- TDengine和DolphinDB哪个更好,哈哈哈哈,闲来无聊分析了一下。(1)
2401_84023482
程序员tdengine大数据时序数据库
TDengine是专为时序数据设计的,针对的是物联网、工业互联网、IT运维场景。这些场景是不需要特殊的查询函数的,更关心的是写入速度、查询速度。而且这些场景下,也需要一些其他数据库不具备的功能,比如插值、时间聚合等等如果要问TDengine和DolphinDB最大的特色,存储引擎可能是TDengine最大的特色,性能也非常好;DolphinDB的最大特色毫无疑问是它的计算引擎。可以毫不夸张的说,D
- 梯度提升机 (Gradient Boosting Machines, GBM)
ALGORITHM LOL
boosting集成学习机器学习
梯度提升机(GradientBoostingMachines,GBM)通俗易懂算法梯度提升机(GradientBoostingMachines,GBM)是一种集成学习算法,主要用于回归和分类问题。GBM本质上是通过训练一系列简单的模型(通常是决策树),然后将这些模型组合起来,从而提高整体预测性能。基本步骤初始模型:首先,我们用一个简单的模型(如一个常数值)作为预测模型,记为F0(x)F_0(x)F
- XPER: 揭示预测性能的驱动力
AI甲子光年
人工智能玩游戏chatgpt
敏感AI系统的信任度和可接受性很大程度上取决于用户理解相关模型,或者至少理解其预测结果的能力。为了揭示不透明的AI应用,今天普遍使用了可解释AI(XAI)方法,如事后解释工具(例如SHAP,LIME),而其输出的洞察现在已被广泛理解。除了个别预测之外,我们在本文中展示了如何使用可解释性能(XPER)方法识别任何分类或回归模型的性能指标(例如AUC,R2)的驱动因素。能够识别预测模型在统计或经济性能
- TDsql
大数据-
数据库大数据中间件
TDsql的特点TDengineDistributedSQL(TDsql)是一个基于TDengine时序数据库技术的开源分布式关系型数据库管理系统。作为TDengine团队开发和维护的产品,TDsql已经广泛应用于互联网、电信、金融等领域,为用户提供高效、可靠的数据存储和查询服务。一、TDsql的特点高度优化的查询计划和执行引擎:TDsql可以快速响应大量的查询请求。其查询计划和执行引擎采用了多种
- 2024年第九届数维杯数学建模B题完整分析参考论文(共42页)(含模型和代码)
小文数模
数学建模pythonmatlab
2024年第九届数维杯数学建模分析参考论文B题生物质和煤共热解问题的研究目录摘要4一、问题重述5问题1:分析正己烷不溶物(INS)对热解产率的影响5问题2:探讨INS和混合比例的交互效应5问题3:基于共热解产物的特性优化混合比例5问题4:分析共热解组合产物收率的实验值与理论计算值差异5问题5:建立热解产物产率预测模型5二、问题分析6问题1的分析6问题2的分析6问题3的分析6问题4的分析6问题5的分
- 机器学习-神经网络:循环神经网络(RNN)详解
刷刷刷粉刷匠
机器学习机器学习神经网络rnn
引言在当今人工智能(AI)和深度学习(DL)领域,循环神经网络(RNN)作为一种专门处理序列数据的模型,具有不可忽视的重要性。RNN的设计目标是模拟和处理序列中的时间依赖关系,使其成为许多应用场景的理想选择,如自然语言处理(NLP)、时间序列预测和语音识别等。它不仅能处理固定长度的数据输入,还能应对输入长度不一的序列,从而为各种复杂的时序数据任务提供了强有力的支持。1.RNN的起源与发展循环神经网
- 现代数据栈MDS的主要特征
m0_59327713
游戏大数据人工智能
DazdataMDS有兴趣利用原有数据做更多事情的公司会爆发式增长,数据已成为几乎每个企业的游戏名称,因为公司和组织正在寻找更多方法来保持领先地位并识别过去的错误。未来五年将看到数据革命推动的数字化转型,企业的发展和更新速度比以往任何时候都快。适应和改变的唯一方法是使用数据并使用预测模型和AI/ML环顾四周。这些因素将区分新数字经济中的赢家和输家。数据管理正在从分析优先战略转变为基于结果的战略,这
- InfluxDB和OpenTSDB两种时序数据库应用场景
CodeMaster_37714848
opentsdb时序数据库数据库
