- P3489 [POI2009] WIE-Hexer
summ1ts
算法c++图论dijkstra状态压缩
*原题链接*最短路+状态压缩不愧是POI的题,看题面知道要求加了一些限制的最短路,看数据范围很容易想到状态压缩。求解最短路就用堆优化dijkstra好了。至于状态压缩,我们对原数组再开一维,表示此时“剑的集合”,相应的数组也要多开一维。由于此时的最短路有状态的限制,所以我们要用三元组来维护,如果不想写结构体也可以pair,int>。输入时存储边上的“怪物集合”,以及一个村庄的“铁匠集合”,在来到新
- P2865 [USACO06NOV] Roadblocks G(洛谷)(次短路)
叶子清不青
算法
开一个二维数组dis[N][2]分别记录最短路和次短路即可。dijkstra和spfa均可,推荐spfa。//dijkstra#includeusingnamespacestd;constintN=1e5+5;typedeflonglongll;typedefpairPII;intn,m,k;intT;priority_queue,greater>q;structnode{inte,w;};vec
- P2865 [USACO06NOV]路障Roadblocks
dianshu0741
次短路模板题吧题意已经非常裸了:求无向图的1到n次短路。直接套用最短路(dijkstra)的主要框架。但在这个的基础上添加另外一个数组dist2。走到一条边的时候来三个判定:dist[u]+weightdist[v]&&dist[u]+weightrhs.d;}};voidlink(intu,intv,intw){e[++tot]=(Edges){head[u],v,w};head[u]=tot;
- P4779 【模板】单源最短路径(堆优化dijkstra)
summ1ts
一些模版算法图论最短路dijkstra堆
堆优化dijkstra,时间复杂度,我个人写习惯的模版。#includeusingnamespacestd;#definePIIpair#definefifirst#definesesecondconstintN=2e5+10;intread(){intx=0,f=1;charch=getchar();while(!isdigit(ch)){if(ch=='-')f=-1;ch=getchar()
- 运筹学——图论与最短距离(Python实现)(2),2024年最新Python高级面试framework
m0_60575487
2024年程序员学习图论python面试
适用于wij≥0,给出了从vs到任意一个点vj的最短路。Dijkstra算法是在1959年提出来的。目前公认,在所有的权wij≥0时,这个算法是寻求最短路问题最好的算法。并且,这个算法实际上也给出了寻求从一个始定点vs到任意一个点vj的最短路。2案例1——贪心算法实现==============2.1旅行商问题(TSP)**旅行商问题(TravelingSalesmanProblem,TSP)**
- 图论篇--代码随想录算法训练营第五十八天打卡|拓扑排序,dijkstra(朴素版)
热爱编程的OP
leetcode算法图论数据结构c++
拓扑排序题目链接:117.软件构建题目描述:某个大型软件项目的构建系统拥有N个文件,文件编号从0到N-1,在这些文件中,某些文件依赖于其他文件的内容,这意味着如果文件A依赖于文件B,则必须在处理文件A之前处理文件B(0#include#include#includeusingnamespacestd;intmain(){intm,n,s,t;cin>>n>>m;vectorinDegree(n,0
- 代码随想录训练营 Day58打卡 图论part08 拓扑排序 dijkstra(朴素版)
那一抹阳光多灿烂
图论力扣图论算法python数据结构
代码随想录训练营Day58打卡图论part08一、拓扑排序例题:卡码117.软件构建题目描述某个大型软件项目的构建系统拥有N个文件,文件编号从0到N-1,在这些文件中,某些文件依赖于其他文件的内容,这意味着如果文件A依赖于文件B,则必须在处理文件A之前处理文件B(0<=A,B<=N-1)。请编写一个算法,用于确定文件处理的顺序。输入描述第一行输入两个正整数N,M。表示N个文件之间拥有M条依赖关系。
- C语言-数据结构 无向图迪杰斯特拉算法(Dijkstra)邻接矩阵存储
Happy鱿鱼
算法c语言数据结构
