- [实践应用] 深度学习之优化器
YuanDaima2048
深度学习工具使用pytorch深度学习人工智能机器学习python优化器
文章总览:YuanDaiMa2048博客文章总览深度学习之优化器1.随机梯度下降(SGD)2.动量优化(Momentum)3.自适应梯度(Adagrad)4.自适应矩估计(Adam)5.RMSprop总结其他介绍在深度学习中,优化器用于更新模型的参数,以最小化损失函数。常见的优化函数有很多种,下面是几种主流的优化器及其特点、原理和PyTorch实现:1.随机梯度下降(SGD)原理:随机梯度下降通过
- Python实现梯度下降法
闲人编程
pythonpython开发语言梯度下降算法优化
博客:Python实现梯度下降法目录引言什么是梯度下降法?梯度下降法的应用场景梯度下降法的基本思想梯度下降法的原理梯度的定义学习率的选择损失函数与优化问题梯度下降法的收敛条件Python实现梯度下降法面向对象的设计思路代码实现示例与解释梯度下降法应用实例:线性回归场景描述算法实现结果分析与可视化梯度下降法的改进版本随机梯度下降(SGD)小批量梯度下降(Mini-batchGradientDesce
- 每天五分钟玩转深度学习PyTorch:模型参数优化器torch.optim
幻风_huanfeng
深度学习框架pytorch深度学习pytorch人工智能神经网络机器学习优化算法
本文重点在机器学习或者深度学习中,我们需要通过修改参数使得损失函数最小化(或最大化),优化算法就是一种调整模型参数更新的策略。在pytorch中定义了优化器optim,我们可以使用它调用封装好的优化算法,然后传递给它神经网络模型参数,就可以对模型进行优化。本文是学习第6步(优化器),参考链接pytorch的学习路线随机梯度下降算法在深度学习和机器学习中,梯度下降算法是最常用的参数更新方法,它的公式
- Adam优化器:深度学习中的自适应方法
2401_85743969
深度学习人工智能
引言在深度学习领域,优化算法是训练神经网络的核心组件之一。Adam(AdaptiveMomentEstimation)优化器因其自适应学习率调整能力而受到广泛关注。本文将详细介绍Adam优化器的工作原理、实现机制以及与其他优化器相比的优势。深度学习优化器概述优化器在深度学习中负责调整模型的参数,以最小化损失函数。常见的优化器包括SGD(随机梯度下降)、RMSprop、AdaGrad、AdaDelt
- 这项来自中国的AI研究介绍了1位全量化训练(FQT):增强了全量化训练(FQT)的能力至1位
量子位AI
人工智能机器学习深度学习
全量化训练(FQT)可以通过将激活、权重和梯度转换为低精度格式来加速深度神经网络的训练。量化过程使得计算速度更快,且内存利用率更低,从而使训练过程更加高效。FQT在尽量减少数值精度的同时,保持了训练的有效性。研究人员一直在研究1位FQT的可行性,试图探索这些限制。该研究首先从理论上分析了FQT,重点关注了如Adam和随机梯度下降(SGD)等知名的优化算法。分析中出现了一个关键发现,那就是FQT收敛
- 梯度下降算法(Gradient Descent Algorithm)
海棠未语
算法机器学习人工智能python
目录一、梯度下降算法简述二、不同函数梯度下降算法表示1、一元函数2、二元函数3、任意多元函数三、梯度计算四、常见的梯度下降法1、批量梯度下降算法(BatchGradientDescent)2、随机梯度下降算法(StochasticGradientDescent)3、小批量梯度下降(Mini-batchGradientDescent)4、梯度下降算法注意点与调优5、冲量梯度下降算法(Momentum
- 【ShuQiHere】SGD vs BGD:搞清楚它们的区别和适用场景
ShuQiHere
机器学习python人工智能
【ShuQiHere】在机器学习中,优化模型是构建准确预测模型的关键步骤。优化算法帮助我们调整模型的参数,使其更好地拟合训练数据,减少预测误差。在众多优化算法中,梯度下降法是一种最为常见且有效的手段。梯度下降法主要有两种变体:批量梯度下降(BatchGradientDescent,BGD)和随机梯度下降(StochasticGradientDescent,SGD)。这两者在如何计算梯度并更新模型参
