深入理解Handler、Looper与MessageQueue之间的关系

如果想要弄懂Android的消息机制,就一定要深入挖掘HandlerMessageQueueLooper这三者之间的关系。

关系图.png

1.开启消息循环

从一个普通的子线程开启Looper循环讲起:

new Thread(new Runnable() {
            @Override
            public void run() {
                Looper.prepare();
                Handler handler = new Handler();
                Looper.loop();
            }
        }).start();

上面的代码我们分三步来研究:
①Looper.prepare()
②new Handler()
③Looper.loop()

①Looper.prepare():

public static void prepare() {
        prepare(true);
    }

private static void prepare(boolean quitAllowed) {
        if (sThreadLocal.get() != null) {
            throw new RuntimeException("Only one Looper may be created per thread");
        }
        sThreadLocal.set(new Looper(quitAllowed));
    }

private Looper(boolean quitAllowed) {
        mQueue = new MessageQueue(quitAllowed);
        mThread = Thread.currentThread();
    }

可以看到,Looper.prepare()最终调用的是自身的构造函数,在构造函数中实例化了一个MessageQueue,并获取了当前的线程。通过将实例化的Looper放在ThreadLocal中,从而实现Looper和线程的绑定。

下面看看new MessageQueue(quitAllowed)做了些什么

MessageQueue(boolean quitAllowed) {
        mQuitAllowed = quitAllowed;
        mPtr = nativeInit();
    }

MessageQueue在构造函数中通过native方法进行了初始化工作。

②new Handler():

public Handler() {
        this(null, false);
    }

public Handler(Callback callback, boolean async) {
        if (FIND_POTENTIAL_LEAKS) {
            final Class klass = getClass();
            if ((klass.isAnonymousClass() || klass.isMemberClass() || klass.isLocalClass()) &&
                    (klass.getModifiers() & Modifier.STATIC) == 0) {
                Log.w(TAG, "The following Handler class should be static or leaks might occur: " +
                    klass.getCanonicalName());
            }
        }

        mLooper = Looper.myLooper();
        if (mLooper == null) {
            throw new RuntimeException(
                "Can't create handler inside thread that has not called Looper.prepare()");
        }
        mQueue = mLooper.mQueue;
        mCallback = callback;
        mAsynchronous = async;
    }

Handler在构造函数中通过Looper.myLooper()来获取在当前线程中创建的Looper对象(所以在子线程中需要手动写Looper.prepare(),否则mLooper为null会报异常。由于主线程会自动创建smainLooper,所以在主线程中实例化的Handler无需手动创建Looper也不会报异常。关于主线程的消息机制最后会讲到)。此外,还获取了mLooper中的messageQueue对象,并将异步状态设为false。

③Looper.loop():

关键的地方来了

public static void loop() {
        final Looper me = myLooper();
        if (me == null) {
            throw new RuntimeException("No Looper; Looper.prepare() wasn't called on this thread.");
        }
        final MessageQueue queue = me.mQueue;

        // Make sure the identity of this thread is that of the local process,
        // and keep track of what that identity token actually is.
        Binder.clearCallingIdentity();
        final long ident = Binder.clearCallingIdentity();

        for (;;) {
            Message msg = queue.next(); // might block
            if (msg == null) {
                // No message indicates that the message queue is quitting.
                return;
            }

            // This must be in a local variable, in case a UI event sets the logger
            final Printer logging = me.mLogging;
            if (logging != null) {
                logging.println(">>>>> Dispatching to " + msg.target + " " +
                        msg.callback + ": " + msg.what);
            }

            final long slowDispatchThresholdMs = me.mSlowDispatchThresholdMs;

            final long traceTag = me.mTraceTag;
            if (traceTag != 0 && Trace.isTagEnabled(traceTag)) {
                Trace.traceBegin(traceTag, msg.target.getTraceName(msg));
            }
            final long start = (slowDispatchThresholdMs == 0) ? 0 : SystemClock.uptimeMillis();
            final long end;
            try {
                msg.target.dispatchMessage(msg);
                end = (slowDispatchThresholdMs == 0) ? 0 : SystemClock.uptimeMillis();
            } finally {
                if (traceTag != 0) {
                    Trace.traceEnd(traceTag);
                }
            }
            if (slowDispatchThresholdMs > 0) {
                final long time = end - start;
                if (time > slowDispatchThresholdMs) {
                    Slog.w(TAG, "Dispatch took " + time + "ms on "
                            + Thread.currentThread().getName() + ", h=" +
                            msg.target + " cb=" + msg.callback + " msg=" + msg.what);
                }
            }

            if (logging != null) {
                logging.println("<<<<< Finished to " + msg.target + " " + msg.callback);
            }

