今天给大家带来的是Python综合实战开发的数据可视化操作
通过python实现对数据的分析、可视化
数据来源:线上公布数据,需要可私信
前期准备工作:Python可视化准备工作
前期模块安装等前期基础的准备工作大家可以看我之前的文章讲解,有问题可以私信或评论区联系我
在进行Python地图可视化开发之前,我们先进行简单的学习,了解我们应该如何使用python绘制一个中国地图。
from pyecharts import options as opts
from pyecharts.charts import BMap
from pyecharts.faker import Faker
c = (
BMap()
.add_schema(baidu_ak="FAKE_AK", center=[120.13066322374, 30.240018034923])
.add(
"bmap",
[list(z) for z in zip(Faker.provinces, Faker.values())],
label_opts=opts.LabelOpts(formatter="{b}"),
)
.set_global_opts(title_opts=opts.TitleOpts(title="BMap-基本示例"))
.render("中国地图.html")
)
这里代码调用百度地图的ak,直接生成中国地图
好的,我们自己尝试写一个简单的地图界面
from pyecharts.charts import Map
from pyecharts.options import VisualMapOpts
# 准备地图对象
map = Map()
# 准备数据
data = [
("北京市", 99),
("上海市", 199),
("湖南省", 299),
("台湾省", 399),
("广东省", 499)
]
# 添加数据
map.add("测试地图", data, "china")
# 设置全局选项
map.set_global_opts(
visualmap_opts=VisualMapOpts(
is_show=True,
is_piecewise=True,
pieces=[
{"min": 1, "max": 9, "label": "1-9", "color": "#CCFFFF"},
{"min": 10, "max": 99, "label": "10-99", "color": "#FF6666"},
{"min": 100, "max": 500, "label": "100-500", "color": "#990033"}
]
)
)
# 绘图
map.render("地图可视化基础.html")
根据前面的学习,加上我们自己在网络上扒拉出来的数据,我们尝试做两个疫情地图的分析
import json
from pyecharts.charts import Map
from pyecharts.options import *
# 读取数据文件
f = open("D:\疫情.txt", "r", encoding="UTF-8")
data = f.read() # 全部数据
# 关闭文件
f.close()
# 取到各省数据
# 将字符串json转换为python的字典
data_dict = json.loads(data) # 基础数据字典
# 从字典中取出省份的数据
province_data_list = data_dict["areaTree"][0]["children"]
# 组装每个省份和确诊人数为元组,并各个省的数据都封装入列表内
data_list = [] # 绘图需要用的数据列表
for province_data in province_data_list:
province_name = (province_data["name"]+"省") # 省份名称
province_confirm = province_data["total"]["confirm"] # 确诊人数
data_list.append((province_name, province_confirm))
# print(data_list)
# 创建地图对象
map = Map()
# 添加数据
map.add("各省份确诊人数", data_list, "china")
# 设置全局配置,定制分段的视觉映射
map.set_global_opts(
title_opts=TitleOpts(title="全国疫情地图"),
visualmap_opts=VisualMapOpts(
is_show=True, # 是否显示
is_piecewise=True, # 是否分段
pieces=[
{"min": 1, "max": 99, "lable": "1~99人", "color": "#CCFFFF"},
{"min": 100, "max": 999, "lable": "100~9999人", "color": "#FFFF99"},
{"min": 1000, "max": 4999, "lable": "1000~4999人", "color": "#FF9966"},
{"min": 5000, "max": 9999, "lable": "5000~99999人", "color": "#FF6666"},
{"min": 10000, "max": 99999, "lable": "10000~99999人", "color": "#CC3333"},
{"min": 100000, "lable": "100000+", "color": "#990033"},
]
)
)
# 绘图
map.render("全国疫情地图.html")
import json
from pyecharts.charts import Map
from pyecharts.options import *
# 读取文件
f = open("D:\BaiduNetdiskDownload\资料\地图数据\疫情.txt", "r", encoding="UTF-8")
data = f.read()
# 关闭文件
f.close()
# 获取河南省数据
# json数据转换为python字典
data_dict = json.loads(data)
# 取到河南省数据
cities_data = data_dict["areaTree"][0]["children"][3]["children"]
# 准备数据为元组并放入list
data_list = []
for city_data in cities_data:
city_name = city_data["name"] + "市"
city_confirm = city_data["total"]["confirm"]
data_list.append((city_name, city_confirm))
# 手动添加济源市的数据
data_list.append(("济源市", 5))
# 构建地图
map = Map()
map.add("河南省疫情分布", data_list, "河南")
# 设置全局选项
map.set_global_opts(
title_opts=TitleOpts(title="河南省疫情地图"),
visualmap_opts=VisualMapOpts(
is_show=True, # 是否显示
is_piecewise=True, # 是否分段
pieces=[
{"min": 1, "max": 99, "lable": "1~99人", "color": "#CCFFFF"},
{"min": 100, "max": 999, "lable": "100~9999人", "color": "#FFFF99"},
{"min": 1000, "max": 4999, "lable": "1000~4999人", "color": "#FF9966"},
{"min": 5000, "max": 9999, "lable": "5000~99999人", "color": "#FF6666"},
{"min": 10000, "max": 99999, "lable": "10000~99999人", "color": "#CC3333"},
{"min": 100000, "lable": "100000+", "color": "#990033"},
]
)
)
# 绘图
map.render("河南省疫情地图.html")