InfluxDB概述:InfluxDB是一个开源的高性能时序数据库,专门用于处理大量的时间序列数据。它由InfluxData开发,支持高写入吞吐量和灵活的查询。特点:高性能写入和查询:设计上注重高写入速度和低延迟查询。SQL-like查询语言:使用类似SQL的InfluxQL或Flux查询语言,简化了复杂查询的编写。数据压缩:提供高效的数据压缩机制,减少存储需求。集成和工具:支持与Grafana等
- 数学建模强化宝典(11)时间预测模型
IT 青年
建模强化栈数学建模数据预测模型编程
前言时间预测模型,即时间序列预测模型,是一类专门用于分析和预测时间序列数据的模型。时间序列数据是指将某一变量在不同时间点的观测值按时间先后顺序排列而成的序列。这类模型在金融、经济、气象、工业控制等多个领域都有广泛的应用。以下是一些常见的时间序列预测模型:1.朴素法(NaiveMethod)原理:预测值等于实际观察到的最后一个值。它假设数据是平稳且没有趋势性与季节性的。适用场景:数据变化不大或仅作为
- 机器学习实战----波士顿房价预测模型
永远偷渡不了的非洲人
机器学习机器学习sklearnpython
波士顿房价模型预测是一个回归问题,可以采用r2_score方法来作为评价指标。importnumpyasnpimportpandasaspdfromsklearn.metricsimportr2_score#从sklearn的数据库中导入波士顿房产数据fromsklearn.datasetsimportload_bostonfromsklearn.model_selectionimporttrai
- 几款免费的时序数据库对比
易道合之逍遥峰
时序数据库数据库
InfluxDB、TDengine、OpenTSDB、QuestDB都是当前主流的时序数据库,它们在性能、功能、适用场景等方面各有特点。下面将从多个维度对这四个数据库进行对比分析:一、性能InfluxDB:高效的时间序列数据写入性能,自定义TSM引擎,快速数据写入和高效数据压缩。排名在DB-EnginesRanking时序型数据库排行榜上常常名列前茅,具有极高的性能优势。TDengine:高性能、
- 【没发表过的创新点】基于BiTCN-LSTM的风电功率预测研究(Matlab代码实现)
荔枝科研社
lstmmatlab人工智能
欢迎来到本博客❤️❤️博主优势:博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。⛳️座右铭:行百里者,半于九十。本文目录如下:目录⛳️赠与读者1概述一、研究背景与意义二、BiTCN-LSTM模型概述三、基于BiTCN-LSTM的风电功率预测模型构建四、研究优势与挑战优势:挑战:五、未来展望2运行结果3参考文献4Matlab代码、数据⛳️赠与读者做科研,涉及到一个深在的思想系统,需要科研者逻辑缜
- python奇数平方和_平方和
weixin_39807352
python奇数平方和
平方和误差和最大后验2020-12-2119:32:19多项式曲线拟合问题中的最大后验与最小化正则和平方和误差之间的关系简单证明多项式回归的最大后验等价于最小正则化和平方和误差;主要内容:多项式回归高斯分布贝叶斯定理对数函数计算1.简单回顾一下多项式回归y组合模型方法2020-12-0813:01:57不同的定性预测模型方法或定量预测模型方法各有其优点和缺点,它们之间并不是相互排斥的,而是相互联系
- sklearn 评估模型 常用函数
小Z资本
sklearn人工智能python
`sklearn.metrics`是scikit-learn库中的一个模块,它提供了许多用于评估预测模型性能的指标和工具。这些指标和工具可以帮助你了解模型在训练集和测试集上的表现,以及模型是否能够很好地泛化到未见过的数据。以下是一些`sklearn.metrics`中常用的函数和指标:1.**分类指标**:-`accuracy_score`:计算分类准确率。-`classification_rep
- 多元分类预测 | Matlab麻雀算法(SSA)优化核极限学习机(KELM)的分类预测,多特征输入模型。SSA-KELM分类预测模型
前程算法屋
优化核极限学习机SSA-KELM分类预测模型SSA-KELM
文章目录效果一览文章概述部分源码参考资料效果一览文章概述多元分类预测|Matlab麻雀算法(SSA)优化核极限学习机(KELM)的分类预测,多特征输入模型。SSA-KELM分类预测模型多特征输入单输出的二分类及多分类模型。程序内注释详细,直接替换数据就可以用。程序语言为matlab,程序可出分类效果图,迭代优化图,混淆矩阵图。部分源码%--------------