- 机器学习最优化方法之梯度下降
whemy
1、梯度下降出现的必然性利用最小二乘法求解线性回归的参数时,求解的过程中会涉及到矩阵求逆的步骤。随着维度的增多,矩阵求逆的代价会越来越大,而且有些矩阵没有逆矩阵,这个时候就需要用近似矩阵,影响精度。另外,在绝大多数机器学习算法情况下(如LR),损失函数要复杂的多,根本无法得到参数估计值的表达式。因此需要一种更普适的优化方法,这就是梯度下降。其实随机梯度下降才是实际应用中最常用的求解方法,但是其基础
- pytorch深度学习基础 7(简单的的线性训练,SGD与Adam优化器)
不是浮云笙
pytorch实战深度学习pytorch人工智能
接下来小编来讲一下一些优化器在线性问题中的简单使用使用,torch模块中有一个叫optim的子模块,我们可以在其中找到实现不同优化算法的类SGD随机梯度下降基本概念定义:随机梯度下降(SGD)是一种梯度下降形式,对于每次前向传递,都会从总的数据集中随机选择一批数据,即批次大小1。参数更新过程:这个参数的更新过程可以描述为随机梯度下降法,随机梯度下降(SGD)是一种简单但非常有效的方法,多用于支持向
- 24 优化算法
Unknown To Known
动手学习深度学习算法
目录优化和深度学习深度学习中的挑战局部最小vs全局最小鞍点(saddlepoint)梯度消失小结凸性(convexity)凸集凸函数(convexfunction)凸函数优化凸和非凸例子小结梯度下降(gradientdescent)1、梯度下降算法是最简单的迭代求解算法2、学习率(learningrate)小结随机梯度下降(stochasticgradientdescent)小结小批量随机梯度下降
- Pytorch-Adam算法解析
肆十二
Pytorch语法pytorch算法人工智能Adam
关注B站可以观看更多实战教学视频:肆十二-的个人空间-肆十二-个人主页-哔哩哔哩视频(bilibili.com)Hi,兄弟们,这里是肆十二,今天我们来讨论一下深度学习中的Adam优化算法。Adam算法解析Adam算法是一种在深度学习中广泛使用的优化算法,它的名称来源于适应性矩估计(AdaptiveMomentEstimation)。Adam算法结合了两种扩展式的随机梯度下降法的优点,即适应性梯度算
- 深度学习之梯度下降算法
温柔了岁月.c
机器学习算法python深度学习梯度下降算法
梯度下降算法梯度下降算法数学公式结果梯度下降算法存在的问题随机梯度下降算法梯度下降算法数学公式这里案例是用梯度下降算法,来计算y=w*x先计算出梯度,再进行梯度的更新importnumpyasnpimportmatplotlib.pyplotaspltx_data=[1.0,2.0,3.0,4.0]y_data=[2.0,4.0,6.0,8.0]mse_list=[]w_list=[]w=1.0#
- Pytorch-SGD算法解析
肆十二
Pytorch语法yoloSGD随机梯度下降
关注B站可以观看更多实战教学视频:肆十二-的个人空间-肆十二-个人主页-哔哩哔哩视频(bilibili.com)SGD,即随机梯度下降(StochasticGradientDescent),是机器学习中用于优化目标函数的迭代方法,特别是在处理大数据集和在线学习场景中。与传统的批量梯度下降(BatchGradientDescent)不同,SGD在每一步中仅使用一个样本来计算梯度并更新模型参数,这使得
- 西瓜书-机器学习5.4 全局最小与局部极小
lestat_black
西瓜书机器学习
两种“最优”:“局部极小”(localminimum)和"全局最小"(globalminimum)对和,若存在使得多组不同参数值初始化多个神经网络使用“模拟退火”:以一定的概率接受比当前解更差的结果,有助于“跳出”局部极小使用随机梯度下降遗传算法(geneticalgorithms)[Goldberg,1989]也常用来训练神经网络以上用于跳出局部极小的技术大多是启发式,理论上商缺乏保障。Gold
- 深度学习为什么需要suffle,xgb为什么不需要shuffle?
