1.19.10.Flink SQL工程案例
1.19.10.1.编写Pom.xml文件
1.19.10.2.java案例
1.19.10.3.案例1:Flink批式处理(建表、查询、插入、jdbc connector的使用)
1.19.10.4.案例2:StreamTableEnvironment的使用案例+数据模拟+自定义函数及其应用
1.19.10.5.案例3:StreamTableEnvironment应用+blink/Flink SQL应用
1.19.10.6.案例4:Flink SQL之Stream + Window窗口计算案例
1.19.10.7.案例5:将DataSet数据转成Table数据(word count)
1.19.10.8.案例6:将Table数据转成DataSet
1.19.10.11.模拟表数据+自定义函数
1.19.10.12.Stream SQL + blink/flink SQL切换使用案例
1.19.10.13.StreamTableExample案例
1.19.10.14.TPCHQuery3Table
1.19.10.15.WordCountSQL
1.19.10.16.WordCountTable
1.19.10.17.SQL案例
1.19.10.18.Flink之单流kafka写入mysql
1.19.10.19.Flink之双流kafka写入mysql
1.19.10.20.Flink之kafka和mysql维表实时关联写入mysql
1.19.10.21.Flink滚动窗口案例
1.19.10.22.Flink滑动窗口案例
1.19.10.23.Mysql-cdc,ElasticSearch connector
1.19.10.24.Flink datagen案例
1.19.10.25.Upsert Kafka SQL连接器
1.19.10.26.Flink Elasticsearch connector相关的案例
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0modelVersion>
<groupId>com.toto.testgroupId>
<artifactId>flink-sql-demoartifactId>
<version>1.0-SNAPSHOTversion>
<properties>
<project.build.sourceEncoding>UTF-8project.build.sourceEncoding>
<maven.test.skip>falsemaven.test.skip>
<maven.javadoc.skip>falsemaven.javadoc.skip>
<maven.compiler.source>1.8maven.compiler.source>
<maven.compiler.target>1.8maven.compiler.target>
<flink.version>1.12.0flink.version>
<commons-lang.version>2.5commons-lang.version>
<scala.binary.version>2.11scala.binary.version>
properties>
<distributionManagement>
<repository>
<id>releasesid>
<layout>defaultlayout>
<url>http://xxx.xxx.xxx/nexus/content/repositories/releases/url>
repository>
<snapshotRepository>
<id>snapshotsid>
<name>snapshotsname>
<url>http://xxx.xxx.xxx/nexus/content/repositories/snapshots/url>
snapshotRepository>
distributionManagement>
<repositories>
<repository>
<id>releasesid>
<layout>defaultlayout>
<url>http://xxx.xxx.xxx/nexus/content/repositories/releases/url>
repository>
<repository>
<id>snapshotsid>
<name>snapshotsname>
<url>http://xxx.xxx.xxx/nexus/content/repositories/snapshots/url>
<snapshots>
<enabled>trueenabled>
<updatePolicy>alwaysupdatePolicy>
<checksumPolicy>warnchecksumPolicy>
snapshots>
repository>
<repository>
<id>xxxxid>
<name>xxxxname>
<url>http://xxx.xxx.xxx/nexus/content/repositories/xxxx/url>
repository>
<repository>
<id>publicid>
<name>publicname>
<url>http://xxx.xxx.xxx/nexus/content/groups/public/url>
repository>
<repository>
<id>clouderaid>
<url>https://repository.cloudera.com/artifactory/cloudera-repos/url>
repository>
repositories>
<dependencies>
<dependency>
<groupId>org.apache.flinkgroupId>
<artifactId>flink-clients_2.11artifactId>
<version>${flink.version}version>
dependency>
<dependency>
<groupId>org.apache.flinkgroupId>
<artifactId>flink-table-api-java-bridge_2.11artifactId>
<version>${flink.version}version>
dependency>
<dependency>
<groupId>org.apache.flinkgroupId>
<artifactId>flink-table-planner_2.11artifactId>
<version>${flink.version}version>
dependency>
<dependency>
<groupId>org.apache.flinkgroupId>
<artifactId>flink-table-planner-blink_2.11artifactId>
<version>${flink.version}version>
dependency>
<dependency>
<groupId>org.apache.flinkgroupId>
<artifactId>flink-streaming-scala_2.11artifactId>
<version>${flink.version}version>
dependency>
<dependency>
<groupId>org.apache.flinkgroupId>
<artifactId>flink-table-commonartifactId>
<version>${flink.version}version>
dependency>
<dependency>
<groupId>ch.qos.logbackgroupId>
<artifactId>logback-classicartifactId>
<version>1.2.3version>
dependency>
<dependency>
<groupId>org.apache.flinkgroupId>
<artifactId>flink-table-api-scala-bridge_2.11artifactId>
<version>${flink.version}version>
dependency>
<dependency>
<groupId>org.apache.flinkgroupId>
<artifactId>flink-connector-jdbc_2.11artifactId>
<version>${flink.version}version>
dependency>
<dependency>
<groupId>mysqlgroupId>
<artifactId>mysql-connector-javaartifactId>
<version>5.1.47version>
dependency>
<dependency>
<groupId>org.apache.flinkgroupId>
<artifactId>flink-connector-kafka_2.11artifactId>
<version>1.12.0version>
dependency>
<dependency>
<groupId>org.apache.flinkgroupId>
<artifactId>flink-jsonartifactId>
<version>1.12.0version>
dependency>
dependencies>
<build>
<finalName>flink-sql-demofinalName>
<plugins>
<plugin>
<groupId>org.apache.maven.pluginsgroupId>
<artifactId>maven-compiler-pluginartifactId>
<version>3.6.0version>
<configuration>
<source>${maven.compiler.source}source>
<target>${maven.compiler.target}target>
<encoding>UTF-8encoding>
<compilerVersion>${maven.compiler.source}compilerVersion>
<showDeprecation>trueshowDeprecation>
<showWarnings>trueshowWarnings>
configuration>
plugin>
<plugin>
<groupId>org.apache.maven.pluginsgroupId>
<artifactId>maven-surefire-pluginartifactId>
<version>2.12.4version>
<configuration>
<skipTests>${maven.test.skip}skipTests>
configuration>
plugin>
<plugin>
<groupId>org.apache.ratgroupId>
<artifactId>apache-rat-pluginartifactId>
<version>0.12version>
<configuration>
<excludes>
<exclude>README.mdexclude>
excludes>
configuration>
plugin>
<plugin>
<groupId>org.apache.maven.pluginsgroupId>
<artifactId>maven-javadoc-pluginartifactId>
<version>2.10.4version>
<configuration>
<aggregate>trueaggregate>
<reportOutputDirectory>javadocsreportOutputDirectory>
<locale>enlocale>
configuration>
plugin>
<plugin>
<groupId>net.alchim31.mavengroupId>
<artifactId>scala-maven-pluginartifactId>
<version>3.1.6version>
<configuration>
<scalaCompatVersion>2.11scalaCompatVersion>
<scalaVersion>2.11.12scalaVersion>
<encoding>UTF-8encoding>
configuration>
<executions>
<execution>
<id>compile-scalaid>
<phase>compilephase>
<goals>
<goal>add-sourcegoal>
<goal>compilegoal>
goals>
execution>
