- 小南每日 AI 资讯 | 国产AI之光DeepSeek暴击硅谷??? | 25/01/29
小南AI学院
人工智能
1.中国AI模型震惊硅谷:DeepSeek为何一夜火出圈?国产AI大模型DeepSeek迅速崛起,引发硅谷关注。2.中国银行支持AI产业:1万亿元金融扶持助推智能化升级中国银行宣布提供1万亿元资金支持人工智能产业链发展,助力智能化升级。3.国产AI大模型DeepSeek惊艳全球:游戏科学冯骥称其为“国运级别科技成果”DeepSeek的AI模型引起全球关注,游戏科学的冯骥高度评价其意义。4.AI产业
- 【我的阅读】【nature |ai4science】Scientific discovery in the age of artificial intelligence【人工智能时代的科学发现】
算法研究员
【AI4Science】人工智能
相关资料:https://www.nature.com/articles/s41586-023-06221-2#Sec15文章目录Abstract摘要Conclusion结论Abstract摘要Artificialintelligence(AI)isbeingincreasinglyintegratedintoscientificdiscoverytoaugmentandaccelerateres
- Hugging Face挑战DeepSeek,AI开源竞赛升级!
新加坡内哥谈技术
人工智能深度学习语言模型学习
每周跟踪AI热点新闻动向和震撼发展想要探索生成式人工智能的前沿进展吗?订阅我们的简报,深入解析最新的技术突破、实际应用案例和未来的趋势。与全球数同行一同,从行业内部的深度分析和实用指南中受益。不要错过这个机会,成为AI领域的领跑者。点击订阅,与未来同行!订阅:https://rengongzhineng.io/DeepSeek的R1推理模型刚刚引发全球轰动,开源AI界的“顶流”HuggingFac
- LLM based Single Agent System
AGI大模型与大数据研究院
大数据AI人工智能计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
LLM-BasedSingleAgentSystem:ANewEraofIntelligentAutomation关键词:大语言模型,单智能体系统,强化学习,自然语言处理,智能自动化1.背景介绍近年来,随着深度学习技术的快速发展,大语言模型(LLM)在自然语言处理(NLP)领域取得了突破性进展。LLM凭借其强大的语言理解和生成能力,正在改变着人们与信息交互的方式。同时,人工智能领域的另一个重要研究
- DeepSeek:硅谷AI格局的拐点?
新加坡内哥谈技术
人工智能深度学习语言模型学习
每周跟踪AI热点新闻动向和震撼发展想要探索生成式人工智能的前沿进展吗?订阅我们的简报,深入解析最新的技术突破、实际应用案例和未来的趋势。与全球数同行一同,从行业内部的深度分析和实用指南中受益。不要错过这个机会,成为AI领域的领跑者。点击订阅,与未来同行!订阅:https://rengongzhineng.io/本周,硅谷迎来了一个令人大跌眼镜的现实:打造先进人工智能模型,可能远没有想象中那么高深莫
- AI常见的算法
纠结哥_Shrek
人工智能算法
人工智能(AI)中常见的算法分为多个领域,如机器学习、深度学习、强化学习、自然语言处理和计算机视觉等。以下是一些常见的算法及其用途:1.机器学习(MachineLearning)监督学习(SupervisedLearning)线性回归(LinearRegression):用于预测连续值,如房价预测。逻辑回归(LogisticRegression):用于分类问题,如垃圾邮件检测。支持向量机(SVM)
- 【 书生·浦语大模型实战营】学习笔记(五):LMDeploy 量化部署
GoAI
深入浅出LLM深入浅出AI大模型LLM部署人工智能LMDeploy
