- [免费送Claude账号密码]ChatGPT的平替——Claude赠送2个免费Claude账号密码卡密!(内附Claude注册教程)
NBA首席形象大使阿坤
日常小功能实现人工智能chatgptclaudegpt-3
- 自然语言处理(NLP)技术介绍
风吹晚风悠
gpt人工智能nlp自然语言处理
自然语言处理(NLP)是一种涉及计算机和人类语言之间交流的技术。NLP技术可以应用于多个领域,例如机器翻译、情感分析、文本分类、问答系统等。以下是一些NLP技术的示例:机器翻译:NLP技术可用于将一个语言的文本自动翻译成另一个语言。例如,GoogleTranslate和百度翻译等在线翻译工具就使用了NLP技术。情感分析:NLP技术可用于分析文本中的情感和情感倾向。这可以帮助企业了解公众对其产品或服
- 数学中常用的求导数的公式汇总
彬彬侠
数学基础机器学习
一、基本求导公式常数函数的导数ddx[c]=0\frac{d}{dx}[c]=0dxd[c]=0其中ccc是常数。幂函数的导数ddx[xn]=nxn−1\frac{d}{dx}[x^n]=nx^{n-1}dxd[xn]=nxn−1其中nnn是实数。指数函数的导数自然指数函数:ddx[ex]=ex\frac{d}{dx}[e^{x}]=e^{x}dxd[ex]=ex一般指数函数:ddx[ax]=ax
- 北本海硕腾讯二面没过,该如何准备才能再战大厂?
程序员yt
面试
今天给大家分享的是一位粉丝的提问,北本海硕腾讯二面没过,该如何准备才能再战大厂?接下来把粉丝的具体提问和我的回复分享给大家,希望也能给一些类似情况的小伙伴一些启发和帮助。同学提问:bg北本海硕两段大厂实习,感觉自己bg其实不错但问题是实习干的都是些crud当时也没意识记录一些更深刻的技术或者架构上的问题,八股又欠背(大致看完了小林codinga和csguilde的c++指北但实际中延伸出来的问题太
- 基于Transformer的医学文本分类:从BERT到BioBERT
Evaporator Core
人工智能#深度学习#DeepSeek快速入门transformer分类bert
随着自然语言处理(NLP)技术的快速发展,Transformer模型在文本分类、情感分析、机器翻译等任务中取得了显著成果。在医学领域,文本数据(如电子病历、医学文献、临床报告)具有高度的专业性和复杂性,传统的NLP方法往往难以处理。Transformer模型,尤其是BERT及其变体,通过预训练和微调的方式,能够有效捕捉医学文本中的语义信息,为医学文本分类提供了强大的工具。本文将探讨Transfor
- TF-IDF:文本挖掘中的关键词提取利器
巷955
tf-idf
引言在自然语言处理(NLP)和文本挖掘中,TF-IDF是一种常用的技术,用于评估一个词在文档中的重要性。它不仅在信息检索领域广泛应用,还在文本分类、关键词提取等任务中发挥着重要作用。本文将详细介绍TF-IDF的原理,并通过一个实际的代码示例来展示如何使用TF-IDF从《红楼梦》中提取核心关键词。1.什么是TF-IDF?TF-IDF是一种统计方法,用于评估一个词在文档中的重要性。它由两部分组成:-T
- SEO 优化
前端岳大宝
前端核心知识总结前端html
以下是SEO(搜索引擎优化)的基础知识点梳理,从前端技术、内容策略到搜索引擎原理,覆盖核心优化方向:一、SEO基础概念定义与目标SEO是通过优化网站结构、内容和技术,提升网站在搜索引擎自然搜索结果中的排名,吸引更多免费流量。核心目标:满足用户搜索意图,同时符合搜索引擎爬虫的抓取规则。搜索引擎工作原理爬取(Crawling):搜索引擎蜘蛛(如Googlebot)抓取网页内容。索引(Indexing)
- 深度解析AI智能助手系统架构:数据接入到平台管理的全景指南
AI大模型-搬运工
人工智能系统架构大语言模型深度学习自然语言处理AI智能助手大模型
在数字化转型的大潮中,AI智能助手在帮助企业优化运营、提高决策效率、增强用户体验方面发挥着不可替代的作用。本篇文章将带您深入了解一个典型的AI智能助手系统架构,并提供每个模块的具体实现方案,包括数据接入、模型配置、平台管理等核心模块,帮助企业更好地构建智能化业务流程。一、AI智能助手的核心功能及实现方案AI智能助手的核心功能包括自然语言问答、图表可视化、多维钻取、导出与收藏、需求理解与过程验证、用
- 人工智能概念
zhangpeng455547940
计算机人工智能
机器学习、深度学习、大模型机器学习提供框架,使得系统可以从数据中学习算法:线性回归、逻辑回归、支持向量机、决策树、随机森林、K近邻算法深度学习是实现这一目标的工具,模仿人脑,使用多层神经网络进行学习算法:多层感知器、卷积神经网络、循环神经网络、长短期记忆网络大模型指参数量巨大的深度学习模型人工智能应用:自然语言处理、图像识别与生成、语音识别、政务与企业服务...