<execution>
<id>test-compile-scalaid>
<phase>test-compilephase>
<goals>
<goal>add-sourcegoal>
<goal>testCompilegoal>
goals>
execution>
executions>
plugin>
<plugin>
<groupId>org.apache.maven.pluginsgroupId>
<artifactId>maven-assembly-pluginartifactId>
<version>2.6version>
<configuration>
<descriptorRefs>
<descriptorRef>jar-with-dependenciesdescriptorRef>
descriptorRefs>
<archive>
<manifest>
<mainClass>mainClass>
manifest>
archive>
configuration>
<executions>
<execution>
<id>make-assemblyid>
<phase>packagephase>
<goals>
<goal>singlegoal>
goals>
execution>
executions>
plugin>
plugins>
build>
project>
前置条件(创建MySQL的表):
CREATE TABLE `stu` (
`name` varchar(60) DEFAULT NULL,
`speciality` varchar(60) DEFAULT NULL,
`id` bigint(20) NOT NULL AUTO_INCREMENT,
PRIMARY KEY (`id`)
) ENGINE=InnoDB AUTO_INCREMENT=15 DEFAULT CHARSET=utf8;
INSERT INTO stu (name,speciality,id) VALUES
('张三','美术',1),
('张三','音乐',2),
('李四','篮球',3),
('小明','美术',4),
('李四','美术',5),
('小明','音乐',6),
('赵六','数学',7),
('张三','美术',8),
('张三','音乐',9),
('李四','篮球',10);
INSERT INTO stu (name,speciality,id) VALUES
('小明','美术',11),
('李四','美术',12),
('小明','音乐',13),
('田七','语文',14);
CREATE TABLE `stu_tmp` (
`name` varchar(60) DEFAULT NULL,
`num` bigint(20) DEFAULT '0',
`id` bigint(20) NOT NULL AUTO_INCREMENT,
PRIMARY KEY (`id`)
) ENGINE=InnoDB AUTO_INCREMENT=6 DEFAULT CHARSET=utf8;
package flinksqldemo;
import org.apache.flink.api.java.ExecutionEnvironment;
import org.apache.flink.table.api.EnvironmentSettings;
import org.apache.flink.table.api.TableEnvironment;
import org.apache.flink.table.api.TableResult;
import org.apache.flink.table.api.TableSchema;
import org.apache.flink.types.Row;
import org.apache.flink.util.CloseableIterator;
/**
* @author tuzuoquan
* @version 1.0
* @ClassName flinksqldemo.BatchCreateSelectInsertDemoWithJdbcConnector
* @description
* 1、引包:pom.xml中使用Blink的
* 2、流式包 还是 Batch包
* 3、jdk为1.8
* 4、必须指定主键
* 5、使用ROW_NUMBER() OVER (PARTITION BY t.flag ORDER BY t.num DESC) as id方式获取行号
* 6、要引入mysql的connector
* 7、要引入mysql driver
*
* @date 2021/3/11 17:47
**/
public class BatchCreateSelectInsertDemoWithJdbcConnector {
public static void main(String[] args) {
// //StreamExecutionEnvironment bsEnv = StreamExecutionEnvironment.getExecutionEnvironment();
// EnvironmentSettings bsSettings = EnvironmentSettings.newInstance().useBlinkPlanner().inStreamingMode().build();
// //StreamTableEnvironment tableEnv = StreamTableEnvironment.create(bsEnv, bsSettings);
// TableEnvironment tableEnv = TableEnvironment.create(bsSettings);
ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment();
EnvironmentSettings bbSettings = EnvironmentSettings.newInstance().useBlinkPlanner().inBatchMode().build();
TableEnvironment tableEnv = TableEnvironment.create(bbSettings);
// 1、创建表
tableEnv.executeSql(
"CREATE TABLE flink_stu (" +
" id BIGINT, " +
" name STRING, " +
" speciality STRING, " +
" PRIMARY KEY (id) NOT ENFORCED" +
") WITH (" +
"'connector' = 'jdbc'," +
"'url'='jdbc:mysql://xxx.xxx.xxx.xxx:3306/test'," +
"'table-name' = 'stu'," +
"'username' = 'root', " +
"'password' = 'xxxxxx'" +
")");
// tableEnv.executeSql("select * from stu");
// 2、查询表
TableResult tableResult = tableEnv.sqlQuery(
"SELECT id, name,speciality FROM flink_stu").execute();
tableResult.print();
CloseableIterator<Row> it = tableResult.collect();
while (it.hasNext()) {
Row row = it.next();
System.out.println(row.getField(0));
}
TableSchema tableSchema = tableResult.getTableSchema();
System.out.println(tableSchema.getFieldName(1).toString());
// 3、创建输出表
tableEnv.executeSql(
"CREATE TABLE flink_stu_tmp (" +
" id BIGINT," +
" name STRING, " +
" num BIGINT," +
" PRIMARY KEY (id) NOT ENFORCED" +
") WITH (" +
"'connector' = 'jdbc'," +
"'url'='jdbc:mysql://xxx.xxx.xxx.xxx:3306/test'," +
"'table-name' = 'stu_tmp'," +
"'username' = 'root', " +
"'password' = 'xxxxxx'" +
")");
tableEnv.executeSql(
"INSERT INTO flink_stu_tmp(id,name, num) " +
"SELECT " +
"ROW_NUMBER() OVER (PARTITION BY t.flag ORDER BY t.num DESC) as id, " +
"t.name as name, " +
"t.num as num " +
"from ( " +
"select name, count(name) as num, '1' as flag from flink_stu group by name) t");
//tableResult1.print();
String[] tables = tableEnv.listTables();
for(String t : tables) {
System.out.println(t);
}
try {
env.execute("jobName");
} catch (Exception e) {
e.printStackTrace();
}
}
}
package flinksqldemo;
import org.apache.flink.api.java.ExecutionEnvironment;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.table.api.EnvironmentSettings;
import org.apache.flink.table.api.Table;
import org.apache.flink.table.api.TableEnvironment;
import org.apache.flink.table.api.bridge.java.StreamTableEnvironment;
import org.apache.flink.table.functions.ScalarFunction;
import org.apache.flink.types.Row;
import org.apache.flink.util.CloseableIterator;
import java.time.LocalDate;
import java.util.HashSet;
import java.util.Set;
import static org.apache.flink.table.api.Expressions.*;
/**
* Example for getting started with the Table & SQL API.
*
* The example shows how to create, transform, and query a table. It should give a first
* impression about the look-and-feel of the API without going too much into details. See the other
* examples for using connectors or more complex operations.
*
*
In particular, the example shows how to
*
*
* - setup a {@link TableEnvironment},
*
- use the environment for creating example tables, registering views, and executing SQL
* queries,
*
- transform tables with filters and projections,
*
- declare user-defined functions,
*
- and print/collect results locally.
*
*
* The example executes two Flink jobs. The results are written to stdout.