AI学习星球推荐:GoAI的学习社区知识星球是一个致力于提供《机器学习|深度学习|CV|NLP|大模型|多模态|AIGC》各个最新AI方向综述、论文等成体系的学习资料,配有全面而有深度的专栏内容,包括不限于前沿论文解读、资料共享、行业最新动态以、实践教程、求职相关(简历撰写技巧、面经资料与心得)多方面综合学习平台,强烈推荐AI小白及AI1;;爱好者学习,性价比非常高!加入星球➡️点击链接
- PyTorch 框架实现线性回归:从数据预处理到模型训练全流程
大模型铲屎官
PyTorchpytorch线性回归人工智能深度学习python
系列文章目录Pytorch基础篇01-PyTorch新手必看:张量是什么?5分钟教你快速创建张量!02-张量运算真简单!PyTorch数值计算操作完全指南03-Numpy还是PyTorch?张量与Numpy的神奇转换技巧04-揭秘数据处理神器:PyTorch张量拼接与拆分实用技巧05-深度学习从索引开始:PyTorch张量索引与切片最全解析06-张量形状任意改!PyTorchreshape、tra
- 两个免费的英文论文润色网站
知足常乐2023
论文润色笔记
1.DeepL:常用,感觉比较好用,可选择多种润色模式,但润色的字数有限制。DeepLWrite:人工智能驱动的写作助手https://www.deepl.com/write2.赛特新思:用的较少,润色字数也有限制。SCI润色|文献润色|英文润色|Editing|英文写作|论文写作|citexs斯特新思https://www.citexs.com/Editing
- Python编程入门指南:从基础到高级
编程咕咕gu-
python零基础学习开发语言学习零基础入门
如果你正在学习Python,那么你需要的话可以,点击这里Python重磅福利:入门&进阶全套学习资料、电子书、软件包、项目源码等等免费分享!一、引言1.1Python编程语言简介Python是一种高级编程语言,它具有简单易学、代码简洁、易维护等特点,因此被广泛应用于科学计算、数据分析、人工智能等领域。Python的语法简洁,代码易于阅读和编写,因此它被广大开发者所喜爱。同时,Python还拥有庞大
- 机器学习Day01
酒脑猫
机器学习人工智能
人工智能三大概念及其关系人工智能(AI):使用计算机来模拟或者代替人类机器学习(ML):机器自动学习,并不只由人定义规则编程深度学习(DL):大脑仿生,模拟人大脑神经网络,设计一层层神经元模拟事物机器学习是实现人工智能的一种途径,深度学习是机器学习的一种更加深入的方法。机器学习学习方法基于规则的学习:程序员根据自己经验定义规则基于模型的学习:由于某些事物,问题无法可以定义明确的规则,如:图片,语音
- AI技术赋能电商行业,引领变革
m0_74136676
人工智能
AI大模型在电商行业的应用正在不断拓展,其强大的数据处理和分析能力为电商平台带来了前所未有的创新机遇。一、购物推荐的创新应用AI大模型通过分析用户的浏览历史、购买记录、搜索关键词等大量数据,能够生成个性化的商品推荐。这种推荐系统比传统的基于规则或简单协同过滤的推荐更为精准。它利用深度学习技术,更准确地预测用户的兴趣点,使推荐内容更加贴切,从而提高用户点击率和购买转化率。例如,当用户在电商平台上搜索
- 2024年AIGC技术未来发展趋势与挑战:从应用创新到伦理监管
小宝哥Code
ChatGPT与AIGCAIGC
生成式人工智能(AIGC,ArtificialIntelligenceGeneratedContent)作为人工智能领域的一个重要分支,正在快速发展并改变着多个行业的格局。2024年,AIGC技术持续取得突破,并进入更多实际应用场景。本文将详细介绍AIGC的基本概念、原理、最新前沿技术及发展趋势。1.生成式人工智能(AIGC)基本概念与原理生成式人工智能(AIGC)是指通过人工智能技术,尤其是深度
- DeepSeek V3 模型微调(SFT)技术详解
zhangjiaofa
大模型DeepSeek模型微调