            // Make sure that during the course of dispatching the
            // identity of the thread wasn't corrupted.
            final long newIdent = Binder.clearCallingIdentity();
            if (ident != newIdent) {
                Log.wtf(TAG, "Thread identity changed from 0x"
                        + Long.toHexString(ident) + " to 0x"
                        + Long.toHexString(newIdent) + " while dispatching to "
                        + msg.target.getClass().getName() + " "
                        + msg.callback + " what=" + msg.what);
            }

            msg.recycleUnchecked();
        }
    }

我们可以清晰地看到,loop方法实际是执行的一个死循环
在该循环中,MessageQueue通过调用next()来获取Message。
如果msg==null,则跳出该循环(也意味着此消息队列结束);如果msg不为空,则会执行msg.target.dispatchMessage(msg)。这里的target是发送Message时对应的Handler(后面会讲到为什么),所以这一句代码的功能本质上是调用handler.dispatchMessage(msg),也就是将从MessageQueue中读到的Message通过Handler作分发操作。

public void dispatchMessage(Message msg) {
        if (msg.callback != null) {
            handleCallback(msg);
        } else {
            if (mCallback != null) {
                if (mCallback.handleMessage(msg)) {
                    return;
                }
            }
            handleMessage(msg);
        }
    }

而dispatchMessage就比较容易理解了,通过判断有无callback来选择具体的执行方法。在这里就可以看到我们平时继承Handler最常复写的方法--handleMessage(msg)

刚才谈到了Looper.loop()的死循环中会通过MessageQueue的next()方法来获取Message,那么我们再深入去看看这个next()方法到底做了些什么。

Message next() {
        // Return here if the message loop has already quit and been disposed.
        // This can happen if the application tries to restart a looper after quit
        // which is not supported.
        final long ptr = mPtr;
        if (ptr == 0) {
            return null;
        }

        int pendingIdleHandlerCount = -1; // -1 only during first iteration
        int nextPollTimeoutMillis = 0;
        for (;;) {
            if (nextPollTimeoutMillis != 0) {
                Binder.flushPendingCommands();
            }

            nativePollOnce(ptr, nextPollTimeoutMillis);

            synchronized (this) {
                // Try to retrieve the next message.  Return if found.
                final long now = SystemClock.uptimeMillis();
                Message prevMsg = null;
                Message msg = mMessages;
                if (msg != null && msg.target == null) {
                    // Stalled by a barrier.  Find the next asynchronous message in the queue.
                    do {
                        prevMsg = msg;
                        msg = msg.next;
                    } while (msg != null && !msg.isAsynchronous());
                }
                if (msg != null) {
                    if (now < msg.when) {
                        // Next message is not ready.  Set a timeout to wake up when it is ready.
                        nextPollTimeoutMillis = (int) Math.min(msg.when - now, Integer.MAX_VALUE);
                    } else {
                        // Got a message.
                        mBlocked = false;
                        if (prevMsg != null) {
                            prevMsg.next = msg.next;
                        } else {
                            mMessages = msg.next;
                        }
                        msg.next = null;
                        if (DEBUG) Log.v(TAG, "Returning message: " + msg);
                        msg.markInUse();
                        return msg;
                    }
                } else {
                    // No more messages.
                    nextPollTimeoutMillis = -1;
                }

                // Process the quit message now that all pending messages have been handled.
                if (mQuitting) {
                    dispose();
                    return null;
                }

                // If first time idle, then get the number of idlers to run.
                // Idle handles only run if the queue is empty or if the first message
                // in the queue (possibly a barrier) is due to be handled in the future.
                if (pendingIdleHandlerCount < 0
                        && (mMessages == null || now < mMessages.when)) {
                    pendingIdleHandlerCount = mIdleHandlers.size();
                }
                if (pendingIdleHandlerCount <= 0) {
                    // No idle handlers to run.  Loop and wait some more.
                    mBlocked = true;
                    continue;
                }

                if (mPendingIdleHandlers == null) {
                    mPendingIdleHandlers = new IdleHandler[Math.max(pendingIdleHandlerCount, 4)];
                }
                mPendingIdleHandlers = mIdleHandlers.toArray(mPendingIdleHandlers);
            }