- AI大模型推理加速:技术与实践详解
AI大模型学习者
人工智能
近年来,AI大模型在自然语言处理、计算机视觉等领域取得了突破性进展。然而,大模型的推理速度却成为其落地应用的瓶颈。本文将详细探讨AI大模型推理加速的技术手段和实践经验,并结合具体案例进行分析。一、挑战与机遇1.1挑战庞大的参数量:大模型通常拥有数十亿甚至数千亿个参数,例如GPT-3拥有1750亿个参数。如此庞大的参数量导致模型文件体积巨大,加载和推理都需要消耗大量的内存和计算资源。复杂的计算图:大
- 普通人如何利用GPT赚钱之开发虚拟助手
贫苦游商
普通人利用AI搞钱系列gpt人工智能深度学习机器人AIGC
普通人如何利用GPT赚钱之开发虚拟助手随着人工智能技术的迅猛发展,GPT(GenerativePre-trainedTransformer)作为一种强大的语言模型,正在改变我们的生活和工作方式。普通人如何利用GPT赚钱?开发虚拟助手是一个极具潜力的方向。本文将探讨如何开发虚拟助手,以及如何通过这一技术实现经济收益。什么是虚拟助手虚拟助手是一种基于人工智能的技术,能够理解自然语言并执行特定任务。它们
- 大模型(DeepSeek等)是否会动摇AI工程师的工作?
点我头像干啥
Ai深度学习人工智能AI编程计算机视觉
引言近年来,人工智能(AI)领域取得了突飞猛进的发展,尤其是大模型(如GPT-3、BERT、DeepSeek等)的出现,极大地推动了自然语言处理(NLP)、计算机视觉(CV)等领域的进步。大模型凭借其强大的泛化能力和广泛的应用场景,逐渐成为AI领域的核心技术之一。然而,随着大模型的普及,一个备受关注的问题浮出水面:大模型是否会动摇AI工程师的工作?本文将从多个角度探讨这一问题,分析大模型对AI工程
- Linux---sqlite3数据库
磨十三
数据库linuxsqlite
一、数据库分类1.按数据关系分类类型特点代表产品关系型数据库-使用SQL(结构化查询语言)-数据以行列形式存储,支持事务和复杂查询MySQL、Oracle、SQLite非关系型数据库-无固定表结构(如键值对、文档、图)-高扩展性,适合非结构化数据MongoDB、Redis2.按功能规模分类类型特点代表产品大型数据库高并发、高可用性,支持企业级应用Oracle、DB2中型数据库适用于中小型企业,跨平
- 量子操作系统QNode OS横空出世,量子网络新时代开启!
