
bijian1013
java单元测试JUnit
参加敏捷培训时,教练提到Junit4的Runner和Rule,于是特上网查一下,发现很多都讲的太理论,或者是举的例子实在是太牵强。多搜索了几下,搜索到两篇我觉得写的非常好的文章。
文章地址:http://www.blogjava.net/jiangshachina/archive/20
- [MongoDB学习笔记二]MongoDB副本集
bit1129
mongodb
1. 副本集的特性
1)一台主服务器(Primary),多台从服务器(Secondary)
2)Primary挂了之后,从服务器自动完成从它们之中选举一台服务器作为主服务器,继续工作,这就解决了单点故障,因此,在这种情况下,MongoDB集群能够继续工作
3)挂了的主服务器恢复到集群中只能以Secondary服务器的角色加入进来
2
- 【Spark八十一】Hive in the spark assembly
bit1129
assembly
Spark SQL supports most commonly used features of HiveQL. However, different HiveQL statements are executed in different manners:
1. DDL statements (e.g. CREATE TABLE, DROP TABLE, etc.)
- Nginx问题定位之监控进程异常退出
ronin47
nginx在运行过程中是否稳定,是否有异常退出过?这里总结几项平时会用到的小技巧。
1. 在error.log中查看是否有signal项,如果有,看看signal是多少。
比如,这是一个异常退出的情况:
$grep signal error.log
2012/12/24 16:39:56 [alert] 13661#0: worker process 13666 exited on s
- No grammar constraints (DTD or XML schema).....两种解决方法
byalias
xml
方法一:常用方法 关闭XML验证
工具栏:windows => preferences => xml => xml files => validation => Indicate when no grammar is specified:选择Ignore即可。
方法二:(个人推荐)
添加 内容如下
<?xml version=
- Netty源码学习-DefaultChannelPipeline
bylijinnan
netty
package com.ljn.channel;
/**
* ChannelPipeline采用的是Intercepting Filter 模式
* 但由于用到两个双向链表和内部类,这个模式看起来不是那么明显,需要仔细查看调用过程才发现
*
* 下面对ChannelPipeline作一个模拟,只模拟关键代码:
*/
public class Pipeline {
- MYSQL数据库常用备份及恢复语句
chicony
mysql
备份MySQL数据库的命令,可以加选不同的参数选项来实现不同格式的要求。
mysqldump -h主机 -u用户名 -p密码 数据库名 > 文件
备份MySQL数据库为带删除表的格式,能够让该备份覆盖已有数据库而不需要手动删除原有数据库。
mysqldump -–add-drop-table -uusername -ppassword databasename > ba
- 小白谈谈云计算--基于Google三大论文
CrazyMizzz
Google云计算GFS
之前在没有接触到云计算之前,只是对云计算有一点点模糊的概念,觉得这是一个很高大上的东西,似乎离我们大一的还很远。后来有机会上了一节云计算的普及课程吧,并且在之前的一周里拜读了谷歌三大论文。不敢说理解,至少囫囵吞枣啃下了一大堆看不明白的理论。现在就简单聊聊我对于云计算的了解。
我先说说GFS
&n
- hadoop 平衡空间设置方法
daizj
hadoopbalancer
在hdfs-site.xml中增加设置balance的带宽,默认只有1M:
<property>
<name>dfs.balance.bandwidthPerSec</name>
<value>10485760</value>
<description&g
- Eclipse程序员要掌握的常用快捷键
dcj3sjt126com
编程
判断一个人的编程水平,就看他用键盘多,还是鼠标多。用键盘一是为了输入代码(当然了,也包括注释),再有就是熟练使用快捷键。 曾有人在豆瓣评
《卓有成效的程序员》:“人有多大懒,才有多大闲”。之前我整理了一个
程序员图书列表,目的也就是通过读书,让程序员变懒。 程序员作为特殊的群体,有的人可以这么懒,懒到事情都交给机器去做,而有的人又可以那么勤奋,每天都孜孜不倦得
- Android学习之路
dcj3sjt126com
Android学习
转自:http://blog.csdn.net/ryantang03/article/details/6901459
以前有J2EE基础,接触JAVA也有两三年的时间了,上手Android并不困难,思维上稍微转变一下就可以很快适应。以前做的都是WEB项目,现今体验移动终端项目,让我越来越觉得移动互联网应用是未来的主宰。
下面说说我学习Android的感受,我学Android首先是看MARS的视
- java 遍历Map的四种方法
eksliang
javaHashMapjava 遍历Map的四种方法
转载请出自出处:
http://eksliang.iteye.com/blog/2059996
package com.ickes;
import java.util.HashMap;
import java.util.Iterator;
import java.util.Map;
import java.util.Map.Entry;
/**
* 遍历Map的四种方式
- 【精典】数据库相关相关
gengzg
数据库
package C3P0;
import java.sql.Connection;
import java.sql.SQLException;
import java.beans.PropertyVetoException;
import com.mchange.v2.c3p0.ComboPooledDataSource;
public class DBPool{
- 自动补全
huyana_town
自动补全
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"><html xmlns="http://www.w3.org/1999/xhtml&quo
- jquery在线预览PDF文件,打开PDF文件
天梯梦
jquery
最主要的是使用到了一个jquery的插件jquery.media.js,使用这个插件就很容易实现了。
核心代码
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.
- ViewPager刷新单个页面的方法
lovelease
androidviewpagertag刷新
使用ViewPager做滑动切换图片的效果时,如果图片是从网络下载的,那么再子线程中下载完图片时我们会使用handler通知UI线程,然后UI线程就可以调用mViewPager.getAdapter().notifyDataSetChanged()进行页面的刷新,但是viewpager不同于listview,你会发现单纯的调用notifyDataSetChanged()并不能刷新页面
- 利用按位取反(~)从复合枚举值里清除枚举值
草料场
enum
以 C# 中的 System.Drawing.FontStyle 为例。
如果需要同时有多种效果,
如:“粗体”和“下划线”的效果,可以用按位或(|)
FontStyle style = FontStyle.Bold | FontStyle.Underline;
如果需要去除 style 里的某一种效果,
- Linux系统新手学习的11点建议
刘星宇
编程工作linux脚本
随着Linux应用的扩展许多朋友开始接触Linux,根据学习Windwos的经验往往有一些茫然的感觉:不知从何处开始学起。这里介绍学习Linux的一些建议。
一、从基础开始:常常有些朋友在Linux论坛问一些问题,不过,其中大多数的问题都是很基础的。例如:为什么我使用一个命令的时候,系统告诉我找不到该目录,我要如何限制使用者的权限等问题,这些问题其实都不是很难的,只要了解了 Linu
- hibernate dao层应用之HibernateDaoSupport二次封装
wangzhezichuan
DAOHibernate
/**
* <p>方法描述:sql语句查询 返回List<Class> </p>
* <p>方法备注: Class 只能是自定义类 </p>
* @param calzz
* @param sql
* @return
* <p>创建人:王川</p>
* <p>创建时间:Jul