fengyuzhou
因为深度学习的优化方法是随机梯度下降,每次只需要考虑一个batch的数据,也就是每次的“视野”只能看到这一批数据,而不是全局的数据。是一种“流式学习”。原始数据因为某中原因分布并不平均,会出现连续的正负样本,或者数据分布集中的情况,这样的话会限制梯度优化方向的可选择性,导致收敛点选择空间严重变少。不容易收敛到最优值。而xgb模型训练建树的过程最重要的步骤是分裂点的选择。考虑的数据是整个训练集。xg
- 深度学习中的激活函数、损失函数、优化算法
Chealkeo
DL-def自然语言处理深度学习神经网络
深度学习中的激活函数、损失函数、优化算法DL小将激活函数sigmoidtanhrelugelusoftmax损失函数分类问题常用的损失函数回归问题常用的损失函数优化算法随机梯度下降SGDAdam牛顿法DL小将本文对深度学习中的激活函数、损失函数和常用到的优化算法进行总结分析、记录学习。优化算法用来更新模参数,经过一系列计算并通过激活函数得
- PyTorch优化算法模块torch.optim的详细介绍
科学禅道
PyTorchpytorch算法深度学习
torch.optim模块是PyTorch中用于实现优化算法的组件,主要用于训练神经网络和其他机器学习模型。这个模块提供了多种常用的优化器(Optimizer),如SGD(随机梯度下降)、Adam、Adagrad等,这些优化器能够自动根据计算出的梯度更新模型参数。1.torch.optim模块内部结构和工作原理内部结构和工作原理:Optimizer类与子类:torch.optim.Optimize
- 深度学习-随机梯度下降
白云如幻
PyTorch深度学习机器学习算法人工智能
在训练过程中使用随机梯度下降,但没有解释它为什么起作用。为了澄清这一点,将继续更详细地说明随机梯度下降(stochasticgradientdescent)。%matplotlibinlineimportmathfrommxnetimportnp,npxfromd2limportmxnetasd2lnpx.set_np()随机梯度更新在深度学习中,目标函数通常是训练数据集中每个样本的损失函数的平均
- 人工智能深度学习发展历程-纪年录
犟小孩
技术文档计算机视觉
前言为了理解模型之间的改进关系、明确深度学习的发展目标、提高自身对模型的深度理解、贯彻爱与和平的理念。总之,我做了如下表格。时间重大突破模型改进详细信息1847SGD随机梯度下降1995SVM支持向量机1982RNN循环神经网络,序列模型1986反向传播1997LSTM长短期时间记忆1998Lenet-5首次应用于手写识别2001随机森林2010ReLUrelu激活函数,解决梯度消失2012Dro
- 推荐收藏!算法工程师面试常考的手撕面试题!