在迪杰斯特拉中,相比普利姆算法,是从顶点出发的一条路径不断的寻找最短路径,在实现的时候需要创建三个辅助数组,记录算法的关键操作,分别是Visited[MAXVEX]记录顶点是否被访问,教材上写的final数组但作用是一样的,然后第二个数组是TmpDistance[MAXVEX],教材使用的D数组,命名语义化较弱不太好理解,实际用途与TmpDistance一样的,用于记录算法过程中,当前顶点到达邻接
- Floyd算法求最短路径
阿轩不熬夜~~
算法学习c++数据结构
目录一.Floyd算法介绍二.算法实现一.邻接矩阵介绍二.过程简述三.Floyd核心代码三.例题分析一.B3647【模板】Floyd.二.P2835刻录光盘四.Floyd算法的优缺点一.Floyd算法介绍Floyd算法又称为插点法,是一种利用动态规划的思想寻找给定的加权图中多源点之间最短路径的算法,与Dijkstra算法类似。该算法名称以创始人之一、1978年图灵奖获得者、斯坦福大学计算机科学系教
- POJ 1062 : 昂贵的聘礼 - 最短路Dijkstra+枚举(难)
bookybooky
图论最短路Dijsktrapojzoj图论
dijkstra处理权值非负情形,最近才开始看最短路。题目大意:(中文题容易理解)大致就是说,最终要得到酋长的许诺,每件物品可能有其他物品(1件)能让此物品价格优惠,你可通过交易获得物品从而以最少金钱达到酋长许诺。交易受到“等级限制”。其中的等级限制处理需要一定的技巧,细节一定要处理好!输入:(单Case输入)第一行两个整数M,N(1>30)-1足够,邻接矩阵用int也足够,并不像DISCUSS中
- 最短路算法一
halcyonfreed
算法
2024061819:33朴素版Dijkstra47:00Heap优化版1:04:00Bellman-ford最短路算法——5种!!!考察重点:不会考算法证明,这里不讲了,重点是实现+抽象1.如何建图——如何定义点边,抽象成一个图问题Prim/i/,kruskal是最小生成树算法不是prime/ai/质数1.是么时候用?方法n图的node数m边数单源:只有一个起点,求从1个点到其他所有点/第n号点
- 算法训练营|图论第9天 dijkstra(堆优化),bellman_ford
人间温柔观察者
算法图论
题目:dijkstra(堆优化)题目链接:47.参加科学大会(第六期模拟笔试)(kamacoder.com)代码:#includeusingnamespacestd;classmycomparison{public:booloperator()(constpair&lhs,constpair&rhs){returnlhs.second>rhs.second;}};structEdge{intto;
- 代码随想录算法训练营第六十五天 | dijkstra(堆优化版)精讲、Bellman_ford 算法精讲、复习
Danny_8
算法java数据结构图论
dijkstra(堆优化版)精讲—卡码网:47.参加科学大会题目链接:https://kamacoder.com/problempage.php?pid=1047文档讲解:https://programmercarl.com/kamacoder/0047.%E5%8F%82%E4%BC%9Adijkstra%E5%A0%86.html思路当节点数多,边数少(稀疏图)时,可以考虑从边的角度出发,用堆
- FFmpeg 7.0 版本 “Dijkstra”的特点概述
Codec Conductor
FFmpegffmpegFFmpeg音视频
FFmpeg7.0FFmpeg官网:https://ffmpeg.org/FFmpeg官网更新日志,2024.4.5号发布代号"Dijkstra"的7.0版本的FFmpeg,如下截图:为什么叫Dijkstra“Dijkstra”指的是艾兹格·戴克斯特拉(EdsgerWybeDijkstra),他是一位荷兰计算机科学家,对计算机科学领域做出了巨大贡献。戴克斯特拉最著名的成就之一是发明了最短路径算法,
- Python高效实现Dijkstra算法求解单源最短路径问题
清水白石008
pythonPython题库python算法网络
Python高效实现Dijkstra算法求解单源最短路径问题在Python面试中,考官通常会关注候选人的编程能力、问题解决能力以及对Python语言特性的理解。Dijkstra算法是一种经典的图算法,用于求解单源最短路径问题。本文将详细介绍如何实现Dijkstra算法,确保代码实用性强,条理清晰,操作性强。1.引言Dijkstra算法由荷兰计算机科学家EdsgerDijkstra于1956年提出,