- 【ShuQiHere】SGD vs BGD:搞清楚它们的区别和适用场景
ShuQiHere
机器学习python人工智能
【ShuQiHere】在机器学习中,优化模型是构建准确预测模型的关键步骤。优化算法帮助我们调整模型的参数,使其更好地拟合训练数据,减少预测误差。在众多优化算法中,梯度下降法是一种最为常见且有效的手段。梯度下降法主要有两种变体:批量梯度下降(BatchGradientDescent,BGD)和随机梯度下降(StochasticGradientDescent,SGD)。这两者在如何计算梯度并更新模型参
- 第七届MathorCup高校数学建模挑战赛-A题:基于改进的神经网络和混沌时间序列预测控制高炉炼铁过程
格图素书
大数据竞赛赛题解析数学建模神经网络人工智能
目录摘要一.问题重述二.模型假设三.符号说明四.问题分析五.数据预处理5.1异常值剔除5.2归一化处理5.3预处理后的数据六.问题一模型的建立与求解6.1BP神经网络预测模型6.1.1输入层和输出层6.1.2训练集和验证集6.1.3三层BP神经网络结构6.1.4BP神经网络的参数6.1.6相关性分析6.2小波神经网络预测模型6.2.1小波神经网络的结构6.2.2小波神经网络的基函数6.2.3小波神
- Python(R)均方根误差平均绝对误差导图
亚图跨际
Python交叉知识R回归模型薪水预测员工倦怠大气分析性能估算算法降尺度染色质
要点回归模型评估指标评估薪水预测模型评估员工倦怠率模型评估大气分析生成式对抗模型目标对象缺失下,性能估算法追踪模型误差指标降尺度大气学模拟模型准确性评估蛋白染色质相互作用模型评估Python回归误差指标平均绝对误差表示数据集中实际值和预测值之间的绝对差的平均值。它测量数据集中残差的平均值。MAE=1N∑i=1N∣yi−y^∣MAE=\frac{1}{N}\sum_{i=1}^N\left|y_i-
- 深度学习岩土工程+离散元PFC仿真应用=数字化智能岩土预测?噂都假嘟?
好好学仿真
岩土pfc3dec深度学习人工智能
在深度学习与岩土工程融合的背景下,科研的边界持续扩展,创新成果不断涌现。从基本物理模型的构建到岩土工程问题的复杂模拟,从数据驱动的分析到工程问题的智能解决,深度学习正以前所未有的动力推动岩土工程领域的革新。据调查,目前在岩土工程领域内,深度学习的应用主要集中在以下几个方面:1.预测模型开发:使用深度学习来预测土壤和岩石的力学行为,例如土压力、剪切强度等。2.数据驱动特性分析:通过机器学习算法分析大
- 代谢组数据分析(十八):随机森林构建代谢组诊断模型
生信学习者2
代谢组分析数据分析随机森林数据挖掘
介绍使用随机森林算法和LASSO特征选择构建了一种胃癌(GC)诊断预测模型。参与者(队列1,n=426)通过随机分层抽样分为发现数据集(n=284)和测试集(n=142)。接下来,在发现数据集上执行LASSO回归,以选择能够识别胃癌患者的较少数量的特征。我们将L1约束的系数设置为0.01,并根据10,000次随机交叉验证的平均误分类误差选择了十个非零系数的特征。在发现数据集上使用引导聚合方法训练了
- 回归预测|基于北方苍鹰优化支持向量机的数据回归预测Matlab程序NGO-SVM 多特征输入单输出 高引用先用先创新
机器不会学习CL
回归预测智能优化算法回归支持向量机matlab
回归预测|基于北方苍鹰优化支持向量机的数据回归预测Matlab程序NGO-SVM多特征输入单输出高引用先用先创新文章目录前言回归预测|基于北方苍鹰优化支持向量机的数据回归预测Matlab程序NGO-SVM多特征输入单输出高引用先用先创新一、NGO-SVM模型1.北方苍鹰优化算法(NGO)的原理2.支持向量机(SVM)的原理3.NGO-SVM回归预测模型的结合总结二、实验结果三、核心代码四、代码获取
- 基于卷积神经网络与双向门控循环单元CNN-BiGRU的风电功率预测研究(Matlab代码实现)
qq_551705769
cnngrumatlab
欢迎来到本博客❤️❤️博主优势:博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。⛳️座右铭:行百里者,半于九十。本文目录如下:目录⛳️赠与读者1概述一、研究背景与意义二、CNN-BiGRU模型概述三、基于CNN-BiGRU的风电功率预测模型构建四、研究优势与挑战优势:挑战:五、未来展望2运行结果3参考文献4Matlab代码、数据⛳️赠与读者做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,