*/
public class StreamDataTableAndRowTypeAndUDF {
public static void main(String[] args) throws Exception {
ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment();
// BLINK STREAMING QUERY
StreamExecutionEnvironment bsEnv = StreamExecutionEnvironment.getExecutionEnvironment();
EnvironmentSettings bsSettings = EnvironmentSettings.newInstance().useBlinkPlanner().inStreamingMode().build();
StreamTableEnvironment tableEnv = StreamTableEnvironment.create(bsEnv, bsSettings);
// create a table with example data without a connector required
final Table rawCustomers = tableEnv.fromValues(
Row.of("Guillermo Smith",LocalDate.parse("1992-12-12"),"4081 Valley Road","08540","New Jersey","m",true,0,78,3),
Row.of("Valeria Mendoza",LocalDate.parse("1970-03-28"),"1239 Rainbow Road","90017","Los Angeles","f",true,9,39,0),
Row.of("Leann Holloway",LocalDate.parse("1989-05-21"),"2359 New Street","97401","Eugene",null,true,null,null,null),
Row.of("Brandy Sanders",LocalDate.parse("1956-05-26"),"4891 Walkers-Ridge-Way","73119","Oklahoma City","m",false,9,39,0),
Row.of("John Turner",LocalDate.parse("1982-10-02"),"2359 New Street","60605","Chicago","m",true,12,39,0),
Row.of("Ellen Ortega",LocalDate.parse("1985-06-18"),"2448 Rodney STreet","85023","Phoenix", "f",true,0,78,3));
final Table truncatedCustomers = rawCustomers.select(withColumns(range(1, 7)));
// name columns
final Table namedCustomers =
truncatedCustomers.as(
"name",
"date_of_birth",
"street",
"zip_code",
"city",
"gender",
"has_newsletter");
tableEnv.createTemporaryView("customers", namedCustomers);
// use SQL whenever you like
// call execute() and print() to get insights
tableEnv.sqlQuery("SELECT "
+ " COUNT(*) AS `number of customers`, "
+ " AVG(YEAR(date_of_birth)) AS `average birth year` "
+ "FROM `customers`")
.execute()
.print();
// or further transform the data using the fluent Table API
// e.g. filter, project fields, or call a user-defined function
final Table youngCustomers =
tableEnv.from("customers")
.filter($("gender").isNotNull())
.filter($("has_newsletter").isEqual(true))
.filter($("date_of_birth").isGreaterOrEqual(LocalDate.parse("1980-01-01")))
.select($("name").upperCase(),
$("date_of_birth"),
call(AddressNormalizer.class, $("street"), $("zip_code"), $("city")).as("address"));
rawCustomers.execute().print();
System.out.println("============================================================");
youngCustomers.execute().print();
System.out.println("===========================================================");
// use execute() and collect() to retrieve your results from the cluster
// this can be useful for testing before storing it in an external system
try (CloseableIterator<Row> iterator = youngCustomers.execute().collect()) {
final Set<Row> expectedOutput = new HashSet<>();
expectedOutput.add(
Row.of(
"GUILLERMO SMITH",
LocalDate.parse("1992-12-12"),
"4081 VALLEY ROAD, 08540, NEW JERSEY"));
expectedOutput.add(
Row.of(
"JOHN TURNER",
LocalDate.parse("1982-10-02"),
"2359 NEW STREET, 60605, CHICAGO"));
expectedOutput.add(
Row.of(
"ELLEN ORTEGA",
LocalDate.parse("1985-06-18"),
"2448 RODNEY STREET, 85023, PHOENIX"));
final Set<Row> actualOutput = new HashSet<>();
iterator.forEachRemaining(actualOutput::add);
if (actualOutput.equals(expectedOutput)) {
System.out.println("SUCCESS!");
} else {
System.out.println("FAILURE!");
}
}
}
public static class AddressNormalizer extends ScalarFunction {
// the 'eval()' method defines input and output types (reflectively extracted)
// and contains the runtime logic
public String eval(String street, String zipCode, String city) {
return normalize(street) + ", " + normalize(zipCode) + ", " + normalize(city);
}
private String normalize(String s) {
return s.toUpperCase().replaceAll("\\W", " ").replaceAll("\\s+", " ").trim();
}
}
}
package flinksqldemo;
import org.apache.flink.api.java.utils.ParameterTool;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.table.api.EnvironmentSettings;
import org.apache.flink.table.api.Table;
import org.apache.flink.table.api.bridge.java.StreamTableEnvironment;
import java.util.Arrays;
import java.util.Objects;
import static org.apache.flink.table.api.Expressions.$;
/**
* Simple example for demonstrating the use of SQL on a Stream Table in Java.
* Usage: flinksqldemo.StreamSQLExample --planner <blink|flink>
*
*
This example shows how to: - Convert DataStreams to Tables - Register a Table under a name -
* Run a StreamSQL query on the registered Table
**/
public class StreamSQLExample {
public static void main(String[] args) throws Exception {
// 在idea中的 Program arguments上填写:--planner blink
final ParameterTool params = ParameterTool.fromArgs(args);
String planner = params.has("planner") ? params.get("planner") : "blink";
//System.out.println(planner);
// set up execution environment
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
StreamTableEnvironment tEnv;
if (Objects.equals(planner, "blink")) {
EnvironmentSettings settings =
EnvironmentSettings.newInstance().inStreamingMode().useBlinkPlanner().build();
tEnv = StreamTableEnvironment.create(env, settings);
}
// use flink planner in streaming mode
else if (Objects.equals(planner, "flink")) {
EnvironmentSettings settings =
EnvironmentSettings.newInstance().inStreamingMode().useOldPlanner().build();
tEnv = StreamTableEnvironment.create(env, settings);
} else {
System.err.println(
"The planner is incorrect. Please run 'flinksqldemo.StreamSQLExample --planner ', "
+ "where planner (it is either flink or blink, and the default is blink) indicates whether the "
+ "example uses flink planner or blink planner.");
return;
}
DataStream<Order> orderA =
env.fromCollection(
Arrays.asList(
new Order(1L, "beer", 3),
new Order(1L, "diaper", 4),
new Order(3L, "rubber", 2)));
DataStream<Order> orderB =
env.fromCollection(
Arrays.asList(
new Order(2L, "pen", 3),
new Order(2L, "rubber", 3),
new Order(4L, "beer", 1)));
// convert DataStream to Table
Table tableA = tEnv.fromDataStream(orderA, $("user"), $("product"), $("amount"));
// register DataStream as Table
tEnv.createTemporaryView("OrderB", orderB, $("user"), $("product"), $("amount"));
// union the two tables
Table result =
tEnv.sqlQuery(
"SELECT * FROM "
+ tableA
+ " WHERE amount > 2 UNION ALL "
+ "SELECT * FROM OrderB WHERE amount < 2");
// System.out.println(result.execute());
tEnv.toAppendStream(result, Order.class).print();
// after the table program is converted to DataStream program,
// we must use `env.execute()` to submit the job.
env.execute("jobNameTest");
}
// *************************************************************************
// USER DATA TYPES
// *************************************************************************
/** Simple POJO. */
public static class Order {
public Long user;
public String product;
public int amount;
public Order() {}
public Order(Long user, String product, int amount) {
this.user = user;
this.product = product;
this.amount = amount;
}
@Override
public String toString() {
return "Order{"
+ "user="
+ user
+ ", product='"
+ product
+ '\''
+ ", amount="
+ amount
+ '}';
}
}
}
package flinksqldemo;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.table.api.Table;
import org.apache.flink.table.api.bridge.java.StreamTableEnvironment;
import org.apache.flink.types.Row;
import org.apache.flink.util.FileUtils;
import java.io.File;
import java.io.IOException;
/**
* Simple example for demonstrating the use of SQL in Java.
*
* Usage: {@code ./bin/flink run ./examples/table/flinksqldemo.StreamWindowSQLExample.jar}
*
*
This example shows how to: - Register a table via DDL - Declare an event time attribute in the
* DDL - Run a streaming window aggregate on the registered table
**/
public class StreamWindowSQLExample {
public static void main(String[] args) throws Exception {
// set up execution environment
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
StreamTableEnvironment tEnv = StreamTableEnvironment.create(env);
// write source data into temporary file and get the absolute path
String contents =
"1,beer,3,2019-12-12 00:00:01\n"
+ "1,diaper,4,2019-12-12 00:00:02\n"
+ "2,pen,3,2019-12-12 00:00:04\n"
+ "2,rubber,3,2019-12-12 00:00:06\n"
+ "3,rubber,2,2019-12-12 00:00:05\n"
+ "4,beer,1,2019-12-12 00:00:08";
String path = createTempFile(contents);
// register table via DDL with watermark,
// the events are out of order, hence, we use 3 seconds to wait the late events
String ddl =
"CREATE TABLE orders ("
+ " user_id INT, "
+ " product STRING, "
+ " amount INT, "
+ " ts TIMESTAMP(3), "
+ " WATERMARK FOR ts AS ts - INTERVAL '3' SECOND "
+ ") WITH ("
+ " 'connector.type' = 'filesystem', "
+ " 'connector.path' = '"
+ path
+ "',"
+ " 'format.type' = 'csv' "
+ ")";
tEnv.executeSql(ddl);
// run a SQL query on the table and retrieve the result as a new Table
String query =
"SELECT"
+ " CAST(TUMBLE_START(ts, INTERVAL '5' SECOND) AS STRING) window_start, "
+ " COUNT(*) order_num, "
+ " SUM(amount) total_amount, "
+ " COUNT(DISTINCT product) unique_products "
+ "FROM orders "
+ "GROUP BY TUMBLE(ts, INTERVAL '5' SECOND)";
Table result = tEnv.sqlQuery(query);
tEnv.toAppendStream(result, Row.class).print();
// after the table program is converted to DataStream program,
// we must use `env.execute()` to submit the job
env.execute("Streaming Window SQL Job");
// should output:
// 2019-12-12 00:00:05.000,3,6,2
// 2019-12-12 00:00:00.000,3,10,3
}
/** Creates a temporary file with the contents and returns the absolute path. */
private static String createTempFile(String contents) throws IOException {
File tempFile = File.createTempFile("orders", ".csv");
tempFile.deleteOnExit();
FileUtils.writeFileUtf8(tempFile, contents);
return tempFile.toURI().toString();
}
}
package flinksqldemo;
import org.apache.flink.api.java.DataSet;
import org.apache.flink.api.java.ExecutionEnvironment;
import org.apache.flink.table.api.Table;
import org.apache.flink.table.api.bridge.java.BatchTableEnvironment;
import static org.apache.flink.table.api.Expressions.$;
/**
* @author tuzuoquan
* @version 1.0
* @ClassName flinksqldemo.WordCountSQL
* @description TODO
* @date 2021/3/15 16:12
**/
public class WordCountSQL {
public static void main(String[] args) throws Exception {
// set up execution environment
ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment();
BatchTableEnvironment tEnv = BatchTableEnvironment.create(env);
DataSet<WC> input =
env.fromElements(new WC("Hello", 1), new WC("Ciao", 1), new WC("Hello", 1));
// register the DataSet as a view "WordCount"
tEnv.createTemporaryView("WordCount", input, $("word"), $("frequency"));
// run a SQL query on the Table and retrieve the result as a new Table
Table table =
tEnv.sqlQuery(
"SELECT word, SUM(frequency) as frequency FROM WordCount GROUP BY word");
DataSet<WC> result = tEnv.toDataSet(table, WC.class);
result.print();
}
// *************************************************************************
// USER DATA TYPES
// *************************************************************************
public static class WC {
public String word;
public long frequency;
// public constructor to make it a Flink POJO
public WC() {}
public WC(String word, long frequency) {
this.word = word;
this.frequency = frequency;
}
@Override
public String toString() {
return "WC " + word + " " + frequency;
}
}
}
package flinksqldemo;/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
import org.apache.flink.api.java.DataSet;
import org.apache.flink.api.java.ExecutionEnvironment;
import org.apache.flink.table.api.Table;
import org.apache.flink.table.api.bridge.java.BatchTableEnvironment;
import static org.apache.flink.table.api.Expressions.$;
/**
* Simple example for demonstrating the use of the Table API for a Word Count in Java.