- 刷题Day64|Floyd 算法精讲:97. 小明逛公园、A * 算法精讲:127. 骑士的攻击
风啊雨
算法
Floyd算法精讲解决多源最短路问题,即求多个起点到多个终点的多条最短路径。dijkstra朴素版、dijkstra堆优化、Bellman算法、Bellman队列优化(SPFA)都是单源最短路,即只能有一个起点。Floyd算法对边的权值正负没有要求,都可以处理。思路:核心思想是动态规划。分两种情况:(1)节点i到节点j的最短路径经过节点k:grid[i][j][k]=grid[i][k][k-1]
- 一文搞懂戴克斯特拉算法-dijkstra
somenzz
算法数据结构pythondijkstra贪心算法
大学学习数据结构那会,当时记得终于把dijkstra算法搞明白了,但是今天碰到的时候,大脑又是一片空白,于是我就又学习了下,把自己的理解写下来,希望你也可以通过本文搞懂dijkstra算法。dijkstra的起源dijkstra已经62岁了,是由荷兰计算机科学家艾兹赫尔·戴克斯特拉在1956年制造,并于3年后在期刊上发表,在2001年的采访中[1]他说到:从鹿特丹到格罗宁根的最短路径是什么?实际上
- 算法训练营|图论第8天 拓扑排序 dijkstra
人间温柔观察者
算法图论数据结构
题目:拓扑排序题目链接:117.软件构建(kamacoder.com)代码:#include#includeusingnamespacestd;intmain(){intn,m;cin>>n>>m;vectorinDegree(n,0);unordered_map>myMap;vectorresult;for(inti=0;i>s>>t;inDegree[t]++;myMap[s].push_ba
- 迪杰斯特拉(Dijkstra's )算法——解决带权有向无向图最短路径
一条晒干的咸魚
数据结构与算法算法
迪杰斯特拉算法(Dijkstra'sAlgorithm),又称为狄克斯特拉算法,是一种用于解决带权重有向图或无向图最短路径问题的算法。该算法由荷兰计算机科学家艾兹赫尔·狄克斯特拉在1956年发明,是一种广泛应用于网络路由和其他领域的算法。在2001年的一次采访中,Dijkstra博士透露了他设计这个算法的起因和过程:从Rotterdam到Groningen的最短路线是什么?我花了大概20分钟时间设
- 代码随想录算法训练营第58天| 图论 拓扑排序 dijkstra算法
煤球小黑
算法图论数据结构
拓扑排序:听起来是排序实际上是图论问题。对于一个有向图,把这个有向图转化成线性的排序,就叫拓扑排序。实际上是按先后顺序输出需要处理的事件。实现拓扑排序有两种方法,一种是BFS,另一种是DFS。如果要使用BFS,可以先通过入度为0判断起点是哪个点,只要遍历一遍所有边计算所有点的入度就可以找到起点了。在将该节点加入结果集之后删除,继续寻找集合中入度为0的点加入结果集然后再删除,所以如果出现多个入度为零
- day59-graph theory-part09-8.30
bbrruunnoo
python开发语言算法
tasksfortoday:1.digkstra堆优化版47.参加科学大会2.bellman_ford算法94.城市间货物运输I---------------------------------------------------------------------------------1.dijkstra堆优化版Thisisanoptimizationforthevanilladijkstra
- 打卡第59天-------图论
感谢上Di_123
前端算法题图论
加油!不要放弃,交托给上Di,求shen保守我的平安与顺利。一、dijkstra(堆优化版)精讲代码随想录二、Bellman_ford算法精讲代码随想录
- 【图论】最短路算法
叫我胡萝北
算法图论
【图论】最短路算法文章目录【图论】最短路算法1.Dijkstra2.Bellman-Ford3.Floyd4.A*5.matlab求最短路今天是图论的学习,就从最短路算法开始叭1.DijkstraDijkstra算法是典型的单源最短路算法,即求图中一个点到其他所有点的最短路径的算法,时间复杂度O(n2)O(n^2)O(n2)Dijkstra算法算是贪心思想实现的,图不能有负权边,其核心要点为:每次