- Redis 全文检索及使用示例
凌虚(失业了求个工作)
Redis&MQredis全文检索后端架构golangjavaelasticsearch
序言Redis除了我们所熟知的缓存功能之外,还通过RedisJSON、RediSearch、RedisTimeSeries、RedisBloom等模块支持了JSON数据、查询与搜索(包括全文检索、向量搜索、GEO地理位置等)、时序数据、概率计算等等扩展功能。这些模块既可以按需导入,也被全部打包到了RedisStack中方便我们直接使用。本文将会简述如何使用Redis进行全文检索。Redis全文检索
- 决策树——ID3算法
ok的ok路
算法决策树机器学习
一,什么是决策树所谓决策树,顾名思义,是一种树,一种依托于策略抉择而建立起来的树。机器学习中,决策树是一个预测模型;它代表的是对象属性与对象值之间的一种映射关系。树中每个节点表示某个对象,而每个分叉路径则代表的是某个可能的属性值,而每个叶子节点则对应根节点到该叶子节点所经历的路径所表示的对象的值。决策树仅有单一输出,若欲有复数输出,可以建立独立的决策树以处理不同的输出。从数据产生决策树的机器学习技
- 这几个销售套路可以被模仿
AnSYoga抬头看见太阳花
通过实践去总结方法,再形成理论体系,更好去复制经验和传播第一个PMP赞美模型,我们在外场收资源为了快速破冰我们首先就是赞美,您身材真好,看上去一定是有做运动吧?这不可能呀您从不运动,那你练习一下瑜伽调整下那太完美了吗!比我们老师身材都好了……好羡慕这身材第二个成交漏斗模型,出手率-资源量-定金量-邀约量-到场量-办卡数量第三个销售预测模型,比如:我们团队业绩目标是260万、260业绩➗客单价600
- ElasticSearch
HW--
elasticsearch
一、适用场景全文搜索:1.电商搜索2.站内搜索3.文档管理系统4.论坛和社交媒体日志分析与监控:1.服务器日志2.应用日志3.运维监控数据分析:1.业务分析2.时序数据分析NoSQLJSON文档数据库:作为JSON文档数据库使用搜索推荐实现个性化搜索和推荐功能地理信息系统存储和查询带有地理信息的数据大规模监控系统二、为什么要安装分词器?IK分词器中针对中文分词提供了ik_smart和ik_max_
- 【学习笔记】灰色预测 GM(1,1) 模型 —— Matlab
望月12138
学习笔记matlab
文章目录前言一、灰色预测模型灰色预测适用情况GM(1,1)模型二、示例指数规律检验(原始数据级比检验)级比检验的定义GM(1,1)模型的级比检验模型求解求解微分方程模型评价(检验模型对原始数据的拟合程度)残差检验级比偏差检验三、代码实现----Matlab级比检验代码模型求解代码调用模型求解代码进行预测前言通过模型算法,熟练对Matlab的应用。学习视频链接:https://www.bilibil
- regression机器学习回归预测模型参考学习后自我总结
饮啦冰美式
机器学习回归学习
简单来说,就是将样本的特征矩阵映射到样本标签空间。回归分析帮助我们理解在改变一个或多个自变量时,因变量的数值会如何变化。线性模型线性回归用于建立因变量和一个或多个自变量之间的线性关系模型。在线性回归中,假设因变量(被预测变量)与自变量(预测变量)之间存在着线性关系,也就是说,因变量的数值可以通过自变量的线性组合来预测。普通最小二乘线性回归。通过最小化实际观测值与模型预测值之间的误差平方和,可以找到
- 大规模时序数据存储(三)| 核心功能设计
AIOPstack
作者简介运小尧百度高级研发工程师一、简介基本功能方面,我们的TSDB在数据的收集上提供了HTTP、Thrift等API;对查询,除了提供API之外还提供了命令行工具(CLITool),这些基本功能的设计在不同的TSDB中大同小异,因此本文不再赘述。由于数据规模庞大且出于业务数据隔离和定期清理的需要,我们设计了分库分表功能;为了提升历史数据存储和查询效率,同时节省存储成本,我们又设计了多级降采样功能
- R语言武汉流动人口趋势预测:灰色模型GM(1,1)、ARIMA时间序列、logistic逻辑回归模型|附代码数据
数据挖掘深度学习机器学习算法