DeepSeekV3模型微调(SFT)技术详解目录引言背景知识2.1深度学习与预训练模型2.2微调(Fine-tuning)的概念2.3监督微调(SupervisedFine-tuning,SFT)DeepSeekV3模型概述3.1模型架构3.2预训练任务3.3模型性能监督微调(SFT)技术详解4.1数据准备4.1.1数据收集与清洗4.1.2数据标注4.1.3数据增强4.2模型初始化4.2.1预训
- AI 集群:Exo 项目详解
ivwdcwso
运维人工智能AIExo
引言随着人工智能技术的迅猛发展,越来越多的人希望在家中运行自己的AI集群。传统的AI集群通常需要昂贵的硬件和复杂的配置,但Exo项目正是为了解决这个问题而诞生的。Exo项目旨在让你利用日常电子设备,轻松搭建一个高效的AI集群。本文将详细介绍Exo项目的特点、安装步骤和实战示例。©ivwdcwso(ID:u012172506)Exo项目特点1.广泛的模型支持Exo支持多种流行的AI模型,包括但不限于
- python 监控键盘输入_python 监控键盘输入
weixin_39717121
python监控键盘输入
软件测试精品文章汇总测试基础python测试开发库及项目谷歌如何测试软件python工具书籍下载-持续更新2018软件测试标准汇总下载python测试开发自学每周一练python测试工具开发自学每周一练-2018-06软件测试工具书籍与面试题汇总下载(持续更新)python测试开发自动化测试数据分析...文章python人工智能命理2019-05-131907浏览量Shell历史记录异地留痕审计与
- 进阶之路:从传统编程到AI大模型与Prompt驱动的爬虫技术
大模型老炮
人工智能prompt爬虫语言模型大模型学习AI大模型
前言爬虫相信很多人都对此有所了解,它主要依靠编写代码实现对网页结构的解析,通过模拟浏览器行为获取目标数据!随着人工智能技术的发展,LLM大模型的出现为爬虫技术带来了新的思路。与传统的编程模式不同,使用AI大模型+prompt可以显著提高程序员的编程效率。通过结合人工智能和自然语言处理技术,开发者可以更加高效地编写爬虫代码,并实现对网页内容的智能解析和提取。前置内容下面我将通过爬取豆瓣电影top25
- 开源模型应用落地-qwen模型小试-Qwen2.5-7B-Instruct-LangGraph-链式处理(一)
开源技术探险家
开源模型-实际应用落地#深度学习自然语言处理语言模型langchain
一、前言在当今人工智能快速发展的时代,大语言模型不断迭代升级,为各种复杂任务的处理提供了强大的支持。LangGraph作为一种创新的架构,其链式处理机制为充分发挥LLMs的潜力提供了新的途径。Qwen2.5模型是一款备受瞩目的大语言模型,它具备出色的语言理解和生成能力,在广泛的自然语言处理任务中都展现出了卓越的性能。其在语言的准确性、逻辑性以及对复杂语义的把握上都有着突出的表现,为基于它进行的各类
- 一文搞懂python的face_recognition人脸识别库
码上飞扬
python开发语言人脸识别
随着人工智能和机器学习的快速发展,人脸识别技术在安全监控、身份验证、智能相册等领域的应用越来越广泛。Python作为一门简洁高效的编程语言,其丰富的库支持使得人脸识别的实现变得更加容易。本文将介绍如何使用Python的face_recognition库来实现基本的人脸识别功能。一、face_recognition库简介1.1什么是face_recognition库?face_recognition
- AIGC常见基础概念
GISer_Jinger
人工智能AIGC机器学习ai
AIGC(AIGeneratedContent,人工智能生成内容)是近年来快速发展的领域,涉及文本生成、图像生成、音频生成、视频生成等。以下是AIGC常见的面试题目及其详解:1.AIGC基础概念什么是AIGC?它的主要应用场景有哪些?定义:AIGC是指利用人工智能技术自动生成内容,包括文本、图像、音频、视频等。应用场景:文本生成:新闻写作、广告文案、代码生成(如GitHubCopilot)。图像生
