2.DNN - BGD


import numpy as np

# 输入规格
# X -  R(batch_size,nx) , Y - R(batch_size , 1)   W - R(1,nx)    b — R (1,1)

def layer(X, W, b):
    # in: X - R(batch_size,nx) W - R(1,nx)b - R(1,1)
    # out: z - R(batch_size,1) - 同Y
    z = np.matmul(W, X.T) + b
    z = z.T
    return z

def sigmoid(z):
    # in : z - R(batch_size,1)
    # out: pre_y - R(batch_size,1)
    return 1 / (1 + np.exp(-z))

def lossfunction(pre_y, true_y):
    # in: pre_y -R(bact_size,1) true_y - R(batch_size,1)
    # out: loss  - R(batch_size,1)
    return 0.5 * (pre_y - true_y) ** 2

def forward(X, W, b):
    # in: X ,W b 
    # out: pre_y - R(batch_size,1)
    z = layer(X, W, b) # R(batch_size,1)
    pre_y = sigmoid(z)
    return pre_y

def layer_grad(X, W, b):
    # in: X,W,b
    # out: [X.T,dz_b] X.T -R(nx,batch_size)  dz_b - R(batch_size,1) 同Y
    
    dz_b = np.ones([X.shape[0],1]) 
    return X.T, dz_b

def sigmoid_grad(pre_y):
    # in: pre_y - R(batch_size,1)
    # out: dy_z - R(batch_size,1)
    return pre_y * (1 - pre_y)

def lossfunction_grad(pre_y, true_y):
    # in: pre_y , true_y
    # out: dl_y - R(batch_size,1)
    # print(pre_y.shape, true_y.shape)
    return pre_y - true_y

def backward(X, W, b, dl_y):
    
    # in : X,W,b,dl_y dl_y - R(batch_size,1)
    # out : dw,db  dw - R(1,nx) db - R(1,1) 
    
    pre_y = forward(X, W, b) # pre_y - R(batch_size,1)
    # print("pred_y: {}".format(pre_y))
    dy_z = sigmoid_grad(pre_y) # dy_z -  R(batch_size,1)
    dz_w, dz_b = layer_grad(X, W, b) # dz_w - R(nx,batch_size) dz_b - R(batch_size,1)
    
    # print(dl_y.shape, dy_z.shape, dz_w.T.shape)
    dw = dl_y * dy_z * dz_w.T # R(batch_size,nx)
    
    dw = np.sum(dw,axis=0) #  按列累加  dw - R(1,nx)
    dw = dw.reshape([1,dw.shape[0]])
    
    
    db = dl_y * dy_z  # R(batch_size,1)
    
    db = np.sum(db,axis=0) # 按列累加 db - R(1,1)
    db = db.reshape([1,1])

    
    return dw, db

class DNN(object):
    def __init__(self, batch_size, nx, lr):
        self.lr = lr
        self.bt = batch_size
        self.w, self.b = self.__init__weight(nx)

    def __init__weight(self,nx):
        w = np.random.randn(1,nx)
        b = np.random.randn(1,1)
        return w, b
    
    def forward(self, X):
        return forward(X, self.w, self.b)
    
    def backward(self, X, dl_y):
        return backward(X, self.w, self.b, dl_y)
    
    def step(self, dw, db):
        self.w -= self.lr * dw
        self.b -= self.lr * db



def train(model, X, Y,batch_size, epochs):
    # X - R [Data_size,nx] Y - R[Data_size,1] 
    losses = []
    for e in range(epochs):
        count_loss = 0
        N = X.shape[0]  # Data_size
        indexs = list(range(N)) 
        np.random.shuffle(indexs)  # BGP
        i = 0
        while i < N:
            batch_indxs = indexs[i:i + batch_size] # R[batch_size,1]
            batch_x = X[batch_indxs] # R[batch_size,nx]
            batch_y = Y[batch_indxs] # R[batch_size,1]
            batch_x = batch_x.reshape([batch_size,nx])
            batch_y = batch_y.reshape([batch_size,1])
            batch_pre_y = model.forward(batch_x) # R[batch_size,1]
            dl_y = lossfunction_grad(batch_pre_y, batch_y) # R[bt,1]

            dw, db = model.backward(batch_x, dl_y) # R[1,nx] , R[1,1]

            model.step(dw, db) 

            loss = lossfunction(batch_pre_y, batch_y)  # loss -R(batch_size,1)
            loss = np.mean(loss)
            
            # print("db: {}".format(db))
            print("epoch: {}, batch: {}, loss: {}".format(e, i // batch_size, loss))
            
            count_loss += loss

            i += batch_size

        print('epochs:{},loss:{}'.format(e, count_loss / batch_size))
        losses.append(count_loss)
    return np.array(losses)

#  开始咯!


batch_size = 100
nx = 10
epochs = 10
train_N = 10000
test_N =10000
lr = 0.001

mu0 = 0
mu1 = 10

X0 = np.random.randn((train_N + test_N) // 2, nx) * 10 + mu0 
X1 = np.random.randn((train_N + test_N) // 2, nx) * 10 + mu1

Y0 = np.zeros(X0.shape[0])
Y1 = np.ones(X1.shape[0])


X = np.concatenate((X0, X1))  # 输入的 X - R(Data_size,nx) 默认axis=0 竖着拼接
Y = np.concatenate((Y0, Y1))  # Y - R(Data_size,1)


from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size=0.5) # 分成训练集 和测试集

model = DNN(batch_size,nx,lr)

losses = train(model, X_train, y_train,batch_size, epochs)

# 来! 画个图
import matplotlib.pyplot as plt
plt.plot(range(len(losses)), losses)

# 看看结果
def test(test_X, test_y):
    pred_y = model.forward(test_X)
    pred_y = pred_y
    pred_y[pred_y > 0.5] = 1
    pred_y[pred_y <= 0.5] = 0 
    test_y = test_y.squeeze()
    
    return np.sum(pred_y == test_y) / len(test_y)

test(X_test, y_test)

你可能感兴趣的:(2.DNN - BGD)