Python算法实战
算法面试宝典算法面试职场和发展深度学习人工智能大模型
今天给大家分享一些算法工程师技术面试中常手撕的代码。不管是秋招还是社招,互联网大厂的技术面试中的手撕代码这一部分总是绕不过去的一关。如果你对这些感兴趣,可以文末找我们交流手撕numpy写线性回归的随机梯度下降(stochasticgradientdescent,SGD)在每次更新时用1个样本,可以看到多了随机两个字,随机也就是说我们用样本中的一个例子来近似我所有的样本,来调整θ,因而随机梯度下降是
- [笔记]深度学习入门 基于Python的理论与实现(六)
飞鸟malred
ai笔记深度学习python
6.与学习相关的技巧6.1参数的更新神经网络学习的目的是找到使损失函数尽可能小的参数,这个过程叫最优化_(optimization_),但是由于神经网络的参数空间复杂,所以很难求最优解.前几章,我们使用参数的梯度,沿梯度的反向更新参数,重复多次,从而逐渐靠近最优参数,这个过程称为随机梯度下降_(stochasticgradientdescent_),简称SGD6.1.1探险家的故事6.1.2SGD
- 【MAC】Multi-Level Monte Carlo Actor-Critic阅读笔记
酸酸甜甜我最爱
论文代码学习笔记
基本思想:利用多层次蒙特卡洛方法(Multi-LevelMonteCarlo,MLMC)和Actor-Critic算法,解决平均奖励强化学习中的快速混合问题。快速混合?在强化学习中,当我们说一个策略"混合得快",是指该策略在探索和利用之间达到一个良好的平衡,从而使学习过程更快、更有效。提出的背景:现有的强化学习方法在后端使用的是stochasticgradientdescent(随机梯度下降),基
- 机器学习的精髓-梯度下降算法
wyw0000
机器学习机器学习算法人工智能
目1.梯度下降算法2.梯度下降求解3.总结1.梯度下降算法梯度下降算法是一种优化算法,用于最小化函数的数值方法。它通过沿着函数梯度的反方向来更新参数,以逐步减小函数值。这一过程重复进行直到达到收敛条件。梯度下降算法有多种变体,包括批量梯度下降、随机梯度下降和小批量梯度下降。这些变体在处理大规模数据和优化不同类型的函数时具有不同的优势。2.梯度下降求解下面用一个例子来说明,使用梯度下降求极值的过程。
- 【小白学机器学习4】从求f(x)的误差和函数E(θ)的导函数,到最速下降法,然后到随机梯度下降法
奔跑的犀牛先生
机器学习人工智能
目录1从求f(x)的误差和函数E(θ)的导函数,开始通过参数θ去找E(θ)的最小值,从而确定最好的拟合曲线函数f(x)1.1从f(x)对y的回归模拟开始1.2从比较不同的f(x)的E(θ),引出的问题1.3f(x)的误差和E(θ)函数,可以变成通用的函数形式,从而E(θ)只需要关注其参数θ0,θ1...的不同,而找到其最小值1.4调整参数θ0,θ1...,试图找到f(x)的误差和函数E(θ)的最小
- pytorch(三)反向传播
@@老胡
pythonpytorch人工智能python
文章目录反向传播tensor的广播机制反向传播前馈过程的目的是为了计算损失loss反向传播的目的是为了更新权重w,这里权重的更新是使用随机梯度下降来更新的。前馈过程反馈过程importtorchx_data=[1.0,2.0,3.0]y_data=[2.0,4.0,6.0]w=torch.Tensor([1.0])#表示需要计算梯度,默认不需要计算梯度w.requires_grad=Truedef
- 机器学习期末复习总结笔记(李航统计学习方法)
在半岛铁盒里
机器学习机器学习笔记学习方法
文章目录模型复杂度高---过拟合分类与回归有监督、无监督、半监督正则化生成模型和判别模型感知机KNN朴素贝叶斯决策树SVMAdaboost聚类风险PCA深度学习范数计算梯度下降与随机梯度下降SGD线性回归逻辑回归最大熵模型适用性讨论模型复杂度高—过拟合是什么:当模型复杂度越高,对训练集拟合程度越高,然而对新样本的泛化能力却下降了,此时出现overfitting(过拟合)与泛化能力:模型复杂度与泛化
- 优化算法--李沐
sendmeasong_ying
深度学习算法人工智能深度学习
目录1.1梯度下降1.2随机梯度下降1.3小批量随机梯度下降1.4冲量法1.5Adam损失值也就是预测值与真实值之间的差值是f(x),x是所有超参数组成的一条向量,c是可以限制的,比如说权重大于等于0。使用迭代优化算法求解一般只能保证找到局部最小值,因为一到局部最小的地方,用梯度下降算法的话此时的梯度就已经等于0了。凸集的意思就是在一个区域里面找一根线,这条线的任意一个点都在这个区域里面。凸函数最
- pytorch(二)梯度下降算法
@@老胡
pythonpytorch算法人工智能
文章目录优化问题梯度下降随机梯度下降在线性模型训练的时候,一开始并不知道w的最优值是什么,可以使用一个随机值来作为w的初始值,使用一定的算法来对w进行更新优化问题寻找使得目标函数最优的权重组合的问题就是优化问题梯度下降通俗的讲,梯度下降就是使得梯度往下降的方向,也就是负方向走。一般来说,梯度往正方向走,表示梯度大于0,,表示函数是往递增方向走,而这里需要的是找最低点,最低点一定是在往下走,所以这里
- cs231n assignment1——SVM
柠檬山楂荷叶茶
cs231n支持向量机python机器学习
整体思路加载CIFAR-10数据集并展示部分数据数据图像归一化,减去均值(也可以再除以方差)svm_loss_naive和svm_loss_vectorized计算hinge损失,用拉格朗日法列hinge损失函数利用随机梯度下降法优化SVM在训练集和验证集计算准确率,保存最好的模型在测试集进行预测计算准确率加载展示划分数据集加载CIFAR-10数据集#LoadtherawCIFAR-10data.