*
* This example shows how to: - Convert DataSets to Tables - Apply group, aggregate, select, and
* filter operations
*/
public class WordCountTable {
// *************************************************************************
// PROGRAM
// *************************************************************************
public static void main(String[] args) throws Exception {
ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment();
BatchTableEnvironment tEnv = BatchTableEnvironment.create(env);
DataSet<WC> input =
env.fromElements(new WC("Hello", 1), new WC("Ciao", 1), new WC("Hello", 1));
Table table = tEnv.fromDataSet(input);
Table filtered =
table.groupBy($("word"))
.select($("word"), $("frequency").sum().as("frequency"))
.filter($("frequency").isEqual(2));
DataSet<WC> result = tEnv.toDataSet(filtered, WC.class);
result.print();
}
// *************************************************************************
// USER DATA TYPES
// *************************************************************************
/** Simple POJO containing a word and its respective count. */
public static class WC {
public String word;
public long frequency;
// public constructor to make it a Flink POJO
public WC() {}
public WC(String word, long frequency) {
this.word = word;
this.frequency = frequency;
}
@Override
public String toString() {
return "WC " + word + " " + frequency;
}
}
}
## Flink程序报:
`Error:(55, 38) Static methods in interface require -target:jvm-1.8
val env = TableEnvironment.create(settings)`
解决办法:
https://blog.csdn.net/tototuzuoquan/article/details/114841671
package org.apache.flink.table.examples.scala.basics
import java.time.LocalDate
import org.apache.flink.table.api.{EnvironmentSettings, TableEnvironment, _}
import org.apache.flink.table.functions.ScalarFunction
import org.apache.flink.types.Row
import org.apache.flink.util.CloseableIterator
import scala.collection.JavaConverters._
/**
* Example for getting started with the Table & SQL API in Scala.
*
* The example shows how to create, transform, and query a table. It should give a first impression
* about the look-and-feel of the API without going too much into details. See the other examples for
* using connectors or more complex operations.
*
* In particular, the example shows how to
* - setup a [[TableEnvironment]],
* - use the environment for creating example tables, registering views, and executing SQL queries,
* - transform tables with filters and projections,
* - declare user-defined functions,
* - and print/collect results locally.
*
* The example executes two Flink jobs. The results are written to stdout.
*/
object GettingStartedExample {
def main(args: Array[String]): Unit = {
// setup the unified API
// in this case: declare that the table programs should be executed in batch mode
val settings = EnvironmentSettings.newInstance()
.inBatchMode()
.build()
val env = TableEnvironment.create(settings)
// create a table with example data without a connector required
val rawCustomers = env.fromValues(
row("Guillermo Smith", LocalDate.parse("1992-12-12"), "4081 Valley Road", "08540", "New Jersey", "m", true, 0, 78, 3),
row("Valeria Mendoza", LocalDate.parse("1970-03-28"), "1239 Rainbow Road", "90017", "Los Angeles", "f", true, 9, 39, 0),
row("Leann Holloway", LocalDate.parse("1989-05-21"), "2359 New Street", "97401", "Eugene", null, true, null, null, null),
row("Brandy Sanders", LocalDate.parse("1956-05-26"), "4891 Walkers-Ridge-Way", "73119", "Oklahoma City", "m", false, 9, 39, 0),
row("John Turner", LocalDate.parse("1982-10-02"), "2359 New Street", "60605", "Chicago", "m", true, 12, 39, 0),
row("Ellen Ortega", LocalDate.parse("1985-06-18"), "2448 Rodney STreet", "85023", "Phoenix", "f", true, 0, 78, 3)
)
// handle ranges of columns easily
val truncatedCustomers = rawCustomers.select(withColumns(1 to 7))
// name columns
val namedCustomers = truncatedCustomers
.as("name", "date_of_birth", "street", "zip_code", "city", "gender", "has_newsletter")
// register a view temporarily
env.createTemporaryView("customers", namedCustomers)
// use SQL whenever you like
// call execute() and print() to get insights
env
.sqlQuery("""
|SELECT
| COUNT(*) AS `number of customers`,
| AVG(YEAR(date_of_birth)) AS `average birth year`
|FROM `customers`
|""".stripMargin
)
.execute()
.print()
// or further transform the data using the fluent Table API
// e.g. filter, project fields, or call a user-defined function
val youngCustomers = env
.from("customers")
.filter($"gender".isNotNull)
.filter($"has_newsletter" === true)
.filter($"date_of_birth" >= LocalDate.parse("1980-01-01"))
.select(
$"name".upperCase(),
$"date_of_birth",
call(classOf[AddressNormalizer], $"street", $"zip_code", $"city").as("address")
)
// use execute() and collect() to retrieve your results from the cluster
// this can be useful for testing before storing it in an external system
var iterator: CloseableIterator[Row] = null
try {
iterator = youngCustomers.execute().collect()
val actualOutput = iterator.asScala.toSet
val expectedOutput = Set(
Row.of("GUILLERMO SMITH", LocalDate.parse("1992-12-12"), "4081 VALLEY ROAD, 08540, NEW JERSEY"),
Row.of("JOHN TURNER", LocalDate.parse("1982-10-02"), "2359 NEW STREET, 60605, CHICAGO"),
Row.of("ELLEN ORTEGA", LocalDate.parse("1985-06-18"), "2448 RODNEY STREET, 85023, PHOENIX")
)
if (actualOutput == expectedOutput) {
println("SUCCESS!")
} else {
println("FAILURE!")
}
} finally {
if (iterator != null) {
iterator.close()
}
}
}
/**
* We can put frequently used procedures in user-defined functions.
*
* It is possible to call third-party libraries here as well.
*/
class AddressNormalizer extends ScalarFunction {
// the 'eval()' method defines input and output types (reflectively extracted)
// and contains the runtime logic
def eval(street: String, zipCode: String, city: String): String = {
normalize(street) + ", " + normalize(zipCode) + ", " + normalize(city)
}
private def normalize(s: String) = {
s.toUpperCase.replaceAll("\\W", " ").replaceAll("\\s+", " ").trim
}
}
}
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.flink.table.examples.scala.basics
import org.apache.flink.api.java.utils.ParameterTool
import org.apache.flink.api.scala._
import org.apache.flink.streaming.api.scala.{DataStream, StreamExecutionEnvironment}
import org.apache.flink.table.api._
import org.apache.flink.table.api.bridge.scala._
/**
* Simple example for demonstrating the use of SQL on a Stream Table in Scala.