- matlab中迪杰斯特拉算法,dijkstra算法(迪杰斯特拉算法)
肖宏辉
matlab中迪杰斯特拉算法
单源最短路径算法——Dijkstra算法(迪杰斯特拉算法)一综述Dijkstra算法(迪杰斯特拉算法)主要是用于求解有向图中单源最短路径问题.其本质是基于贪心策略的(具体见下文).其基本原理如下:(1)初始化:集合vertex_set初始为{sourc...Dijkstra【迪杰斯特拉算法】有关最短路径的最后一个算法——Dijkstra迪杰斯特拉算法是由荷兰计算机科学家迪杰斯特
- 简单の暑假总结——最小生成树
C2024XSC184
笔记
6.1最小生成树我们先来了解一下最小生成树的概念:我们定义无向连通图的最小生成树(MinimumSpanningTree,MST)为边权和最小的生成树(树也叫做生成树)。——OIWiki我们举一个例子:在这样一个带权无向图中,它的最小生成树如下图所示,其权值为141414我们有222种算法来解决这个问题6.2Prim算法Prim算法无论是本质上还是代码上都与Dijkstra高度类似,本质上还是一个
- Dijkstra(c++)
少年负剑去
基础算法每日算法题c++java开发语言
迪杰斯特拉算法(Dijkstra)是由荷兰计算机科学家狄克斯特拉于1959年提出的,因此又叫狄克斯特拉算法。是从一个顶点到其余各顶点的最短路径算法,解决的是有权图中最短路径问题。迪杰斯特拉算法主要特点是从起始点开始,采用贪心算法的策略,每次遍历到始点距离最近且未访问过的顶点的邻接节点,直到扩展到终点为止。同时dijkstra算法主要用于解决单源最短路问题(边权为正数),其可以分为两种版本,两种版本
- 【数据结构】最短路径
游向大厂的咸鱼
浅谈C++数据结构算法
在图论中,最短路径问题是一个经典且重要的问题,它用于寻找两个顶点之间距离最短的路径。本文将详细介绍两种常用的最短路径算法——Dijkstra算法和Bellman-Ford算法的原理,并提供C语言代码示例,演示它们的实现方式及应用场景。一、Dijkstra算法Dijkstra算法是一种贪心算法,用于求解带有非负权值的加权图的单源最短路径问题。它的基本思想是,从起始顶点开始,逐步扩展已经找到的最短路径
- 【算法基础实验】排序-最小索引优先队列IndexMinPQ
Greyplayground
算法
回顾最小优先队列MinPQ理论知识概述在算法和数据结构中,优先队列是一种特殊的队列数据结构,每个元素都有一个优先级。当你从优先队列中删除元素时,通常会删除具有最高(或最低)优先级的元素。在最小优先队列中,优先级最低的元素最先被删除。索引最小优先队列是优先队列的一种变体,允许你通过索引(或键)快速地更新、插入、删除和访问最小元素。它的典型应用包括网络流、图算法(如Dijkstra最短路径算法)等。基
- 通过dijkstra算法解决城堡问题
likepandas
算法贪心算法
问题描述:你知道黑暗城保有N个房间(1≤N≤1000),M条可以制造的双向通道,以及每条通道的长度。城堡是树形的并且满足下面的条件:如果所有的通道都被修建.设D[i]为第i号房间与第1号房间的最短路径长度;而S[i]为实际修建的树形城保中第i号房间与第1号房间的路径长度;要求对于所有整数i(1#include#includeusingnamespacestd;//0x3f3f3f3f的十进制为10
- Dijkstra算法C++
江淮子弟
算法刷刷刷算法c++图论数据结构贪心算法
系列文章目录Dijkstra算法Ballman_ford算法Spfa算法Floyd算法文章目录系列文章目录一、朴素版本二、堆优化版本总结一、朴素版本时间复杂度:$O(n^2)$数据量比较密集时:数据存储用邻接矩阵g[][]较大值MAX选用0x3f3f3f3f:32bit中通常int最大值为0x7fffffff,但是此处需要对MAX进行加法,0x7fffffff+3为负数,显然不符合最短路径算法中的
- ios内付费
374016526
ios内付费
近年来写了很多IOS的程序,内付费也用到不少,使用IOS的内付费实现起来比较麻烦,这里我写了一个简单的内付费包,希望对大家有帮助。
具体使用如下:
这里的sender其实就是调用者,这里主要是为了回调使用。