- 大模型学习笔记06——模型训练
等风来随风飘
大模型读书笔记学习笔记
大模型学习笔记06——模型训练1、目标函数三类语言模型的目标函数:decoder-only(GPT-3):计算单向上下文embedding,一次生成一个tokenencoder-only(BERT):计算双向上下文embeddingencoder-decoder(T5):编码输入,解码输出2、优化算法随机梯度下降AdamAdaFactor混合精度训练学习率初始化注笔记原始内容地址:添加链接描述
- ztree设置禁用节点
3213213333332132
JavaScriptztreejsonsetDisabledNodeAjax
ztree设置禁用节点的时候注意,当使用ajax后台请求数据,必须要设置为同步获取数据,否者会获取不到节点对象,导致设置禁用没有效果。
$(function(){
showTree();
setDisabledNode();
});
- JVM patch by Taobao
bookjovi
javaHotSpot
在网上无意中看到淘宝提交的hotspot patch,共四个,有意思,记录一下。
7050685:jsdbproc64.sh has a typo in the package name
7058036:FieldsAllocationStyle=2 does not work in 32-bit VM
7060619:C1 should respect inline and
- 将session存储到数据库中
dcj3sjt126com
sqlPHPsession
CREATE TABLE sessions (
id CHAR(32) NOT NULL,
data TEXT,
last_accessed TIMESTAMP NOT NULL,
PRIMARY KEY (id)
);
<?php
/**
* Created by PhpStorm.
* User: michaeldu
* Date
- Vector
171815164
vector
public Vector<CartProduct> delCart(Vector<CartProduct> cart, String id) {
for (int i = 0; i < cart.size(); i++) {
if (cart.get(i).getId().equals(id)) {
cart.remove(i);
- 各连接池配置参数比较
g21121
连接池
排版真心费劲,大家凑合看下吧,见谅~
Druid
DBCP
C3P0
Proxool
数据库用户名称 Username Username User
数据库密码 Password Password Password
驱动名
- [简单]mybatis insert语句添加动态字段
53873039oycg
mybatis
mysql数据库,id自增,配置如下:
<insert id="saveTestTb" useGeneratedKeys="true" keyProperty="id"
parameterType=&
- struts2拦截器配置
云端月影
struts2拦截器
struts2拦截器interceptor的三种配置方法
方法1. 普通配置法
<struts>
<package name="struts2" extends="struts-default">
&
- IE中页面不居中,火狐谷歌等正常
aijuans
IE中页面不居中
问题是首页在火狐、谷歌、所有IE中正常显示,列表页的页面在火狐谷歌中正常,在IE6、7、8中都不中,觉得可能那个地方设置的让IE系列都不认识,仔细查看后发现,列表页中没写HTML模板部分没有添加DTD定义,就是<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3
- String,int,Integer,char 几个类型常见转换
antonyup_2006
htmlsql.net
如何将字串 String 转换成整数 int?
int i = Integer.valueOf(my_str).intValue();
int i=Integer.parseInt(str);
如何将字串 String 转换成Integer ?
Integer integer=Integer.valueOf(str);
如何将整数 int 转换成字串 String ?