全文链接:http://tecdat.cn/?p=32496原文出处:拓端数据部落公众号人口流动与迁移,作为人类产生以来就存在的一种社会现象,伴随着人类文明的不断进步从未间断。人力资源是社会文明进步、人民富裕幸福、国家繁荣昌盛的核心推动力量。当前,我国经济正处于从以政府主导的投资驱动型的经济“旧常态”向以市场需求为主导的经济“新常态”转型过渡期。本文帮助客户综合运用R语言灰色预测模型和logist
- 深入浅出Java Annotation(元注解和自定义注解)
Josh_Persistence
Java Annotation元注解自定义注解
一、基本概述
Annontation是Java5开始引入的新特征。中文名称一般叫注解。它提供了一种安全的类似注释的机制,用来将任何的信息或元数据(metadata)与程序元素(类、方法、成员变量等)进行关联。
更通俗的意思是为程序的元素(类、方法、成员变量)加上更直观更明了的说明,这些说明信息是与程序的业务逻辑无关,并且是供指定的工具或
- mysql优化特定类型的查询
annan211
java工作mysql
本节所介绍的查询优化的技巧都是和特定版本相关的,所以对于未来mysql的版本未必适用。
1 优化count查询
对于count这个函数的网上的大部分资料都是错误的或者是理解的都是一知半解的。在做优化之前我们先来看看
真正的count()函数的作用到底是什么。
count()是一个特殊的函数,有两种非常不同的作用,他可以统计某个列值的数量,也可以统计行数。
在统
- MAC下安装多版本JDK和切换几种方式
棋子chessman
jdk
环境:
MAC AIR,OS X 10.10,64位
历史:
过去 Mac 上的 Java 都是由 Apple 自己提供,只支持到 Java 6,并且OS X 10.7 开始系统并不自带(而是可选安装)(原自带的是1.6)。
后来 Apple 加入 OpenJDK 继续支持 Java 6,而 Java 7 将由 Oracle 负责提供。
在终端中输入jav
- javaScript (1)
Array_06
JavaScriptjava浏览器
JavaScript
1、运算符
运算符就是完成操作的一系列符号,它有七类: 赋值运算符(=,+=,-=,*=,/=,%=,<<=,>>=,|=,&=)、算术运算符(+,-,*,/,++,--,%)、比较运算符(>,<,<=,>=,==,===,!=,!==)、逻辑运算符(||,&&,!)、条件运算(?:)、位
- 国内顶级代码分享网站
袁潇含
javajdkoracle.netPHP
现在国内很多开源网站感觉都是为了利益而做的
当然利益是肯定的,否则谁也不会免费的去做网站
&
- Elasticsearch、MongoDB和Hadoop比较
随意而生
mongodbhadoop搜索引擎
IT界在过去几年中出现了一个有趣的现象。很多新的技术出现并立即拥抱了“大数据”。稍微老一点的技术也会将大数据添进自己的特性,避免落大部队太远,我们看到了不同技术之间的边际的模糊化。假如你有诸如Elasticsearch或者Solr这样的搜索引擎,它们存储着JSON文档,MongoDB存着JSON文档,或者一堆JSON文档存放在一个Hadoop集群的HDFS中。你可以使用这三种配
- mac os 系统科研软件总结
张亚雄
mac os
1.1 Microsoft Office for Mac 2011
大客户版,自行搜索。
1.2 Latex (MacTex):
系统环境:https://tug.org/mactex/
&nb
- Maven实战(四)生命周期
AdyZhang
maven
1. 三套生命周期 Maven拥有三套相互独立的生命周期,它们分别为clean,default和site。 每个生命周期包含一些阶段,这些阶段是有顺序的,并且后面的阶段依赖于前面的阶段,用户和Maven最直接的交互方式就是调用这些生命周期阶段。 以clean生命周期为例,它包含的阶段有pre-clean, clean 和 post
- Linux下Jenkins迁移
aijuans
Jenkins
1. 将Jenkins程序目录copy过去 源程序在/export/data/tomcatRoot/ofctest-jenkins.jd.com下面 tar -cvzf jenkins.tar.gz ofctest-jenkins.jd.com &