- AI时代的人类增强:道德考虑与身体增强的未来发展策略分析预测
AI大模型应用之禅
AI大模型与大数据javapythonjavascriptkotlingolang架构人工智能
人类增强、AI、道德、身体增强、未来发展策略、预测1.背景介绍人类文明自诞生以来,就一直在探索如何超越自身的局限性。从使用工具到发明火,从农业文明到工业革命,每一次进步都代表着人类对自身能力的提升。如今,人工智能(AI)的快速发展,为人类提供了前所未有的机会,让我们迈向一个全新的时代——AI时代的人类增强时代。AI时代的人类增强,是指通过人工智能技术,提升人类的认知能力、身体能力和生活质量。这不仅
- Janus Pro:DeepSeek 开源革新,多模态 AI 的未来
后端
JanusPro是DeepSeek开发的一个开源多模态人工智能框架,它通过集成视觉和语言处理能力,提供了高性能的多模态任务处理能力。在线体验:https://deepseek-januspro.com/背景JanusPro于2025年1月发布,是一个开源的多模态AI框架,能够同时处理视觉和语言信息。它采用了独特的多模态架构,包括解耦的视觉编码框架和统一的Transformer架构,以及SigLIP
- 《深度剖析Q-learning中的Q值:解锁智能决策的密码》
人工智能深度学习
在人工智能的飞速发展进程中,强化学习作为一个关键领域,为智能体与环境交互并学习最优行为策略提供了有效框架。其中,Q-learning算法凭借其独特的魅力,在机器人控制、自动驾驶、游戏AI等众多领域大放异彩。而Q-learning中的Q值,更是理解这一算法的核心关键,它如同智能体的“智慧密码”,指导着智能体在复杂环境中做出最优决策。Q值的直观定义:行为价值的“预言家”从直观层面理解,Q值代表着智能体
- 江大白 | 斯坦福大学教授李飞飞团队:关于 2024年人工智能发展报告总结!
双木的木
深度学习拓展阅读人工智能
本文来源公众号“江大白”,仅用于学术分享,侵权删,干货满满。原文链接:斯坦福大学教授李飞飞团队:关于2024年人工智能发展报告总结!导读斯坦福大学教授李飞飞团队总结、解析了2024年人工智能发展报告,涵盖AI研究进展、技术性能提升、经济影响及医疗教育突破,重点分析大型模型成本、多模态模型崛起、AI可靠性挑战和生成式AI影响,是了解AI现状与未来的必读内容!斯坦福大学教授李飞飞团队关于2024年人工
- DeepSeek:通用人工智能的技术前沿与创新突破
热爱分享的博士僧
人工智能
一、DeepSeek的定位与背景DeepSeek(深度求索)是一家聚焦**通用人工智能(AGI)**研发的中国科技公司,成立于2023年,核心团队由全球顶尖AI科学家、工程师组成。公司以“探索智能本质,实现AGI造福人类”为使命,致力于突破大模型技术的边界,推动AI从专用向通用演进。其研发方向覆盖自然语言处理、多模态交互、强化学习等领域,并在模型架构、训练效率及实际应用场景中取得显著成果。二、核心
- Tensor 基本操作2 理解 tensor.max 操作,沿着给定的 dim 是什么意思 | PyTorch 深度学习实战
Chatopera 研发团队
机器学习深度学习pytorch人工智能
前一篇文章,Tensor基本操作1|PyTorch深度学习实战本系列文章GitHubRepo:https://github.com/hailiang-wang/pytorch-get-started目录Tensor基本操作torch.max默认指定维度Tensor基本操作torch.maxtorch.max实现降维运算,基于指定的dim选取子元素的最大值。默认a=torch.randn(1,3)p
- 【图像超分】论文复现:万字长文!Pytorch实现EDSR!代码修改无报错!踩坑全记录!适合各种深度学习新手!帮助你少走弯路!附修改后的代码和PSNR最优的模型权重文件!