            // Run the idle handlers.
            // We only ever reach this code block during the first iteration.
            for (int i = 0; i < pendingIdleHandlerCount; i++) {
                final IdleHandler idler = mPendingIdleHandlers[i];
                mPendingIdleHandlers[i] = null; // release the reference to the handler

                boolean keep = false;
                try {
                    keep = idler.queueIdle();
                } catch (Throwable t) {
                    Log.wtf(TAG, "IdleHandler threw exception", t);
                }

                if (!keep) {
                    synchronized (this) {
                        mIdleHandlers.remove(idler);
                    }
                }
            }

            // Reset the idle handler count to 0 so we do not run them again.
            pendingIdleHandlerCount = 0;

            // While calling an idle handler, a new message could have been delivered
            // so go back and look again for a pending message without waiting.
            nextPollTimeoutMillis = 0;
        }
    }

可以发现,next()也是个无限循环的方法,如果消息队列中没有消息,则会一直阻塞在这里。只有当msg != nullnow >= msg.when时才会return msg。其中now表示当前时间,msg.when表示插入该msg时所指定的期望处理该任务的时间。如果now < msg.when,表示当前消息还未到执行它的时间,那么就会计算时间差并进行休眠以等待执行时间到来。
此外,mQuitting==true,则会return null,表示关闭该消息队列。

到这里,我们基本上看完了在子线程中开启消息循环的大致流程。系统所做的无非就是实例化一个Looper并将它与当前线程绑定,然后将Handler的实例化对象与Looper进行绑定,再在Looper中无限循环地调用MessageQueue的next()方法来循环的读取Message。如果读到了Message,则会调用该Message所绑定的Handler对象来执行对应的分发和处理操作。

2.发送消息

发送消息抽象的解释就是通过Handler将Message放入MessageQueue中。对于发送消息这个操作,Android SDK为我们提供了多种Message构造以及Handler发送的方式。

Message有两种常用的构造方式:new Message()handler.obtainMessage()。下面贴上源码来比较二者差别。

以下为Handler.java的部分源码
    public final Message obtainMessage()
    {
        return Message.obtain(this);
    }

    public final Message obtainMessage(int what)
    {
        return Message.obtain(this, what);
    }

    public final Message obtainMessage(int what, Object obj)
    {
        return Message.obtain(this, what, obj);
    }

    public final Message obtainMessage(int what, int arg1, int arg2)
    {
        return Message.obtain(this, what, arg1, arg2);
    }

    public final Message obtainMessage(int what, int arg1, int arg2, Object obj)
    {
        return Message.obtain(this, what, arg1, arg2, obj);
    }

可以看到handler的obtainMessage方法的多个重载主要区别在于给Message添加的参数上的不同,其内部实现还是得进入Message源码中去查看。

    private static final Object sPoolSync = new Object();
    private static Message sPool;
    private static int sPoolSize = 0;

    /** Constructor (but the preferred way to get a Message is to call {@link #obtain() Message.obtain()}).
    */
    public Message() {
    }

    public static Message obtain() {
        synchronized (sPoolSync) {
            if (sPool != null) {
                Message m = sPool;
                sPool = m.next;
                m.next = null;
                m.flags = 0; // clear in-use flag
                sPoolSize--;
                return m;
            }
        }
        return new Message();
    }

    public static Message obtain(Handler h) {
        Message m = obtain();
        m.target = h;

        return m;
    }

    public static Message obtain(Handler h, int what, Object obj) {
        Message m = obtain();
        m.target = h;
        m.what = what;
        m.obj = obj;

        return m;
    }

    public static Message obtain(Handler h, int what, int arg1, int arg2) {
        Message m = obtain();
        m.target = h;
        m.what = what;
        m.arg1 = arg1;
        m.arg2 = arg2;