1.
- PL/SQL的游标类型
百合不是茶
显示游标(静态游标)隐式游标游标的更新和删除%rowtyperef游标(动态游标)
游标是oracle中的一个结果集,用于存放查询的结果;
PL/SQL中游标的声明;
1,声明游标
2,打开游标(默认是关闭的);
3,提取数据
4,关闭游标
注意的要点:游标必须声明在declare中,使用open打开游标,fetch取游标中的数据,close关闭游标
隐式游标:主要是对DML数据的操作隐
- JUnit4中@AfterClass @BeforeClass @after @before的区别对比
bijian1013
JUnit4单元测试
一.基础知识
JUnit4使用Java5中的注解(annotation),以下是JUnit4常用的几个annotation: @Before:初始化方法 对于每一个测试方法都要执行一次(注意与BeforeClass区别,后者是对于所有方法执行一次)@After:释放资源 对于每一个测试方法都要执行一次(注意与AfterClass区别,后者是对于所有方法执行一次
- 精通Oracle10编程SQL(12)开发包
bijian1013
oracle数据库plsql
/*
*开发包
*包用于逻辑组合相关的PL/SQL类型(例如TABLE类型和RECORD类型)、PL/SQL项(例如游标和游标变量)和PL/SQL子程序(例如过程和函数)
*/
--包用于逻辑组合相关的PL/SQL类型、项和子程序,它由包规范和包体两部分组成
--建立包规范:包规范实际是包与应用程序之间的接口,它用于定义包的公用组件,包括常量、变量、游标、过程和函数等
--在包规
- 【EhCache二】ehcache.xml配置详解
bit1129
ehcache.xml
在ehcache官网上找了多次,终于找到ehcache.xml配置元素和属性的含义说明文档了,这个文档包含在ehcache.xml的注释中!
ehcache.xml : http://ehcache.org/ehcache.xml
ehcache.xsd : http://ehcache.org/ehcache.xsd
ehcache配置文件的根元素是ehcahe
ehcac
- java.lang.ClassNotFoundException: org.springframework.web.context.ContextLoaderL
白糖_
javaeclipsespringtomcatWeb
今天学习spring+cxf的时候遇到一个问题:在web.xml中配置了spring的上下文监听器:
<listener>
<listener-class>org.springframework.web.context.ContextLoaderListener</listener-class>
</listener>
随后启动
- angular.element
boyitech
AngularJSAngularJS APIangular.element
angular.element
描述: 包裹着一部分DOM element或者是HTML字符串,把它作为一个jQuery元素来处理。(类似于jQuery的选择器啦) 如果jQuery被引入了,则angular.element就可以看作是jQuery选择器,选择的对象可以使用jQuery的函数;如果jQuery不可用,angular.e
- java-给定两个已排序序列,找出共同的元素。
bylijinnan
java
import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;
public class CommonItemInTwoSortedArray {
/**
* 题目:给定两个已排序序列,找出共同的元素。
* 1.定义两个指针分别指向序列的开始。
* 如果指向的两个元素
- sftp 异常,有遇到的吗?求解
Chen.H
javajcraftauthjschjschexception
com.jcraft.jsch.JSchException: Auth cancel
at com.jcraft.jsch.Session.connect(Session.java:460)
at com.jcraft.jsch.Session.connect(Session.java:154)
at cn.vivame.util.ftp.SftpServerAccess.connec
- [生物智能与人工智能]神经元中的电化学结构代表什么?
comsci
人工智能
我这里做一个大胆的猜想,生物神经网络中的神经元中包含着一些化学和类似电路的结构,这些结构通常用来扮演类似我们在拓扑分析系统中的节点嵌入方程一样,使得我们的神经网络产生智能判断的能力,而这些嵌入到节点中的方程同时也扮演着"经验"的角色....