广拓科技
网络量子计算
QNodeOS,这个在量子领域掀起波澜的名字,正是全球首个专门为量子网络设计的操作系统。它由荷兰代尔夫特理工大学、荷兰量子技术研究所(QuTech)、奥地利因斯布鲁克大学、法国国家信息与自动化研究所和法国国家科学研究中心组成的量子互联网联盟(QIA)研发而成,并于2025年3月12日在顶尖科学期刊《自然》上发表相关研究成果,正式宣告其问世。从理论层面来讲,量子网络一直是科学界梦寐以求的未来网络形态
- 鸿蒙(HarmonyOS)应用开发实战——数据库版本升级案例
CTrup
移动开发鸿蒙开发HarmonyOSharmonyos数据库华为鸿蒙开发装饰器模式ArkUI前端
往期推文全新看点学鸿蒙开发的优劣势,你清楚吗?建议你了解一下!鸿蒙(HarmonyOS)北向开发知识点记录~鸿蒙(OpenHarmony)南向开发保姆级知识点汇总~鸿蒙应用开发与鸿蒙系统开发哪个更有前景?嵌入式开发适不适合做鸿蒙南向开发?看完这篇你就了解了~对于大前端开发来说,转鸿蒙开发究竟是福还是祸?鸿蒙岗位需求突增!移动端、PC端、IoT到底该怎么选?记录一场鸿蒙开发岗位面试经历~持续更新中…
- 【大模型技术】基于 通义千问(Qwen)实现对话系统
大数据追光猿
大模型python人工智能学习方法语言模型
一、项目背景与目标目标:构建一个支持多轮对话的对话系统。实现上下文管理,确保对话历史能够被正确记录并影响后续回答。使用Qwen提供的API生成自然语言回复。核心功能:多轮对话:用户可以连续提问,系统根据上下文生成连贯的回答。上下文管理:通过维护对话历史,确保模型理解用户的意图。灵活性:支持自定义提示模板和外部数据源。技术栈:QwenAPI:用于生成自然语言回复。Python:编程语言。二、实现步骤
- 【Java篇】行云流水,似风分岔:编程结构中的自然法则
半截诗
Java#JavaSE开发语言java面向对象学习基础入门javase青少年编程
文章目录Java程序逻辑控制:顺序、分支与循环结构全面解析一、顺序结构二、分支结构2.1if语句2.1.1基本语法2.1.2if-else语句2.1.3if-elseif-else语句2.2switch语句三、循环结构3.1while循环3.2break语句3.3continue语句3.4for循环四、输入输出4.1输出到控制台4.2从键盘输入五、猜数字游戏六、总结与展望Java程序逻辑控制:顺序
- Java线程协作式中断机制
超人汪小建(seaboat)
线程协作式中断机制jvm
跟着作者的65节课彻底搞懂Java并发原理专栏,一步步彻底搞懂Java并发原理。作者简介:笔名seaboat,擅长工程算法、人工智能算法、自然语言处理、计算机视觉、架构、分布式、高并发、大数据和搜索引擎等方面的技术,大多数编程语言都会使用,但更擅长Java、Python和C++。平时喜欢看书写作、运动、画画。崇尚技术自由,崇尚思想自由。出版书籍:《Tomcat内核设计剖析》、《图解数据结构与算法》
- 线程的中断
is_Peng
Java基础Java线程中断interrupt
我们都知道线程被终止一般有两个原因:一是run()方法正常执行完毕而自然死亡;二是因为一个没有捕获的异常终止了run方法而异外死亡。当一个线程在正常执行完毕之前被中断是一件很可怕的事情,会出现很多意想不到的事情,比如不能归还锁而造成死锁现象,stop()方法和destroy()方法就是因此而被废弃的。在前一篇博客中,我们尝试了利用一些变量以指示目标线程应该停止运行来达到线程终止的目的。在Java的
- 深度学习 bert与Transformer的区别联系
Humingway
深度学习berttransformer
BERT(BidirectionalEncoderRepresentationsfromTransformers)和Transformer都是现代自然语言处理(NLP)中的重要概念,但它们代表不同的层面。理解这两者之间的区别与联系有助于更好地掌握它们在NLP任务中的应用。TransformerTransformer是一种特定的深度学习模型架构,由Vaswani等人在2017年的论文《Attenti
- 自然语言处理:文本聚类
老赵爱学习
python文本聚类k均值聚类算法高斯混合模型的最大期望值算法无监督朴素贝叶斯模型自然语言处理人工智能
介绍大家好,博主又来和大家分享自然语言处理领域的知识了。今天给大家分享的内容是自然语言处理中的文本聚类。文本聚类在自然语言处理领域占据着重要地位,它能将大量无序的文本按照内容的相似性自动划分成不同的类别,极大地提高了文本处理和信息提取的效率。就好比在一个大型图书馆中,文本聚类能够像智能管理员一样,把各种书籍按照主题分类摆放,方便读者快速找到所需资料。而实现文本聚类的方法有很多,其中k均值聚类算法、
- 全球首款通用AI Agent「Manus」来了!中国团队打造,让AI真正替你干活!