        return m;
    }

    public static Message obtain(Handler h, int what,
            int arg1, int arg2, Object obj) {
        Message m = obtain();
        m.target = h;
        m.what = what;
        m.arg1 = arg1;
        m.arg2 = arg2;
        m.obj = obj;

        return m;
    }

可以看到,Message的obtain方法的多个重载,本质上还是通过无参的obtain方法获取Message对象,然后把传入的参数设入其中。
仔细查阅无参obtain方法的实现,我们可以发现这就是简单的单链表取链表头元素的操作。其首先进行了线程同步,即当前只有一个线程可以执行此方法。然后取出sPool这个链表头所指向的Message对象,并将sPool指向链表的下一结点,链表长度计数减一,然后返回刚刚取出的Message对象。只有当前sPool即链表头为null时才执行new Message()方法来构造Message对象。

那么问题来了,既然Message是以链表的形式存取的,那也应该在某处对应着插入链表的操作才对。仔细想想一个Message会在什么时候回收并插入链表中呢?一定是在Message被处理完之后。那么我们再回过头去看看Looper的loop方法。

    public static void loop() {
       
        省略部分代码
        for (;;) {

            !!从MessageQueue中取Message!!
            Message msg = queue.next(); // might block
            if (msg == null) {
                // No message indicates that the message queue is quitting.
                return;
            }

            省略部分代码
            try {
                !!调用Handler处理Message!!
                msg.target.dispatchMessage(msg);
                end = (slowDispatchThresholdMs == 0) ? 0 : SystemClock.uptimeMillis();
            } 
            省略部分代码
            !!回收Message!!
            msg.recycleUnchecked();
        }
    }

可以看到,通过msg.target.dispatchMessage(msg)完成了对Message的处理,随后便调用了msg.recycleUnchecked()来对Message进行回收操作。

  void recycleUnchecked() {
        // Mark the message as in use while it remains in the recycled object pool.
        // Clear out all other details.
        flags = FLAG_IN_USE;
        what = 0;
        arg1 = 0;
        arg2 = 0;
        obj = null;
        replyTo = null;
        sendingUid = -1;
        when = 0;
        target = null;
        callback = null;
        data = null;

        synchronized (sPoolSync) {
            if (sPoolSize < MAX_POOL_SIZE) {
                next = sPool;
                sPool = this;
                sPoolSize++;
            }
        }
    }

不难看出,回收操作中先是清除Message中各类参数的信息,随后依然是通过sPoolSync这个锁进行线程同步,最后便是将当前Message对象的next指向链表头sPool,再将sPool指向当前对象,最后链表长度计数加一,即完成了一次单链表头插的操作

小总结

正如Message构造函数上所提到的,更倾向于通过obtain方法来获取一个Message对象而不是主动去实例化一个Message对象。因为Android程序是基于事件驱动的,事件的发送是一个高频操作。无论是系统的消息,还是自己发送的消息,如果每次都实例化一个新的Message对象,这无疑会对内存会构成较大的压力。所以Message才会采用单链表的形式在每次使用完之后进行回收,并在使用时从链表中取出来进行复用。


下面我们再看看Handler是如何发送Message的。
Handler发送Message主要有两种方式:sendMessage(Message msg)h和post(Runnable r)

    public final boolean post(Runnable r)
    {
       return  sendMessageDelayed(getPostMessage(r), 0);
    }

    public final boolean postAtTime(Runnable r, long uptimeMillis)
    {
        return sendMessageAtTime(getPostMessage(r), uptimeMillis);
    }

    public final boolean postAtTime(Runnable r, Object token, long uptimeMillis)
    {
        return sendMessageAtTime(getPostMessage(r, token), uptimeMillis);
    }

    public final boolean postDelayed(Runnable r, long delayMillis)
    {
        return sendMessageDelayed(getPostMessage(r), delayMillis);
    }
    