十小大
超分辨率重建(理论+实战科研+应用)深度学习pytorch人工智能超分辨率重建图像处理计算机视觉图像超分
第一次来请先看这篇文章:【超分辨率(Super-Resolution)】关于【超分辨率重建】专栏的相关说明,包含专栏简介、专栏亮点、适配人群、相关说明、阅读顺序、超分理解、实现流程、研究方向、论文代码数据集汇总等)修改后代码和权重文件下载见文末链接!!!包含制作好的h5数据集和最优性能权重文件,可直接用于测试。本文亮点:讲解细致,EDSR流程全通,代码注释丰富,适合新手入门阅读深度思考,踩坑报错全
- AiLab: 探索人工智能的前沿实验室
m0_75126181
人工智能
AiLab:引领人工智能创新的实验平台在人工智能快速发展的今天,如何让更多人了解并参与到AI技术的创新中来,成为一个重要的课题。AiLab(人工智能实验室)应运而生,作为一个面向全球开发者和组织的开放平台,AiLab致力于推动AI技术的普及与创新。AiLab的使命与愿景AiLab的核心使命是帮助开发者和组织快速上手AI技术,体验最新的AI创新成果。通过提供丰富的实验项目、教育资源和研究成果,AiL
- 如何用Python训练一个AI模型(超详细教程)非常详细收藏我这一篇就够了!
程序员二飞
人工智能架构算法制造自然语言处理
引言人工智能(AI)——一个熟悉又神秘的词汇。我们常听说它可以生成诗歌、编写代码、创作艺术,甚至回答各种问题。然而,当你想亲手实现一个“AI模型”时,却可能感到无从下手。这篇教程正是为你准备的,将带你从零开始,逐步掌握从“AI新手”到“能够搭建AI模型”的核心技能。前排提示,文末有大模型AGI-CSDN独家资料包哦!一、AI的基本概念1.什么是AI模型?AI模型是通过训练得到的一种程序,能够利用海
- Python生态系统中拥有丰富的第三方库
___Y1
pythonpython
Python生态系统中拥有丰富的第三方库,这些库覆盖了几乎所有领域,包括科学计算、数据分析、机器学习、人工智能、Web开发等。这些库的存在极大地丰富了Python的功能,使其成为一门强大而灵活的编程语言。以下是一些常用的Python第三方库:1.**科学计算与数据处理:**-**NumPy:**提供高性能的多维数组对象,以及相关工具,用于处理这些数组。-**Pandas:**提供数据结构和数据分析
- jquery实现的jsonp掉java后台
知了ing
javajsonpjquery
什么是JSONP?
先说说JSONP是怎么产生的:
其实网上关于JSONP的讲解有很多,但却千篇一律,而且云里雾里,对于很多刚接触的人来讲理解起来有些困难,小可不才,试着用自己的方式来阐释一下这个问题,看看是否有帮助。
1、一个众所周知的问题,Ajax直接请求普通文件存在跨域无权限访问的问题,甭管你是静态页面、动态网页、web服务、WCF,只要是跨域请求,一律不准;
2、
- Struts2学习笔记
caoyong
struts2
SSH : Spring + Struts2 + Hibernate
三层架构(表示层,业务逻辑层,数据访问层) MVC模式 (Model View Controller)
分层原则:单向依赖,接口耦合
1、Struts2 = Struts + Webwork
2、搭建struts2开发环境
a>、到www.apac
- SpringMVC学习之后台往前台传值方法
满城风雨近重阳
springMVC
springMVC控制器往前台传值的方法有以下几种:
1.ModelAndView
通过往ModelAndView中存放viewName:目标地址和attribute参数来实现传参:
ModelAndView mv=new ModelAndView();
mv.setViewName="success
- WebService存在的必要性?