ruanjianan1
人工智能数据库
1.官网立即下载完整资料点击立即免费获取本文所有操作指南及最新动态已整理完成,点击上方链接即可免费领取!一、Manus是什么?AI界新晋全能选手Manus作为全球首款通用型AIAgent,由中国技术团队历时3年研发,彻底打破了传统AI工具只能完成单一任务的局限。它集成了多模态交互系统和自主任务规划能力,不仅能理解自然语言指令,还能主动拆解复杂任务、调用各类软件工具,真正实现"动口不动手"的智能体验
- Python与人工智能:为何它们是天作之合?
纪至训至
python人工智能开发语言
引言在人工智能(AI)飞速发展的今天,Python已成为这一领域的“明星语言”。从机器学习到深度学习,从自然语言处理到计算机视觉,Python的身影无处不在。那么,Python究竟为何能成为AI开发的首选工具?本文将探讨Python与AI之间的深度关联,并解析其背后的原因。1.Python的简洁性与可读性AI开发的核心在于快速迭代和实验,而Python以其简洁的语法和直观的代码结构著称。开发者无需
- 【自学笔记】讯飞星火基础知识点总览-持续更新
Long_poem
笔记
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档文章目录讯飞星火基础知识点总览一、讯飞星火简介二、核心功能1.语音识别2.自然语言处理3.知识图谱4.星火API三、基础概念1.AI模型2.数据处理3.交互方式四、应用场景示例1.办公场景2.学习场景3.生活场景五、总结总结讯飞星火基础知识点总览一、讯飞星火简介讯飞星火是科大讯飞推出的一款强大的AI技术平台,它集成了语音识别、自然语言
- Python深度学习033:Python、PyTorch、CUDA和显卡驱动之间的关系
若北辰
Python深度学习python深度学习pytorch
Python、PyTorch、CUDA和显卡驱动之间的关系相当紧密,它们共同构成了一个能够执行深度学习模型的高效计算环境。下面是它们之间关系的简要概述:PythonPython是一种编程语言,广泛用于科学计算、数据分析和机器学习。它是开发和运行PyTorch代码的基础环境。PyTorchPyTorch是一个开源的机器学习库,用于应用如自然语言处理和计算机视觉的深度学习模型。它提供了丰富的API,使
- 从零开始大模型开发与微调:编码器的实现
AI天才研究院
计算AI大模型企业级应用开发实战DeepSeekR1&大数据AI人工智能大模型计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
从零开始大模型开发与微调:编码器的实现作者:禅与计算机程序设计艺术/ZenandtheArtofComputerProgramming关键词:自然语言处理,大模型,Transformer架构,编码器模块,序列到序列学习文章目录从零开始大模型开发与微调:编码器的实现1.背景介绍1.1问题的由来1.2研究现状1.3研究意义1.4本文结构2.核心概念与联系2.1编码器模块简介2.2编码器与Transfo
- 我的AI工具箱Tauri版-建筑平面图生成装修设计
Mr数据杨
Tauri工具箱ComfyUI
本模块利用先进的AI绘画大模型,将房屋平面设计图转化为高质量的室内装修效果图,让装修设计更加直观、高效。用户只需提供房屋的平面布局,并选择合适的AI绘画模型,系统即可智能生成涵盖客厅、卧室、厨房、卫生间等最多12个房间的高品质设计样图,完整呈现房屋的整体装修效果。本工具支持多种设计风格,如现代简约、北欧风、中式传统、美式复古、日式禅意等,满足不同用户的个性化装修需求。借助AI算法的自动化生成能力,
- 大模型赋能智慧司法,创业者如何推动法律服务普惠化?