我们可以尝试一下...在某些神经
- 通过LAC和CID获取经纬度信息
dai_lm
laccid
方法1:
用浏览器打开http://www.minigps.net/cellsearch.html,然后输入lac和cid信息(mcc和mnc可以填0),如果数据正确就可以获得相应的经纬度
方法2:
发送HTTP请求到http://www.open-electronics.org/celltrack/cell.php?hex=0&lac=<lac>&cid=&
- JAVA的困难分析
datamachine
java
前段时间转了一篇SQL的文章(http://datamachine.iteye.com/blog/1971896),文章不复杂,但思想深刻,就顺便思考了一下java的不足,当砖头丢出来,希望引点和田玉。
-----------------------------------------------------------------------------------------
- 小学5年级英语单词背诵第二课
dcj3sjt126com
englishword
money 钱
paper 纸
speak 讲,说
tell 告诉
remember 记得,想起
knock 敲,击,打
question 问题
number 数字,号码
learn 学会,学习
street 街道
carry 搬运,携带
send 发送,邮寄,发射
must 必须
light 灯,光线,轻的
front
- linux下面没有tree命令
dcj3sjt126com
linux
centos p安装
yum -y install tree
mac os安装
brew install tree
首先来看tree的用法
tree 中文解释:tree
功能说明:以树状图列出目录的内容。
语 法:tree [-aACdDfFgilnNpqstux][-I <范本样式>][-P <范本样式
- Map迭代方式,Map迭代,Map循环
蕃薯耀
Map循环Map迭代Map迭代方式
Map迭代方式,Map迭代,Map循环
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 2015年
- Spring Cache注解+Redis
hanqunfeng
spring
Spring3.1 Cache注解
依赖jar包:
<!-- redis -->
<dependency>
<groupId>org.springframework.data</groupId>
<artifactId>spring-data-redis</artifactId>
- Guava中针对集合的 filter和过滤功能
jackyrong
filter
在guava库中,自带了过滤器(filter)的功能,可以用来对collection 进行过滤,先看例子:
@Test
public void whenFilterWithIterables_thenFiltered() {
List<String> names = Lists.newArrayList("John"
- 学习编程那点事
lampcy
编程androidPHPhtml5
一年前的夏天,我还在纠结要不要改行,要不要去学php?能学到真本事吗?改行能成功吗?太多的问题,我终于不顾一切,下定决心,辞去了工作,来到传说中的帝都。老师给的乘车方式还算有效,很顺利的就到了学校,赶巧了,正好学校搬到了新校区。先安顿了下来,过了个轻松的周末,第一次到帝都,逛逛吧!
接下来的周一,是我噩梦的开始,学习内容对我这个零基础的人来说,除了勉强完成老师布置的作业外,我已经没有时间和精力去
- 架构师之流处理---------bytebuffer的mark,limit和flip
nannan408
ByteBuffer
1.前言。
如题,limit其实就是可以读取的字节长度的意思,flip是清空的意思,mark是标记的意思 。
2.例子.
例子代码:
String str = "helloWorld";
ByteBuffer buff = ByteBuffer.wrap(str.getBytes());
Sy
- org.apache.el.parser.ParseException: Encountered " ":" ": "" at line 1, column 1
Everyday都不同
$转义el表达式
最近在做Highcharts的过程中,在写js时,出现了以下异常:
严重: Servlet.service() for servlet jsp threw exception
org.apache.el.parser.ParseException: Encountered " ":" ": "" at line 1,
- 用Java实现发送邮件到163
tntxia
java实现
/*
在java版经常看到有人问如何用javamail发送邮件?如何接收邮件?如何访问多个文件夹等。问题零散,而历史的回复早已经淹没在问题的海洋之中。
本人之前所做过一个java项目,其中包含有WebMail功能,当初为用java实现而对javamail摸索了一段时间,总算有点收获。看到论坛中的经常有此方面的问题,因此把我的一些经验帖出来,希望对大家有些帮助。
此篇仅介绍用
- 探索实体类存在的真正意义
java小叶檀
POJO
一. 实体类简述
实体类其实就是俗称的POJO,这种类一般不实现特殊框架下的接口,在程序中仅作为数据容器用来持久化存储数据用的
POJO(Plain Old Java Objects)简单的Java对象
它的一般格式就是
public class A{
private String id;
public Str