*
* Usage: flinksqldemo.StreamSQLExample --planner <blink|flink>
*
*
This example shows how to:
* - Convert DataStreams to Tables
* - Register a Table under a name
* - Run a StreamSQL query on the registered Table
*/
object StreamSQLExample {
// *************************************************************************
// PROGRAM
// *************************************************************************
def main(args: Array[String]): Unit = {
val params = ParameterTool.fromArgs(args)
val planner = if (params.has("planner")) params.get("planner") else "blink"
// set up execution environment
val env = StreamExecutionEnvironment.getExecutionEnvironment
val tEnv = if (planner == "blink") { // use blink planner in streaming mode
val settings = EnvironmentSettings.newInstance()
.useBlinkPlanner()
.inStreamingMode()
.build()
StreamTableEnvironment.create(env, settings)
} else if (planner == "flink") { // use flink planner in streaming mode
val settings = EnvironmentSettings.newInstance()
.useOldPlanner()
.inStreamingMode()
.build()
StreamTableEnvironment.create(env, settings)
} else {
System.err.println("The planner is incorrect. Please run 'flinksqldemo.StreamSQLExample --planner ', " +
"where planner (it is either flink or blink, and the default is blink) indicates whether the " +
"example uses flink planner or blink planner.")
return
}
val orderA: DataStream[Order] = env.fromCollection(Seq(
Order(1L, "beer", 3),
Order(1L, "diaper", 4),
Order(3L, "rubber", 2)))
val orderB: DataStream[Order] = env.fromCollection(Seq(
Order(2L, "pen", 3),
Order(2L, "rubber", 3),
Order(4L, "beer", 1)))
// convert DataStream to Table
val tableA = tEnv.fromDataStream(orderA, $"user", $"product", $"amount")
// register DataStream as Table
tEnv.createTemporaryView("OrderB", orderB, $"user", $"product", $"amount")
// union the two tables
val result = tEnv.sqlQuery(
s"""
|SELECT * FROM $tableA WHERE amount > 2
|UNION ALL
|SELECT * FROM OrderB WHERE amount < 2
""".stripMargin)
result.toAppendStream[Order].print()
env.execute()
}
// *************************************************************************
// USER DATA TYPES
// *************************************************************************
case class Order(user: Long, product: String, amount: Int)
}
package org.apache.flink.table.examples.scala.basics
import org.apache.flink.api.scala._
import org.apache.flink.streaming.api.scala.{DataStream, StreamExecutionEnvironment}
import org.apache.flink.table.api._
import org.apache.flink.table.api.bridge.scala._
/**
* Simple example for demonstrating the use of Table API on a Stream Table.
*
* This example shows how to:
* - Convert DataStreams to Tables
* - Apply union, select, and filter operations
*/
object StreamTableExample {
// *************************************************************************
// PROGRAM
// *************************************************************************
def main(args: Array[String]): Unit = {
// set up execution environment
val env = StreamExecutionEnvironment.getExecutionEnvironment
val tEnv = StreamTableEnvironment.create(env)
val orderA = env.fromCollection(Seq(
Order(1L, "beer", 3),
Order(1L, "diaper", 4),
Order(3L, "rubber", 2))).toTable(tEnv)
val orderB = env.fromCollection(Seq(
Order(2L, "pen", 3),
Order(2L, "rubber", 3),
Order(4L, "beer", 1))).toTable(tEnv)
// union the two tables
val result: DataStream[Order] = orderA.unionAll(orderB)
.select('user, 'product, 'amount)
.where('amount > 2)
.toAppendStream[Order]
result.print()
env.execute()
}
// *************************************************************************
// USER DATA TYPES
// *************************************************************************
case class Order(user: Long, product: String, amount: Int)
}
package org.apache.flink.table.examples.scala.basics
import org.apache.flink.api.scala._
import org.apache.flink.table.api._
import org.apache.flink.table.api.bridge.scala._
/**
* This program implements a modified version of the TPC-H query 3. The
* example demonstrates how to assign names to fields by extending the Tuple class.
* The original query can be found at
* [http://www.tpc.org/tpch/spec/tpch2.16.0.pdf](http://www.tpc.org/tpch/spec/tpch2.16.0.pdf)
* (page 29).
*
* This program implements the following SQL equivalent:
*
* {{{
* SELECT
* l_orderkey,
* SUM(l_extendedprice*(1-l_discount)) AS revenue,
* o_orderdate,
* o_shippriority
* FROM customer,
* orders,
* lineitem
* WHERE
* c_mktsegment = '[SEGMENT]'
* AND c_custkey = o_custkey
* AND l_orderkey = o_orderkey
* AND o_orderdate < date '[DATE]'
* AND l_shipdate > date '[DATE]'
* GROUP BY
* l_orderkey,
* o_orderdate,
* o_shippriority
* ORDER BY
* revenue desc,
* o_orderdate;
* }}}
*
* Input files are plain text CSV files using the pipe character ('|') as field separator
* as generated by the TPC-H data generator which is available at
* [http://www.tpc.org/tpch/](a href="http://www.tpc.org/tpch/).
*
* Usage:
* {{{
* TPCHQuery3Expression
* }}}
*
* This example shows how to:
* - Convert DataSets to Tables
* - Use Table API expressions
*
*/
object TPCHQuery3Table {
// *************************************************************************
// PROGRAM
// *************************************************************************
def main(args: Array[String]) {
if (!parseParameters(args)) {
return
}
// set filter date
val date = "1995-03-12".toDate
// get execution environment
val env = ExecutionEnvironment.getExecutionEnvironment
val tEnv = BatchTableEnvironment.create(env)
val lineitems = getLineitemDataSet(env)
.toTable(tEnv, 'id, 'extdPrice, 'discount, 'shipDate)
.filter('shipDate.toDate > date)
val customers = getCustomerDataSet(env)
.toTable(tEnv, 'id, 'mktSegment)
.filter('mktSegment === "AUTOMOBILE")
val orders = getOrdersDataSet(env)
.toTable(tEnv, 'orderId, 'custId, 'orderDate, 'shipPrio)
.filter('orderDate.toDate < date)
val items =
orders.join(customers)
.where('custId === 'id)
.select('orderId, 'orderDate, 'shipPrio)
.join(lineitems)
.where('orderId === 'id)
.select(
'orderId,
'extdPrice * (1.0f.toExpr - 'discount) as 'revenue,
'orderDate,
'shipPrio)
val result = items
.groupBy('orderId, 'orderDate, 'shipPrio)
.select('orderId, 'revenue.sum as 'revenue, 'orderDate, 'shipPrio)
.orderBy('revenue.desc, 'orderDate.asc)
// emit result
result.writeAsCsv(outputPath, "\n", "|")
// execute program
env.execute("Scala TPCH Query 3 (Table API Expression) Example")
}
// *************************************************************************
// USER DATA TYPES
// *************************************************************************
case class Lineitem(id: Long, extdPrice: Double, discount: Double, shipDate: String)
case class Customer(id: Long, mktSegment: String)
case class Order(orderId: Long, custId: Long, orderDate: String, shipPrio: Long)
// *************************************************************************
// UTIL METHODS
// *************************************************************************
private var lineitemPath: String = _
private var customerPath: String = _
private var ordersPath: String = _
private var outputPath: String = _
private def parseParameters(args: Array[String]): Boolean = {
if (args.length == 4) {
lineitemPath = args(0)
customerPath = args(1)
ordersPath = args(2)
outputPath = args(3)
true
} else {
System.err.println("This program expects data from the TPC-H benchmark as input data.\n" +
" Due to legal restrictions, we can not ship generated data.\n" +
" You can find the TPC-H data generator at http://www.tpc.org/tpch/.\n" +
" Usage: TPCHQuery3 " +
" " )
false
}
}
private def getLineitemDataSet(env: ExecutionEnvironment): DataSet[Lineitem] = {
env.readCsvFile[Lineitem](
lineitemPath,
fieldDelimiter = "|",
includedFields = Array(0, 5, 6, 10) )
}
private def getCustomerDataSet(env: ExecutionEnvironment): DataSet[Customer] = {
env.readCsvFile[Customer](
customerPath,
fieldDelimiter = "|",
includedFields = Array(0, 6) )
}
private def getOrdersDataSet(env: ExecutionEnvironment): DataSet[Order] = {
env.readCsvFile[Order](
ordersPath,
fieldDelimiter = "|",
includedFields = Array(0, 1, 4, 7) )
}
}
package org.apache.flink.table.examples.scala.basics
import org.apache.flink.api.scala._
import org.apache.flink.table.api._
import org.apache.flink.table.api.bridge.scala._
/**
* Simple example that shows how the Batch SQL API is used in Scala.