- request.getInputStream()只能获取一次的问题
ayaoxinchao
requestInputstream
问题:在使用HTTP协议实现应用间接口通信时,服务端读取客户端请求过来的数据,会用到request.getInputStream(),第一次读取的时候可以读取到数据,但是接下来的读取操作都读取不到数据
原因: 1. 一个InputStream对象在被读取完成后,将无法被再次读取,始终返回-1; 2. InputStream并没有实现reset方法(可以重
- 数据库SQL优化大总结之 百万级数据库优化方案
BigBird2012
SQL优化
网上关于SQL优化的教程很多,但是比较杂乱。近日有空整理了一下,写出来跟大家分享一下,其中有错误和不足的地方,还请大家纠正补充。
这篇文章我花费了大量的时间查找资料、修改、排版,希望大家阅读之后,感觉好的话推荐给更多的人,让更多的人看到、纠正以及补充。
1.对查询进行优化,要尽量避免全表扫描,首先应考虑在 where 及 order by 涉及的列上建立索引。
2.应尽量避免在 where
- jsonObject的使用
bijian1013
javajson
在项目中难免会用java处理json格式的数据,因此封装了一个JSONUtil工具类。
JSONUtil.java
package com.bijian.json.study;
import java.util.ArrayList;
import java.util.Date;
import java.util.HashMap;
- [Zookeeper学习笔记之六]Zookeeper源代码分析之Zookeeper.WatchRegistration
bit1129
zookeeper
Zookeeper类是Zookeeper提供给用户访问Zookeeper service的主要API,它包含了如下几个内部类
首先分析它的内部类,从WatchRegistration开始,为指定的znode path注册一个Watcher,
/**
* Register a watcher for a particular p
- 【Scala十三】Scala核心七:部分应用函数
bit1129
scala
何为部分应用函数?
Partially applied function: A function that’s used in an expression and that misses some of its arguments.For instance, if function f has type Int => Int => Int, then f and f(1) are p
- Tomcat Error listenerStart 终极大法
ronin47
tomcat
Tomcat报的错太含糊了,什么错都没报出来,只提示了Error listenerStart。为了调试,我们要获得更详细的日志。可以在WEB-INF/classes目录下新建一个文件叫logging.properties,内容如下
Java代码
handlers = org.apache.juli.FileHandler, java.util.logging.ConsoleHa
- 不用加减符号实现加减法
BrokenDreams
实现
今天有群友发了一个问题,要求不用加减符号(包括负号)来实现加减法。
分析一下,先看最简单的情况,假设1+1,按二进制算的话结果是10,可以看到从右往左的第一位变为0,第二位由于进位变为1。
 
- 读《研磨设计模式》-代码笔记-状态模式-State
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/*
当一个对象的内在状态改变时允许改变其行为,这个对象看起来像是改变了其类
状态模式主要解决的是当控制一个对象状态的条件表达式过于复杂时的情况
把状态的判断逻辑转移到表示不同状态的一系列类中,可以把复杂的判断逻辑简化
如果在
- CUDA程序block和thread超出硬件允许值时的异常
cherishLC
CUDA
调用CUDA的核函数时指定block 和 thread大小,该大小可以是dim3类型的(三维数组),只用一维时可以是usigned int型的。
以下程序验证了当block或thread大小超出硬件允许值时会产生异常!!!GPU根本不会执行运算!!!
所以验证结果的正确性很重要!!!