[KuroStoreApi kuroStoreProductId:@"产品ID" storeSender:self storeFinishCallBa
- 20 款优秀的 Linux 终端仿真器
brotherlamp
linuxlinux视频linux资料linux自学linux教程
终端仿真器是一款用其它显示架构重现可视终端的计算机程序。换句话说就是终端仿真器能使哑终端看似像一台连接上了服务器的客户机。终端仿真器允许最终用户用文本用户界面和命令行来访问控制台和应用程序。(LCTT 译注:终端仿真器原意指对大型机-哑终端方式的模拟,不过在当今的 Linux 环境中,常指通过远程或本地方式连接的伪终端,俗称“终端”。)
你能从开源世界中找到大量的终端仿真器,它们
- Solr Deep Paging(solr 深分页)
eksliang
solr深分页solr分页性能问题
转载请出自出处:http://eksliang.iteye.com/blog/2148370
作者:eksliang(ickes) blg:http://eksliang.iteye.com/ 概述
长期以来,我们一直有一个深分页问题。如果直接跳到很靠后的页数,查询速度会比较慢。这是因为Solr的需要为查询从开始遍历所有数据。直到Solr的4.7这个问题一直没有一个很好的解决方案。直到solr
- 数据库面试题
18289753290
面试题 数据库
1.union ,union all
网络搜索出的最佳答案:
union和union all的区别是,union会自动压缩多个结果集合中的重复结果,而union all则将所有的结果全部显示出来,不管是不是重复。
Union:对两个结果集进行并集操作,不包括重复行,同时进行默认规则的排序;
Union All:对两个结果集进行并集操作,包括重复行,不进行排序;
2.索引有哪些分类?作用是
- Android TV屏幕适配
酷的飞上天空
android
先说下现在市面上TV分辨率的大概情况
两种分辨率为主
1.720标清,分辨率为1280x720.
屏幕尺寸以32寸为主,部分电视为42寸
2.1080p全高清,分辨率为1920x1080
屏幕尺寸以42寸为主,此分辨率电视屏幕从32寸到50寸都有
适配遇到问题,已1080p尺寸为例:
分辨率固定不变,屏幕尺寸变化较大。
如:效果图尺寸为1920x1080,如果使用d
- Timer定时器与ActionListener联合应用
永夜-极光
java
功能:在控制台每秒输出一次
代码:
package Main;
import javax.swing.Timer;
import java.awt.event.*;
public class T {
private static int count = 0;
public static void main(String[] args){
- Ubuntu14.04系统Tab键不能自动补全问题解决
随便小屋
Ubuntu 14.04
Unbuntu 14.4安装之后就在终端中使用Tab键不能自动补全,解决办法如下:
1、利用vi编辑器打开/etc/bash.bashrc文件(需要root权限)
sudo vi /etc/bash.bashrc
接下来会提示输入密码
2、找到文件中的下列代码
#enable bash completion in interactive shells
#if
- 学会人际关系三招 轻松走职场
aijuans
职场
要想成功,仅有专业能力是不够的,处理好与老板、同事及下属的人际关系也是门大学问。如何才能在职场如鱼得水、游刃有余呢?在此,教您简单实用的三个窍门。
第一,多汇报
最近,管理学又提出了一个新名词“追随力”。它告诉我们,做下属最关键的就是要多请示汇报,让上司随时了解你的工作进度,有了新想法也要及时建议。不知不觉,你就有了“追随力”,上司会越来越了解和信任你。
第二,勤沟通
团队的力
- 《O2O:移动互联网时代的商业革命》读书笔记
aoyouzi
读书笔记
移动互联网的未来:碎片化内容+碎片化渠道=各式精准、互动的新型社会化营销。
O2O:Online to OffLine 线上线下活动
O2O就是在移动互联网时代,生活消费领域通过线上和线下互动的一种新型商业模式。
手机二维码本质:O2O商务行为从线下现实世界到线上虚拟世界的入口。
线上虚拟世界创造的本意是打破信息鸿沟,让不同地域、不同需求的人
- js实现图片随鼠标滚动的效果
百合不是茶
JavaScript滚动属性的获取图片滚动属性获取页面加载