*
* This example shows how to:
* - Convert DataSets to Tables
* - Register a Table under a name
* - Run a SQL query on the registered Table
*
*/
object WordCountSQL {
// *************************************************************************
// PROGRAM
// *************************************************************************
def main(args: Array[String]): Unit = {
// set up execution environment
val env = ExecutionEnvironment.getExecutionEnvironment
val tEnv = BatchTableEnvironment.create(env)
val input = env.fromElements(WC("hello", 1), WC("hello", 1), WC("ciao", 1))
// register the DataSet as a view "WordCount"
tEnv.createTemporaryView("WordCount", input, $"word", $"frequency")
// run a SQL query on the Table and retrieve the result as a new Table
val table = tEnv.sqlQuery("SELECT word, SUM(frequency) FROM WordCount GROUP BY word")
table.toDataSet[WC].print()
}
// *************************************************************************
// USER DATA TYPES
// *************************************************************************
case class WC(word: String, frequency: Long)
}
package org.apache.flink.table.examples.scala.basics
import org.apache.flink.api.scala._
import org.apache.flink.table.api._
import org.apache.flink.table.api.bridge.scala._
/**
* Simple example for demonstrating the use of the Table API for a Word Count in Scala.
*
* This example shows how to:
* - Convert DataSets to Tables
* - Apply group, aggregate, select, and filter operations
*
*/
object WordCountTable {
// *************************************************************************
// PROGRAM
// *************************************************************************
def main(args: Array[String]): Unit = {
// set up execution environment
val env = ExecutionEnvironment.getExecutionEnvironment
val tEnv = BatchTableEnvironment.create(env)
val input = env.fromElements(WC("hello", 1), WC("hello", 1), WC("ciao", 1))
val expr = input.toTable(tEnv)
val result = expr
.groupBy($"word")
.select($"word", $"frequency".sum as "frequency")
.filter($"frequency" === 2)
.toDataSet[WC]
result.print()
}
// *************************************************************************
// USER DATA TYPES
// *************************************************************************
case class WC(word: String, frequency: Long)
}
配置参考:
[jdbc](https://ci.apache.org/projects/flink/flink-docs-release-1.12/dev/table/connectors/jdbc.html)
[kafka](https://ci.apache.org/projects/flink/flink-docs-release-1.12/dev/table/connectors/kafka.html)
触发方式: 针对每条触发一次
source kafka json 数据格式
topic: flink_test
msg: {"day_time": "20201009","id": 7,"amnount":20}
创建topic
bin/kafka-topics.sh --create --zookeeper localhost:2181 --replication-factor 1 --partitions 1 --topic flink_test
查看topic是否存在了
bin/kafka-topics.sh --list --zookeeper localhost:2181
[root@flink01 flink-1.12.1]# cd $KAFKA_HOME
[root@middleware kafka_2.12-2.6.0]# bin/kafka-console-producer.sh --bootstrap-server localhost:9092 --topic flink_test
>{"day_time": "20201009","id": 7,"amnount":20}
>
sink mysql 创建语句
CREATE TABLE sync_test_1 (
`day_time` varchar(64) NOT NULL,
`total_gmv` bigint(11) DEFAULT NULL,
PRIMARY KEY (`day_time`)
) ENGINE=InnoDB AUTO_INCREMENT=5 DEFAULT CHARSET=utf8mb4;
[root@flink01 ~]# cd $FLINK_HOME
[root@flink01 flink-1.12.1]# bin/sql-client.sh embedded
配置语句
create table flink_test_1 (
id BIGINT,
day_time VARCHAR,
amnount BIGINT,
proctime AS PROCTIME ()
)
with (
'connector' = 'kafka',
'topic' = 'flink_test',
'properties.bootstrap.servers' = 'xxx.xxx.xxx.xxx:9092',
'properties.group.id' = 'flink_gp_test1',
'scan.startup.mode' = 'earliest-offset',
'format' = 'json',
'json.fail-on-missing-field' = 'false',
'json.ignore-parse-errors' = 'true',
'properties.zookeeper.connect' = 'xxx.xxx.xxx.xxx:2181/kafka'
);
CREATE TABLE sync_test_1 (
day_time string,
total_gmv bigint,
PRIMARY KEY (day_time) NOT ENFORCED
) WITH (
'connector' = 'jdbc',
'url' = 'jdbc:mysql://xxx.xxx.xxx.xxx:3306/test?characterEncoding=UTF-8',
'table-name' = 'sync_test_1',
'username' = 'root',
'password' = '123456'
);
INSERT INTO sync_test_1
SELECT day_time,SUM(amnount) AS total_gmv
FROM flink_test_1
GROUP BY day_time;
cd $FLINK_HOME
./bin/sql-client.sh embedded
source kafka json 数据格式
创建topic
cd $KAFKA_HOME
bin/kafka-topics.sh --create --zookeeper localhost:2181 --replication-factor 1 --partitions 1 --topic flink_test_1
bin/kafka-topics.sh --create --zookeeper localhost:2181 --replication-factor 1 --partitions 1 --topic flink_test_2
bin/kafka-console-producer.sh --bootstrap-server localhost:9092 --topic flink_test_1
topic flink_test_1 {"day_time": "20201011","id": 8,"amnount":211}
{"day_time": "20211011","id": 1,"amnount":211}
{"day_time": "20211012","id": 2,"amnount":211}
bin/kafka-console-producer.sh --bootstrap-server localhost:9092 --topic flink_test_2
topic flink_test_2 {"id": 8,"coupon_amnount":100}
{"id": 1,"coupon_amnount":100}
{"id": 2,"coupon_amnount":100}
注意:针对双流中的每条记录都发触发
sink mysql 创建语句
CREATE TABLE `sync_test_2` (
`id` bigint(11) NOT NULL AUTO_INCREMENT,
`day_time` varchar(64) DEFAULT NULL,
`total_gmv` bigint(11) DEFAULT NULL,
PRIMARY KEY (`id`),
UNIQUE KEY `uidx` (`day_time`) USING BTREE
) ENGINE=InnoDB AUTO_INCREMENT=5 DEFAULT CHARSET=utf8mb4;
配置语句
create table flink_test_2_1 (
id BIGINT,
day_time VARCHAR,
amnount BIGINT,
proctime AS PROCTIME ()
)
with (
'connector' = 'kafka',
'topic' = 'flink_test_1',
'properties.bootstrap.servers' = 'xxx.xxx.xxx.xxx:9092',
'properties.group.id' = 'flink_gp_test2-1',
'scan.startup.mode' = 'earliest-offset',
'format' = 'json',
'json.fail-on-missing-field' = 'false',
'json.ignore-parse-errors' = 'true',
'properties.zookeeper.connect' = 'xxx.xxx.xxx.xxx:2181/kafka'
);
create table flink_test_2_2 (
id BIGINT,
coupon_amnount BIGINT,
proctime AS PROCTIME ()
)
with (
'connector' = 'kafka',
'topic' = 'flink_test_2',