在VS中创建CUDA项目会有一个模板,里面有更详细的状态验证。
以下程序在K5000GPU上跑的。
- 诡异的超长时间GC问题定位
chenchao051
jvmcmsGChbaseswap
HBase的GC策略采用PawNew+CMS, 这是大众化的配置,ParNew经常会出现停顿时间特别长的情况,有时候甚至长到令人发指的地步,例如请看如下日志:
2012-10-17T05:54:54.293+0800: 739594.224: [GC 739606.508: [ParNew: 996800K->110720K(996800K), 178.8826900 secs] 3700
- maven环境快速搭建
daizj
安装mavne环境配置
一 下载maven
安装maven之前,要先安装jdk及配置JAVA_HOME环境变量。这个安装和配置java环境不用多说。
maven下载地址:http://maven.apache.org/download.html,目前最新的是这个apache-maven-3.2.5-bin.zip,然后解压在任意位置,最好地址中不要带中文字符,这个做java 的都知道,地址中出现中文会出现很多
- PHP网站安全,避免PHP网站受到攻击的方法
dcj3sjt126com
PHP
对于PHP网站安全主要存在这样几种攻击方式:1、命令注入(Command Injection)2、eval注入(Eval Injection)3、客户端脚本攻击(Script Insertion)4、跨网站脚本攻击(Cross Site Scripting, XSS)5、SQL注入攻击(SQL injection)6、跨网站请求伪造攻击(Cross Site Request Forgerie
- yii中给CGridView设置默认的排序根据时间倒序的方法
dcj3sjt126com
GridView
public function searchWithRelated() {
$criteria = new CDbCriteria;
$criteria->together = true; //without th
- Java集合对象和数组对象的转换
dyy_gusi
java集合
在开发中,我们经常需要将集合对象(List,Set)转换为数组对象,或者将数组对象转换为集合对象。Java提供了相互转换的工具,但是我们使用的时候需要注意,不能乱用滥用。
1、数组对象转换为集合对象
最暴力的方式是new一个集合对象,然后遍历数组,依次将数组中的元素放入到新的集合中,但是这样做显然过
- nginx同一主机部署多个应用
geeksun
nginx
近日有一需求,需要在一台主机上用nginx部署2个php应用,分别是wordpress和wiki,探索了半天,终于部署好了,下面把过程记录下来。
1. 在nginx下创建vhosts目录,用以放置vhost文件。
mkdir vhosts
2. 修改nginx.conf的配置, 在http节点增加下面内容设置,用来包含vhosts里的配置文件
#
- ubuntu添加admin权限的用户账号
hongtoushizi
ubuntuuseradd
ubuntu创建账号的方式通常用到两种:useradd 和adduser . 本人尝试了useradd方法,步骤如下:
1:useradd
使用useradd时,如果后面不加任何参数的话,如:sudo useradd sysadm 创建出来的用户将是默认的三无用户:无home directory ,无密码,无系统shell。
顾应该如下操作:
- 第五章 常用Lua开发库2-JSON库、编码转换、字符串处理
jinnianshilongnian
nginxlua
JSON库
在进行数据传输时JSON格式目前应用广泛,因此从Lua对象与JSON字符串之间相互转换是一个非常常见的功能;目前Lua也有几个JSON库,本人用过cjson、dkjson。其中cjson的语法严格(比如unicode \u0020\u7eaf),要求符合规范否则会解析失败(如\u002),而dkjson相对宽松,当然也可以通过修改cjson的源码来完成
- Spring定时器配置的两种实现方式OpenSymphony Quartz和java Timer详解
yaerfeng1989
timerquartz定时器
原创整理不易,转载请注明出处:Spring定时器配置的两种实现方式OpenSymphony Quartz和java Timer详解
代码下载地址:http://www.zuidaima.com/share/1772648445103104.htm
有两种流行Spring定时器配置:Java的Timer类和OpenSymphony的Quartz。
1.Java Timer定时
首先继承jav
- Linux下df与du两个命令的差别?
pda158
linux
一、df显示文件系统的使用情况,与du比較,就是更全盘化。 最经常使用的就是 df -T,显示文件系统的使用情况并显示文件系统的类型。 举比例如以下: [root@localhost ~]# df -T Filesystem Type &n
- [转]SQLite的工具类 ---- 通过反射把Cursor封装到VO对象
ctfzh
VOandroidsqlite反射Cursor
在写DAO层时,觉得从Cursor里一个一个的取出字段值再装到VO(值对象)里太麻烦了,就写了一个工具类,用到了反射,可以把查询记录的值装到对应的VO里,也可以生成该VO的List。
使用时需要注意:
考虑到Android的性能问题,VO没有使用Setter和Getter,而是直接用public的属性。
表中的字段名需要和VO的属性名一样,要是不一样就得在查询的SQL中
- 该学习笔记用到的Employee表
vipbooks
oraclesql工作
这是我在学习Oracle是用到的Employee表,在该笔记中用到的就是这张表,大家可以用它来学习和练习。
drop table Employee;
-- 员工信息表
create table Employee(
-- 员工编号
EmpNo number(3) primary key,
-- 姓