1,获取样式属性值
top 与顶部的距离
left 与左边的距离
right 与右边的距离
bottom 与下边的距离
zIndex 层叠层次
例子:获取左边的宽度,当css写在body标签中时
<div id="adver" style="position:absolute;top:50px;left:1000p
- ajax同步异步参数async
bijian1013
jqueryAjaxasync
开发项目开发过程中,需要将ajax的返回值赋到全局变量中,然后在该页面其他地方引用,因为ajax异步的原因一直无法成功,需将async:false,使其变成同步的。
格式:
$.ajax({ type: 'POST', ur
- Webx3框架(1)
Bill_chen
eclipsespringmaven框架ibatis
Webx是淘宝开发的一套Web开发框架,Webx3是其第三个升级版本;采用Eclipse的开发环境,现在支持java开发;
采用turbine原型的MVC框架,扩展了Spring容器,利用Maven进行项目的构建管理,灵活的ibatis持久层支持,总的来说,还是一套很不错的Web框架。
Webx3遵循turbine风格,velocity的模板被分为layout/screen/control三部
- 【MongoDB学习笔记五】MongoDB概述
bit1129
mongodb
MongoDB是面向文档的NoSQL数据库,尽量业界还对MongoDB存在一些质疑的声音,比如性能尤其是查询性能、数据一致性的支持没有想象的那么好,但是MongoDB用户群确实已经够多。MongoDB的亮点不在于它的性能,而是它处理非结构化数据的能力以及内置对分布式的支持(复制、分片达到的高可用、高可伸缩),同时它提供的近似于SQL的查询能力,也是在做NoSQL技术选型时,考虑的一个重要因素。Mo
- spring/hibernate/struts2常见异常总结
白糖_
Hibernate
Spring
①ClassNotFoundException: org.aspectj.weaver.reflect.ReflectionWorld$ReflectionWorldException
缺少aspectjweaver.jar,该jar包常用于spring aop中
②java.lang.ClassNotFoundException: org.sprin
- jquery easyui表单重置(reset)扩展思路
bozch
formjquery easyuireset
在jquery easyui表单中 尚未提供表单重置的功能,这就需要自己对其进行扩展。
扩展的时候要考虑的控件有:
combo,combobox,combogrid,combotree,datebox,datetimebox
需要对其添加reset方法,reset方法就是把初始化的值赋值给当前的组件,这就需要在组件的初始化时将值保存下来。
在所有的reset方法添加完毕之后,就需要对fo
- 编程之美-烙饼排序
bylijinnan
编程之美
package beautyOfCoding;
import java.util.Arrays;
/*
*《编程之美》的思路是:搜索+剪枝。有点像是写下棋程序:当前情况下,把所有可能的下一步都做一遍;在这每一遍操作里面,计算出如果按这一步走的话,能不能赢(得出最优结果)。
*《编程之美》上代码有很多错误,且每个变量的含义令人费解。因此我按我的理解写了以下代码:
*/
- Struts1.X 源码分析之ActionForm赋值原理
chenbowen00
struts
struts1在处理请求参数之前,首先会根据配置文件action节点的name属性创建对应的ActionForm。如果配置了name属性,却找不到对应的ActionForm类也不会报错,只是不会处理本次请求的请求参数。
如果找到了对应的ActionForm类,则先判断是否已经存在ActionForm的实例,如果不存在则创建实例,并将其存放在对应的作用域中。作用域由配置文件action节点的s
- [空天防御与经济]在获得充足的外部资源之前,太空投资需有限度
comsci
资源
这里有一个常识性的问题:
地球的资源,人类的资金是有限的,而太空是无限的.....
就算全人类联合起来,要在太空中修建大型空间站,也不一定能够成功,因为资源和资金,技术有客观的限制....