'properties.bootstrap.servers' = 'xxx.xxx.xxx.xxx:9092',
'properties.group.id' = 'flink_gp_test2-2',
'scan.startup.mode' = 'earliest-offset',
'format' = 'json',
'json.fail-on-missing-field' = 'false',
'json.ignore-parse-errors' = 'true',
'properties.zookeeper.connect' = 'xxx.xxx.xxx.xxx:2181/kafka'
);
CREATE TABLE sync_test_2 (
day_time string,
total_gmv bigint,
PRIMARY KEY (day_time) NOT ENFORCED
) WITH (
'connector' = 'jdbc',
'url' = 'jdbc:mysql://xxx.xxx.xxx.xxx:3306/test?characterEncoding=UTF-8',
'table-name' = 'sync_test_2',
'username' = 'root',
'password' = '123456'
);
INSERT INTO sync_test_2
SELECT
day_time,
SUM(amnount - coupon_amnount) AS total_gmv
FROM
(
SELECT
a.day_time as day_time,
a.amnount as amnount,
b.coupon_amnount as coupon_amnount
FROM
flink_test_2_1 as a
LEFT JOIN flink_test_2_2 b on b.id = a.id
)
GROUP BY
day_time;
source kafka json 数据格式
topic flink_test_1 {"day_time": "20201011","id": 8,"amnount":211}
dim test_dim
CREATE TABLE `test_dim` (
`id` bigint(11) NOT NULL,
`coupon_amnount` bigint(11) DEFAULT NULL,
PRIMARY KEY (`id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4;
-- ----------------------------
-- Records of test_dim
-- ----------------------------
BEGIN;
INSERT INTO `test_dim` VALUES (1, 1);
INSERT INTO `test_dim` VALUES (3, 1);
INSERT INTO `test_dim` VALUES (8, 1);
COMMIT;
sink mysql 创建语句
CREATE TABLE `sync_test_3` (
`id` bigint(11) NOT NULL AUTO_INCREMENT,
`day_time` varchar(64) DEFAULT NULL,
`total_gmv` bigint(11) DEFAULT NULL,
PRIMARY KEY (`id`),
UNIQUE KEY `uidx` (`day_time`) USING BTREE
) ENGINE=InnoDB AUTO_INCREMENT=5 DEFAULT CHARSET=utf8mb4;
配置语句
create table flink_test_3 (
id BIGINT,
day_time VARCHAR,
amnount BIGINT,
proctime AS PROCTIME ()
)
with (
'connector' = 'kafka',
'topic' = 'flink_test_1',
'properties.bootstrap.servers' = '172.25.20.76:9092',
'properties.group.id' = 'flink_gp_test3',
'scan.startup.mode' = 'earliest-offset',
'format' = 'json',
'json.fail-on-missing-field' = 'false',
'json.ignore-parse-errors' = 'true',
'properties.zookeeper.connect' = '172.25.20.76:2181/kafka'
);
create table flink_test_3_dim (
id BIGINT,
coupon_amnount BIGINT
)
with (
'connector' = 'jdbc',
'url' = 'jdbc:mysql://172.25.21.10:3306/flink_web?characterEncoding=UTF-8',
'table-name' = 'test_dim',
'username' = 'videoweb',
'password' = 'suntek',
'lookup.max-retries' = '3',
'lookup.cache.max-rows' = 1000
);
CREATE TABLE sync_test_3 (
day_time string,
total_gmv bigint,
PRIMARY KEY (day_time) NOT ENFORCED
) WITH (
'connector' = 'jdbc',
'url' = 'jdbc:mysql://172.25.21.10:3306/flink_web?characterEncoding=UTF-8',
'table-name' = 'sync_test_3',
'username' = 'videoweb',
'password' = 'suntek'
);
INSERT INTO sync_test_3
SELECT
day_time,
SUM(amnount - coupon_amnount) AS total_gmv
FROM
(
SELECT
a.day_time as day_time,
a.amnount as amnount,
b.coupon_amnount as coupon_amnount
FROM
flink_test_3 as a
LEFT JOIN flink_test_3_dim FOR SYSTEM_TIME AS OF a.proctime as b
ON b.id = a.id
)
GROUP BY day_time;
source kafka json 数据格式
topic flink_test_4
{"username":"zhp","click_url":"https://www.infoq.cn/","ts":"2021-01-05 11:12:12"}
{"username":"zhp","click_url":"https://www.infoq.cn/video/BYSSg4hGR5oZmUFsL8Kb","ts":"2020-01-05 11:12:15"}
{"username":"zhp","click_url":"https://www.infoq.cn/talks","ts":"2020-01-05 11:12:18"}
{"username":"zhp","click_url":"https://www.infoq.cn/","ts":"2021-01-05 11:12:55"}
{"username":"zhp","click_url":"https://www.infoq.cn/","ts":"2021-01-05 11:13:25"}
{"username":"zhp","click_url":"https://www.infoq.cn/talks","ts":"2021-01-05 11:13:25"}
{"username":"zhp","click_url":"https://www.infoq.cn/talks","ts":"2021-01-05 11:13:26"}
sink mysql 创建语句
CREATE TABLE `sync_test_tumble_output` (
`id` bigint(11) NOT NULL AUTO_INCREMENT,
`window_start` datetime DEFAULT NULL,
`window_end` datetime DEFAULT NULL,
`username` varchar(255) DEFAULT NULL,
`clicks` bigint(255) DEFAULT NULL,
PRIMARY KEY (`id`)
) ENGINE=InnoDB AUTO_INCREMENT=5 DEFAULT CHARSET=utf8mb4;
配置语句
-- -- 开启 mini-batch 指定是否启用小批量优化 (相关配置说明 https://ci.apache.org/projects/flink/flink-docs-release-1.12/zh/dev/table/config.html)
SET table.exec.mini-batch.enabled=true;
-- -- mini-batch的时间间隔,即作业需要额外忍受的延迟
SET table.exec.mini-batch.allow-latency=60s;
-- -- 一个 mini-batch 中允许最多缓存的数据
SET table.exec.mini-batch.size=5;
create table user_clicks (
username varchar,
click_url varchar,
ts timestamp,
-- ts BIGINT,
-- ts2 AS TO_TIMESTAMP(FROM_UNIXTIME(ts / 1000, 'yyyy-MM-dd HH:mm:ss')),
WATERMARK FOR ts AS ts - INTERVAL '20' SECOND
)
with (
'connector' = 'kafka',
'topic' = 'flink_test_4',
'properties.bootstrap.servers' = '172.25.20.76:9092',
'properties.group.id' = 'flink_gp_test4',
'scan.startup.mode' = 'earliest-offset',
'format' = 'json',
'json.fail-on-missing-field' = 'false',
'json.ignore-parse-errors' = 'true',
'properties.zookeeper.connect' = '172.25.20.76:2181/kafka'
);
CREATE TABLE sync_test_tumble_output (
window_start TIMESTAMP(3),
window_end TIMESTAMP(3),
username VARCHAR,
clicks BIGINT
) WITH (
'connector' = 'jdbc',
'url' = 'jdbc:mysql://172.25.21.10:3306/flink_web?characterEncoding=UTF-8',
'table-name' = 'sync_test_tumble_output',
'username' = 'videoweb',
'password' = 'suntek'
);
INSERT INTO sync_test_tumble_output
SELECT
TUMBLE_START(ts, INTERVAL '60' SECOND) as window_start,
TUMBLE_END(ts, INTERVAL '60' SECOND) as window_end,
username,
COUNT(click_url)
FROM user_clicks
GROUP BY TUMBLE(ts, INTERVAL '60' SECOND), username;
source kafka json 数据格式
topic flink_test_5
{"username":"zhp","click_url":"https://www.infoq.cn/","ts":"2020-01-05 11:12:12"}
{"username":"zhp","click_url":"https://www.infoq.cn/video/BYSSg4hGR5oZmUFsL8Kb","ts":"2020-01-05 11:12:15"}
{"username":"zhp","click_url":"https://www.infoq.cn/talks","ts":"2020-01-05 11:12:18"}
{"username":"zhp","click_url":"https://www.infoq.cn/","ts":"2020-01-05 11:12:55"}
{"username":"zhp","click_url":"https://www.infoq.cn/","ts":"2020-01-05 11:13:25"}
