SENet讲解

卷积就是在卷空间信息,可通道信息也大不相同,有的通道信息重要,而有点通道信息是无用的。
SENet讲解_第1张图片
对特征图U的每个通道应用全局平均池化层(avg),可以得到该特征通道的常数标量。然后经过两个FC层得到C个权重系数,用此系数衡量特征图U的每个通道的重要程度,用该系数对特征图U进行加权。
Squeeze 就是avg操作,表征该特征通道的全局响应。
Excitation就是使用两个全连接层w参数进行不同通道之间的相关性学习。
sigmoid函数是输出为(0,1)的函数,最终输出需要概率值。
resnet中r值取16
SENet讲解_第2张图片

class SELayer(nn.Module):
    def __init__(self, channel, reduction=16):
        super(SELayer, self).__init__()
        self.avg_pool = nn.AdaptiveAvgPool2d(1)
        self.fc = nn.Sequential(
            nn.Linear(channel, channel // reduction, bias=False),
            nn.ReLU(inplace=True),
            nn.Linear(channel // reduction, channel, bias=False),
            nn.Sigmoid()
        )

    def forward(self, x):
        b, c, _, _ = x.size()
        y = self.avg_pool(x).view(b, c)
        y = self.fc(y).view(b, c, 1, 1)
        return x * y.expand_as(x)

添加了senet的resnet网络

class SEBottleneck(nn.Module):
        expansion = 4

        def __init__(self, inplanes, planes, stride=1, downsample=None, reduction=16):
            super(SEBottleneck, self).__init__()
            self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False)
            self.bn1 = nn.BatchNorm2d(planes)
            self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride,
                                   padding=1, bias=False)
            self.bn2 = nn.BatchNorm2d(planes)
            self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False)
            self.bn3 = nn.BatchNorm2d(planes * 4)
            self.relu = nn.ReLU(inplace=True)
            self.se = SELayer(planes * 4, reduction)
            self.downsample = downsample
            self.stride = stride

        def forward(self, x):
            residual = x
            
            out = self.conv1(x)
            out = self.bn1(out)
            out = self.relu(out)

            out = self.conv2(out)
            out = self.bn2(out)
            out = self.relu(out)

            out = self.conv3(out)
            out = self.bn3(out)
            out = self.se(out)

            if self.downsample is not None:
                residual = self.downsample(x)

            out += residual
            out = self.relu(out)

            return out

你可能感兴趣的:(目标检测,深度学习,神经网络,计算机视觉)