一炮送你回车库
webservice
做Java的经常在选择Webservice框架上徘徊很久,Axis Xfire Axis2 CXF ,他们只有一个功能,发布HTTP服务然后用XML做数据传输。
是的,他们就做了两个功能,发布一个http服务让客户端或者浏览器连接,接收xml参数并发送xml结果。
当在不同的平台间传输数据时,就需要一个都能解析的数据格式。
但是为什么要使用xml呢?不能使json或者其他通用数据
- js年份下拉框
3213213333332132
java web ee
<div id="divValue">test...</div>测试
//年份
<select id="year"></select>
<script type="text/javascript">
window.onload =
- 简单链式调用的实现技术
归来朝歌
方法调用链式反应编程思想
在编程中,我们可以经常遇到这样一种场景:一个实例不断调用它自身的方法,像一条链条一样进行调用
这样的调用你可能在Ajax中,在页面中添加标签:
$("<p>").append($("<span>").text(list[i].name)).appendTo("#result");
也可能在HQ
- JAVA调用.net 发布的webservice 接口
darkranger
webservice
/**
* @Title: callInvoke
* @Description: TODO(调用接口公共方法)
* @param @param url 地址
* @param @param method 方法
* @param @param pama 参数
* @param @return
* @param @throws BusinessException
- Javascript模糊查找 | 第一章 循环不能不重视。
aijuans
Way
最近受我的朋友委托用js+HTML做一个像手册一样的程序,里面要有可展开的大纲,模糊查找等功能。我这个人说实在的懒,本来是不愿意的,但想起了父亲以前教我要给朋友搞好关系,再加上这也可以巩固自己的js技术,于是就开始开发这个程序,没想到却出了点小问题,我做的查找只能绝对查找。具体的js代码如下:
function search(){
var arr=new Array("my
- 狼和羊,该怎么抉择
atongyeye
工作
狼和羊,该怎么抉择
在做一个链家的小项目,只有我和另外一个同事两个人负责,各负责一部分接口,我的接口写完,并全部测联调试通过。所以工作就剩下一下细枝末节的,工作就轻松很多。每天会帮另一个同事测试一些功能点,协助他完成一些业务型不强的工作。
今天早上到公司没多久,领导就在QQ上给我发信息,让我多协助同事测试,让我积极主动些,有点责任心等等,我听了这话,心里面立马凉半截,首先一个领导轻易说
- 读取android系统的联系人拨号
百合不是茶
androidsqlite数据库内容提供者系统服务的使用
联系人的姓名和号码是保存在不同的表中,不要一下子把号码查询来,我开始就是把姓名和电话同时查询出来的,导致系统非常的慢
关键代码:
1, 使用javabean操作存储读取到的数据
package com.example.bean;
/**
*
* @author Admini
- ORACLE自定义异常
bijian1013
数据库自定义异常
实例:
CREATE OR REPLACE PROCEDURE test_Exception
(
ParameterA IN varchar2,
ParameterB IN varchar2,
ErrorCode OUT varchar2 --返回值,错误编码
)
AS
/*以下是一些变量的定义*/
V1 NUMBER;
V2 nvarc
- 查看端号使用情况
征客丶
windows
一、查看端口
在windows命令行窗口下执行:
>netstat -aon|findstr "8080"
显示结果:
TCP 127.0.0.1:80 0.0.0.0:0 &
- 【Spark二十】运行Spark Streaming的NetworkWordCount实例
bit1129
wordcount
Spark Streaming简介
NetworkWordCount代码
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
- Struts2 与 SpringMVC的比较
BlueSkator
struts2spring mvc
1. 机制:spring mvc的入口是servlet,而struts2是filter,这样就导致了二者的机制不同。 2. 性能:spring会稍微比struts快。spring mvc是基于方法的设计,而sturts是基于类,每次发一次请求都会实例一个action,每个action都会被注入属性,而spring基于方法,粒度更细,但要小心把握像在servlet控制数据一样。spring
- Hibernate在更新时,是可以不用session的update方法的(转帖)
BreakingBad
Hibernateupdate
地址:http://blog.csdn.net/plpblue/article/details/9304459
public void synDevNameWithItil()
{Session session = null;Transaction tr = null;try{session = HibernateUtil.getSession();tr = session.beginTran
- 读《研磨设计模式》-代码笔记-观察者模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.util.ArrayList;
import java.util.List;
import java.util.Observable;
import java.util.Observer;
/**
* “观
- 重置MySQL密码
chenhbc
mysql重置密码忘记密码
如果你也像我这么健忘,把MySQL的密码搞忘记了,经过下面几个步骤就可以重置了(以Windows为例,Linux/Unix类似):
1、关闭MySQL服务
2、打开CMD,进入MySQL安装目录的bin目录下,以跳过权限检查的方式启动MySQL
mysqld --skip-grant-tables
3、新开一个CMD窗口,进入MySQL
mysql -uroot
 
- 再谈系统论,控制论和信息论
comsci
设计模式生物能源企业应用领域模型
再谈系统论,控制论和信息论
偶然看
- oracle moving window size与 AWR retention period关系
daizj
oracle
转自: http://tomszrp.itpub.net/post/11835/494147
晚上在做11gR1的一个awrrpt报告时,顺便想调整一下AWR snapshot的保留时间,结果遇到了ORA-13541这样的错误.下面是这个问题的发生和解决过程.