{"username":"zhp","click_url":"https://www.infoq.cn/talks","ts":"2020-01-05 11:13:25"}
{"username":"zhp","click_url":"https://www.infoq.cn/talks","ts":"2020-01-05 11:13:26"}
sink mysql 创建语句
CREATE TABLE `sync_test_hop_output` (
`id` bigint(11) NOT NULL AUTO_INCREMENT,
`window_start` datetime DEFAULT NULL,
`window_end` datetime DEFAULT NULL,
`username` varchar(255) DEFAULT NULL,
`clicks` bigint(255) DEFAULT NULL,
PRIMARY KEY (`id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4;
配置语句
-- -- 开启 mini-batch (相关配置说明 https://ci.apache.org/projects/flink/flink-docs-release-1.10/zh/dev/table/config.html)
SET table.exec.mini-batch.enabled=true;
-- -- mini-batch的时间间隔,即作业需要额外忍受的延迟
SET table.exec.mini-batch.allow-latency=60s;
-- -- 一个 mini-batch 中允许最多缓存的数据
SET table.exec.mini-batch.size=5;
create table user_clicks (
username varchar,
click_url varchar,
ts timestamp,
-- ts BIGINT,
-- ts2 AS TO_TIMESTAMP(FROM_UNIXTIME(ts / 1000, 'yyyy-MM-dd HH:mm:ss')),
WATERMARK FOR ts AS ts - INTERVAL '5' SECOND
)
with (
'connector' = 'kafka',
'topic' = 'flink_test_5',
'properties.bootstrap.servers' = '172.25.20.76:9092',
'properties.group.id' = 'flink_gp_test5',
'scan.startup.mode' = 'earliest-offset',
'format' = 'json',
'json.fail-on-missing-field' = 'false',
'json.ignore-parse-errors' = 'true',
'properties.zookeeper.connect' = '172.25.20.76:2181/kafka'
);
CREATE TABLE sync_test_hop_output (
window_start TIMESTAMP(3),
window_end TIMESTAMP(3),
username VARCHAR,
clicks BIGINT
) WITH (
'connector' = 'jdbc',
'url' = 'jdbc:mysql://172.25.21.10:3306/flink_web?characterEncoding=UTF-8',
'table-name' = 'sync_test_hop_output',
'username' = 'videoweb',
'password' = 'suntek'
);
--统计每个用户过去1分钟的单击次数,每30秒更新1次,即1分钟的窗口,30秒滑动1次
INSERT INTO sync_test_hop_output
SELECT
HOP_START (ts, INTERVAL '30' SECOND, INTERVAL '1' MINUTE) as window_start,
HOP_END (ts, INTERVAL '30' SECOND, INTERVAL '1' MINUTE) as window_end,
username,
COUNT(click_url)
FROM user_clicks
GROUP BY HOP (ts, INTERVAL '30' SECOND, INTERVAL '1' MINUTE), username;
1. datagen简介
在flink 1.11中,内置提供了一个DataGen 连接器,主要是用于生成一些随机数,用于在没有数据源的时候,进行流任务的测试以及性能测试等。
具体的使用方法可以先看下官网的概述
使用时注意如下:
bin/sql-client.sh embedded
或
bin/sql-client.sh embedded -l 依赖的jar包路径
flink SQL测试
CREATE TABLE datagen (
f_sequence INT,
f_random INT,
f_random_str STRING,
ts AS localtimestamp,
WATERMARK FOR ts AS ts
) WITH (
'connector' = 'datagen',
-- optional options --
'rows-per-second'='5',
'fields.f_sequence.kind'='sequence',
'fields.f_sequence.start'='1',
'fields.f_sequence.end'='1000',
'fields.f_random.min'='1',
'fields.f_random.max'='1000',
'fields.f_random_str.length'='10'
);
select * from datagen;
2.2 参数解释
DDL的with属性中,除了connector是必填之外,其他都是可选的。
rows-per-second 每秒生成的数据条数
f_sequence字段的生成策略是按序列生成,并且指定了起始值,所以该程序将会在到达序列的结束值之后退出
f_random 字段是按照随机生成,并指定随机生成的范围
f_random_str是一个字符串类型,属性中指定了随机生成字符串的长度是10
ts列是一个计算列,返回当前的时间.
具体的使用方法可以先看下官网的概述
使用时注意如下:
bin/sql-client.sh embedded
或
bin/sql-client.sh embedded -l 依赖的jar包路径
flink SQL测试
CREATE TABLE datagen (
f_sequence INT,
f_random INT,
f_random_str STRING,
ts AS localtimestamp,
WATERMARK FOR ts AS ts
) WITH (
'connector' = 'datagen',
-- optional options --
'rows-per-second'='5',
'fields.f_sequence.kind'='sequence',
'fields.f_sequence.start'='1',
'fields.f_sequence.end'='1000',
'fields.f_random.min'='1',
'fields.f_random.max'='1000',
'fields.f_random_str.length'='10'
);
select * from datagen;
2.2 参数解释
DDL的with属性中,除了connector是必填之外,其他都是可选的。
rows-per-second 每秒生成的数据条数
f_sequence字段的生成策略是按序列生成,并且指定了起始值,所以该程序将会在到达序列的结束值之后退出
f_random 字段是按照随机生成,并指定随机生成的范围
f_random_str是一个字符串类型,属性中指定了随机生成字符串的长度是10
ts列是一个计算列,返回当前的时间.
将flink的connector的jar包、flink-json、flink avro相关的包放到flink的lib目录下
创建两个topic
bin/kafka-topics.sh --create --zookeeper localhost:2181 --replication-factor 1 --partitions 1 --topic pageviews
bin/kafka-topics.sh --create --zookeeper localhost:2181 --replication-factor 1 --partitions 1 --topic pageviews_per_region
查看topic列表
bin/kafka-topics.sh --zookeeper localhost:2181 --list
生产者生产数据
bin/kafka-console-producer.sh --bootstrap-server localhost:9092 --topic pageviews
>{"user_id":11,"page_id":1,"viewtime":"2007-12-03 10:15:30","user_region":"hangzhou"}
>{"user_id":12,"page_id":2,"viewtime":"2008-12-03 10:15:30","user_region":"hangzhou"}
>{"user_id":13,"page_id":3,"viewtime":"2009-12-03 10:15:30","user_region":"hangzhou"}
>{"user_id":14,"page_id":4,"viewtime":"2010-12-03 10:15:30","user_region":"henan"}
消费者消费数据
bin/kafka-console-consumer.sh --bootstrap-server localhost:9092 --topic pageviews_per_region
CREATE TABLE pageviews_per_region (
user_region STRING,
pv BIGINT,
uv BIGINT,
PRIMARY KEY (user_region) NOT ENFORCED
) WITH (
'connector' = 'upsert-kafka',
'topic' = 'pageviews_per_region',
'properties.bootstrap.servers' = 'xxx.xxx.xxx.xxx:9092',
'key.format' = 'avro',
'value.format' = 'avro'
);
CREATE TABLE pageviews (
user_id BIGINT,
page_id BIGINT,
viewtime TIMESTAMP,
user_region STRING,
WATERMARK FOR viewtime AS viewtime - INTERVAL '2' SECOND
) WITH (
'connector' = 'kafka',
'topic' = 'pageviews',
'properties.bootstrap.servers' = 'xxx.xxx.xxx.xxx:9092',
'format' = 'json'
);
-- 计算 pv、uv 并插入到 upsert-kafka sink
INSERT INTO pageviews_per_region
SELECT
user_region,
COUNT(*),
COUNT(DISTINCT user_id)
FROM pageviews
GROUP BY user_region;
ES数据操作查询工具
http://xxx.xxx.xxx.xxx:5601/ ,进入Dev Tools
ES数据操作
创建记录index visit ,此记录id为testx1
POST /visit/_doc/testx1
{
"user_id":1,"user_name":"zhangsan","uv":10,"pv":20
}
查询记录
get /visit/_doc/testx1
删除记录
delete /visit/_doc/testx1
创建目标表,ES只能作为目标表
CREATE TABLE myUserTable (
user_id STRING,
user_name STRING,
u_v BIGINT,
pv BIGINT,
PRIMARY KEY (user_id) NOT ENFORCED
) WITH (
'connector' = 'elasticsearch-6',
'hosts' = 'http://xxx.xxx.xxx.xxx:9200',
'index' = 'visit',
'document-type'='_doc'
);
模拟数据:
插入数据后,数据将在ES中出现
INSERT INTO default_database.myUserTable VALUES ('2','wangwu',11,21),('3','zhaoliu',21,31);