&
- ORACLE临时表—ON COMMIT PRESERVE ROWS
daizj
oracle临时表
ORACLE临时表 转
临时表:像普通表一样,有结构,但是对数据的管理上不一样,临时表存储事务或会话的中间结果集,临时表中保存的数据只对当前
会话可见,所有会话都看不到其他会话的数据,即使其他会话提交了,也看不到。临时表不存在并发行为,因为他们对于当前会话都是独立的。
创建临时表时,ORACLE只创建了表的结构(在数据字典中定义),并没有初始化内存空间,当某一会话使用临时表时,ORALCE会
- 基于Nginx XSendfile+SpringMVC进行文件下载
denger
应用服务器Webnginx网络应用lighttpd
在平常我们实现文件下载通常是通过普通 read-write方式,如下代码所示。
@RequestMapping("/courseware/{id}")
public void download(@PathVariable("id") String courseID, HttpServletResp
- scanf接受char类型的字符
dcj3sjt126com
c
/*
2013年3月11日22:35:54
目的:学习char只接受一个字符
*/
# include <stdio.h>
int main(void)
{
int i;
char ch;
scanf("%d", &i);
printf("i = %d\n", i);
scanf("%
- 学编程的价值
dcj3sjt126com
编程
发一个人会编程, 想想以后可以教儿女, 是多么美好的事啊, 不管儿女将来从事什么样的职业, 教一教, 对他思维的开拓大有帮助
像这位朋友学习:
http://blog.sina.com.cn/s/articlelist_2584320772_0_1.html
VirtualGS教程 (By @林泰前): 几十年的老程序员,资深的
- 二维数组(矩阵)对角线输出
飞天奔月
二维数组
今天在BBS里面看到这样的面试题目,
1,二维数组(N*N),沿对角线方向,从右上角打印到左下角如N=4: 4*4二维数组
{ 1 2 3 4 }
{ 5 6 7 8 }
{ 9 10 11 12 }
{13 14 15 16 }
打印顺序
4
3 8
2 7 12
1 6 11 16
5 10 15
9 14
13
要
- Ehcache(08)——可阻塞的Cache——BlockingCache
234390216
并发ehcacheBlockingCache阻塞
可阻塞的Cache—BlockingCache
在上一节我们提到了显示使用Ehcache锁的问题,其实我们还可以隐式的来使用Ehcache的锁,那就是通过BlockingCache。BlockingCache是Ehcache的一个封装类,可以让我们对Ehcache进行并发操作。其内部的锁机制是使用的net.
- mysqldiff对数据库间进行差异比较
jackyrong
mysqld
mysqldiff该工具是官方mysql-utilities工具集的一个脚本,可以用来对比不同数据库之间的表结构,或者同个数据库间的表结构
如果在windows下,直接下载mysql-utilities安装就可以了,然后运行后,会跑到命令行下:
1) 基本用法
mysqldiff --server1=admin:12345
- spring data jpa 方法中可用的关键字
lawrence.li
javaspring
spring data jpa 支持以方法名进行查询/删除/统计。
查询的关键字为find
删除的关键字为delete/remove (>=1.7.x)
统计的关键字为count (>=1.7.x)
修改需要使用@Modifying注解
@Modifying
@Query("update User u set u.firstna
- Spring的ModelAndView类
nicegege
spring
项目中controller的方法跳转的到ModelAndView类,一直很好奇spring怎么实现的?
/*
* Copyright 2002-2010 the original author or authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* yo
- 搭建 CentOS 6 服务器(13) - rsync、Amanda
rensanning
centos
(一)rsync
Server端
# yum install rsync
# vi /etc/xinetd.d/rsync
service rsync
{
disable = no
flags = IPv6
socket_type = stream
wait
- Learn Nodejs 02
toknowme
nodejs
(1)npm是什么
npm is the package manager for node
官方网站:https://www.npmjs.com/
npm上有很多优秀的nodejs包,来解决常见的一些问题,比如用node-mysql,就可以方便通过nodejs链接到mysql,进行数据库的操作
在开发过程往往会需要用到其他的包,使用npm就可以下载这些包来供程序调用
&nb
- Spring MVC 拦截器
xp9802
spring mvc
Controller层的拦截器继承于HandlerInterceptorAdapter
HandlerInterceptorAdapter.java 1 public abstract class HandlerInterceptorAdapter implements HandlerIntercep