    //将Runnable转化成Message
    private static Message getPostMessage(Runnable r) {
        Message m = Message.obtain();
        m.callback = r;
        return m;
    }

    public final boolean sendMessage(Message msg)
    {
        return sendMessageDelayed(msg, 0);
    }

    public final boolean sendMessageDelayed(Message msg, long delayMillis)
    {
        if (delayMillis < 0) {
            delayMillis = 0;
        }
        return sendMessageAtTime(msg, SystemClock.uptimeMillis() + delayMillis);
    }

    public boolean sendMessageAtTime(Message msg, long uptimeMillis) {
        MessageQueue queue = mQueue;
        if (queue == null) {
            RuntimeException e = new RuntimeException(
                    this + " sendMessageAtTime() called with no mQueue");
            Log.w("Looper", e.getMessage(), e);
            return false;
        }
        return enqueueMessage(queue, msg, uptimeMillis);
    }

    private boolean enqueueMessage(MessageQueue queue, Message msg, long uptimeMillis) {
        msg.target = this;
        if (mAsynchronous) {
            msg.setAsynchronous(true);
        }
        return queue.enqueueMessage(msg, uptimeMillis);
    }

从上面代码中我们能看到post(Runnable r)实际上是将Runnable设置给了Message的callback变量,然后走的还是sendMessage方法。

而sendMessage相关的一系列操作,主要是通过延迟时长delayMillis和系统当前时间来计算该Message的预计处理时间uptimeMillis

随后,在enqueueMessage方法中,我们可以看到msg.target = this;这样一行代码,这也印证了我们上面提到的Message中的target指的其实就是发送它的Handler。再通过queue.enqueueMessage(msg, uptimeMillis)方法,将Message插入到MessageQueue中。

接下来我们再看看MessageQueue具体是如何将Message放进消息队列中的。

    boolean enqueueMessage(Message msg, long when) {
        if (msg.target == null) {
            throw new IllegalArgumentException("Message must have a target.");
        }
        if (msg.isInUse()) {
            throw new IllegalStateException(msg + " This message is already in use.");
        }

        synchronized (this) {
            if (mQuitting) {
                IllegalStateException e = new IllegalStateException(
                        msg.target + " sending message to a Handler on a dead thread");
                Log.w(TAG, e.getMessage(), e);
                msg.recycle();
                return false;
            }

            msg.markInUse();
            msg.when = when;
            Message p = mMessages;
            boolean needWake;
            if (p == null || when == 0 || when < p.when) {
                // New head, wake up the event queue if blocked.
                msg.next = p;
                mMessages = msg;
                needWake = mBlocked;
            } else {
                // Inserted within the middle of the queue.  Usually we don't have to wake
                // up the event queue unless there is a barrier at the head of the queue
                // and the message is the earliest asynchronous message in the queue.
                needWake = mBlocked && p.target == null && msg.isAsynchronous();
                Message prev;
                for (;;) {
                    prev = p;
                    p = p.next;
                    if (p == null || when < p.when) {
                        break;
                    }
                    if (needWake && p.isAsynchronous()) {
                        needWake = false;
                    }
                }
                msg.next = p; // invariant: p == prev.next
                prev.next = msg;
            }

            // We can assume mPtr != 0 because mQuitting is false.
            if (needWake) {
                nativeWake(mPtr);
            }
        }
        return true;
    }

两个关键位置:
if (p == null || when == 0 || when < p.when)
与这个if判断相关的三个条件分别是消息队列的头节点是否为null;传入的参数when是否为0;传入的参数when是否小于当前消息队列头节点对应的when。三者满足其一就可将传入的msg插入到消息队列的头节点处。
for (;;)
这个for循环当中执行的遍历链表的操作,当遍历到末尾或者when < p.when时,便将msg插入到此位置。

看到这儿也顺带解释了一个问题:Message插入MessageQueue是顺序插入的还是基于某些原则插入的?
答:通过比较msg的参数when的大小来插入到MessageQueue的对应位置。

至此,Handler、MessageQueue、Looper三者的关系我们就全部梳理了一遍。


PS:主线程的消息循环

Android的主线程是ActivityThread,其通过在入口main()方法中调用下面几行代码来实现的消息循环:

//省略部分代码
Looper.prepareMainLooper();
ActivityThread thread = new ActivityThread();
thread.attach(false);
if (sMainThreadHandler == null) {
        sMainThreadHandler = thread.getHandler();
}
//省略部分代码
Looper.loop();
//省略部分代码

与子线程相比,区别主要体现在prepareMainLooper和prepare,以及Handler的生产方式不同上。

那么prepareMainLooper有何特殊呢?
public static void prepareMainLooper() {
        prepare(false);
        synchronized (Looper.class) {
            if (sMainLooper != null) {
                throw new IllegalStateException("The main Looper has already been prepared.");
            }
            sMainLooper = myLooper();
        }
    }

可以看到,prepareMainLooper其实也是调用的prepare方法,只不过参数为false,表示该线程不允许退出。

主线程上的Handler又有何区别呢?