SQL> select * from v$version;
BANNER
-------------------
- Python版B树
dieslrae
python
话说以前的树都用java写的,最近发现python有点生疏了,于是用python写了个B树实现,B树在索引领域用得还是蛮多了,如果没记错mysql的默认索引好像就是B树...
首先是数据实体对象,很简单,只存放key,value
class Entity(object):
'''数据实体'''
def __init__(self,key,value)
- C语言冒泡排序
dcj3sjt126com
算法
代码示例:
# include <stdio.h>
//冒泡排序
void sort(int * a, int len)
{
int i, j, t;
for (i=0; i<len-1; i++)
{
for (j=0; j<len-1-i; j++)
{
if (a[j] > a[j+1]) // >表示升序
- 自定义导航栏样式
dcj3sjt126com
自定义
-(void)setupAppAppearance
{
[[UILabel appearance] setFont:[UIFont fontWithName:@"FZLTHK—GBK1-0" size:20]];
[UIButton appearance].titleLabel.font =[UIFont fontWithName:@"FZLTH
- 11.性能优化-优化-JVM参数总结
frank1234
jvm参数性能优化
1.堆
-Xms --初始堆大小
-Xmx --最大堆大小
-Xmn --新生代大小
-Xss --线程栈大小
-XX:PermSize --永久代初始大小
-XX:MaxPermSize --永久代最大值
-XX:SurvivorRatio --新生代和suvivor比例,默认为8
-XX:TargetSurvivorRatio --survivor可使用
- nginx日志分割 for linux
HarborChung
nginxlinux脚本
nginx日志分割 for linux 默认情况下,nginx是不分割访问日志的,久而久之,网站的日志文件将会越来越大,占用空间不说,如果有问题要查看网站的日志的话,庞大的文件也将很难打开,于是便有了下面的脚本 使用方法,先将以下脚本保存为 cutlog.sh,放在/root 目录下,然后给予此脚本执行的权限
复制代码代码如下:
chmo
- Spring4新特性——泛型限定式依赖注入
jinnianshilongnian
springspring4泛型式依赖注入
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- centOS安装GCC和G++
liuxihope
centosgcc
Centos支持yum安装,安装软件一般格式为yum install .......,注意安装时要先成为root用户。
按照这个思路,我想安装过程如下:
安装gcc:yum install gcc
安装g++: yum install g++
实际操作过程发现,只能有gcc安装成功,而g++安装失败,提示g++ command not found。上网查了一下,正确安装应该
- 第13章 Ajax进阶(上)
onestopweb
Ajax
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- How to determine BusinessObjects service pack and fix pack
blueoxygen
BO
http://bukhantsov.org/2011/08/how-to-determine-businessobjects-service-pack-and-fix-pack/
The table below is helpful. Reference
BOE XI 3.x
12.0.0.
y BOE XI 3.0 12.0.
x.
y BO
- Oracle里的自增字段设置
tomcat_oracle
oracle
大家都知道吧,这很坑,尤其是用惯了mysql里的自增字段设置,结果oracle里面没有的。oh,no 我用的是12c版本的,它有一个新特性,可以这样设置自增序列,在创建表是,把id设置为自增序列
create table t
(
id number generated by default as identity (start with 1 increment b
- Spring Security(01)——初体验
yang_winnie
springSecurity
Spring Security(01)——初体验
博客分类: spring Security
Spring Security入门安全认证
首先我们为Spring Security专门建立一个Spring的配置文件,该文件就专门用来作为Spring Security的配置