ActivityThread内部的handler中定义了一组消息类型,主要包含了四大组件的启动和停止等过程。handler接收到消息后会将逻辑切换到主线程去执行,这也就是主线程的消息循环模型。

public void handleMessage(Message msg) {
        if (DEBUG_MESSAGES) Slog.v(TAG, ">>> handling: " + codeToString(msg.what));
        switch (msg.what) {
            case LAUNCH_ACTIVITY: {
                Trace.traceBegin(Trace.TRACE_TAG_ACTIVITY_MANAGER, "activityStart");
                final ActivityClientRecord r = (ActivityClientRecord) msg.obj;
                r.packageInfo = getPackageInfoNoCheck(r.activityInfo.applicationInfo, r.compatInfo);
                handleLaunchActivity(r, null);
                Trace.traceEnd(Trace.TRACE_TAG_ACTIVITY_MANAGER);
            }
            break;
            case RELAUNCH_ACTIVITY: {
                Trace.traceBegin(Trace.TRACE_TAG_ACTIVITY_MANAGER, "activityRestart");
                ActivityClientRecord r = (ActivityClientRecord) msg.obj;
                handleRelaunchActivity(r);
                Trace.traceEnd(Trace.TRACE_TAG_ACTIVITY_MANAGER);
            }
            break;
            case PAUSE_ACTIVITY:
                Trace.traceBegin(Trace.TRACE_TAG_ACTIVITY_MANAGER, "activityPause");
                handlePauseActivity((IBinder) msg.obj, false, (msg.arg1 & 1) != 0, msg.arg2, (msg.arg1 & 2) != 0);
                maybeSnapshot();
                Trace.traceEnd(Trace.TRACE_TAG_ACTIVITY_MANAGER);
                break;
            case PAUSE_ACTIVITY_FINISHING:
                Trace.traceBegin(Trace.TRACE_TAG_ACTIVITY_MANAGER, "activityPause");
                handlePauseActivity((IBinder) msg.obj, true, (msg.arg1 & 1) != 0, msg.arg2, (msg.arg1 & 1) != 0);
                Trace.traceEnd(Trace.TRACE_TAG_ACTIVITY_MANAGER);
                break;
            ...........
        }
    }
主线程上Looper一直无限循环为什么不会造成ANR?

首先我们要明白造成ANR的原因:
①当前的事件没有机会得到处理(即主线程正在处理前一个事件,没有及时的完成或者looper被某种原因阻塞住了)
②当前的事件正在处理,但没有及时完成

Android系统是由事件驱动的,Looper的作用就是在不断的接收事件、处理事件,如Activity的生命周期或是点击事件。Looper的无限循环正是保证了应用能持续运行。如果Looper循环结束,也代表着应用停止。

再回到这个问题,我们可以发现,ANR正是由Looper中那些耗时的事件所造成的,从而导致Looper的消息循环无法正常进行下去。

主线程的死循环一直运行是不是特别消耗CPU资源呢?
其实不然,这里就涉及到Linux pipe/epoll机制,简单说就是在主线程的MessageQueue没有消息时,便阻塞在loop的queue.next()中的nativePollOnce()方法里,详情见Android消息机制1-Handler(Java层),此时主线程会释放CPU资源进入休眠状态,直到下个消息到达或者有事务发生,通过往pipe管道写端写入数据来唤醒主线程工作。这里采用的epoll机制,是一种IO多路复用机制,可以同时监控多个描述符,当某个描述符就绪(读或写就绪),则立刻通知相应程序进行读或写操作,本质同步I/O,即读写是阻塞的。 所以说,主线程大多数时候都是处于休眠状态,并不会消耗大量CPU资源。


参考文献:

《Android开发艺术探索》
《深入理解Android内核设计思想》
https://www.zhihu.com/question/34652589



若您觉得本文章对您有用,请您为我点上一颗小心心以表支持。感谢!

你可能感兴趣的:(深入理解Handler、Looper与MessageQueue之间的关系)