AI大模型应用之禅
DeepSeekR1&AI大模型与大数据javapythonjavascriptkotlingolang架构人工智能
大模型,智慧司法,法律服务,普惠化,人工智能,自然语言处理,法律科技1.背景介绍近年来,人工智能(AI)技术蓬勃发展,特别是大模型的涌现,为各行各业带来了革命性的变革。其中,智慧司法领域展现出巨大的潜力,大模型能够有效提升法律服务效率,降低法律服务门槛,推动法律服务普惠化。传统法律服务模式面临着诸多挑战:服务成本高昂:律师咨询和诉讼费用对普通民众来说往往难以负担。服务效率低下:法律文件审查、合同分
- PyTorch深度学习框架进阶学习计划 - 第21天:自然语言处理基础
凡人的AI工具箱
深度学习pytorch学习人工智能AI编程AIGC自然语言处理
PyTorch深度学习框架进阶学习计划-第21天自然语言处理基础今天我们将深入学习自然语言处理(NLP)的基础概念,重点关注词嵌入技术、序列建模原理以及主流模型之间的区别和优缺点。通过理解这些基础知识,你将能够更好地应用PyTorch构建NLP应用。1.词嵌入原理与实现词嵌入(WordEmbeddings)是NLP中的核心概念,它将单词映射到连续向量空间,使得语义相似的词在向量空间中距离较近。为什
- Python爬虫学习笔记_DAY_26_Python爬虫之requests库的安装与基本使用【Python爬虫】_requests库ip
苹果Android开发组
程序员python爬虫学习
最后Python崛起并且风靡,因为优点多、应用领域广、被大牛们认可。学习Python门槛很低,但它的晋级路线很多,通过它你能进入机器学习、数据挖掘、大数据,CS等更加高级的领域。Python可以做网络应用,可以做科学计算,数据分析,可以做网络爬虫,可以做机器学习、自然语言处理、可以写游戏、可以做桌面应用…Python可以做的很多,你需要学好基础,再选择明确的方向。这里给大家分享一份全套的Pytho
- apache ftpserver-CentOS config
gengzg
apache
<server xmlns="http://mina.apache.org/ftpserver/spring/v1"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="
http://mina.apache.o
- 优化MySQL数据库性能的八种方法
AILIKES
sqlmysql
1、选取最适用的字段属性 MySQL可以很好的支持大数据量的存取,但是一般说来,数据库中的表越小,在它上面执行的查询也就会越快。因此,在创建表的时候,为了获得更好的 性能,我们可以将表中字段的宽度设得尽可能小。例如,在定义邮政编码这个字段时,如果将其设置为CHAR(255),显然给数据库增加了不必要的空间,甚至使用VARCHAR这种类型也是多余的,因为CHAR(6)就可以很
- JeeSite 企业信息化快速开发平台
Kai_Ge
JeeSite
JeeSite 企业信息化快速开发平台
平台简介
JeeSite是基于多个优秀的开源项目,高度整合封装而成的高效,高性能,强安全性的开源Java EE快速开发平台。
JeeSite本身是以Spring Framework为核心容器,Spring MVC为模型视图控制器,MyBatis为数据访问层, Apache Shiro为权限授权层,Ehcahe对常用数据进行缓存,Activit为工作流
- 通过Spring Mail Api发送邮件
120153216
邮件main
原文地址:http://www.open-open.com/lib/view/open1346857871615.html
使用Java Mail API来发送邮件也很容易实现,但是最近公司一个同事封装的邮件API实在让我无法接受,于是便打算改用Spring Mail API来发送邮件,顺便记录下这篇文章。 【Spring Mail API】
Spring Mail API都在org.spri
- Pysvn 程序员使用指南
2002wmj
SVN
源文件:http://ju.outofmemory.cn/entry/35762
这是一篇关于pysvn模块的指南.
完整和详细的API请参考 http://pysvn.tigris.org/docs/pysvn_prog_ref.html.
pysvn是操作Subversion版本控制的Python接口模块. 这个API接口可以管理一个工作副本, 查询档案库, 和同步两个.
该
- 在SQLSERVER中查找被阻塞和正在被阻塞的SQL
357029540
SQL Server
SELECT R.session_id AS BlockedSessionID ,
S.session_id AS BlockingSessionID ,
Q1.text AS Block
- Intent 常用的用法备忘
7454103
.netandroidGoogleBlogF#
Intent
应该算是Android中特有的东西。你可以在Intent中指定程序 要执行的动作(比如:view,edit,dial),以及程序执行到该动作时所需要的资料 。都指定好后,只要调用startActivity(),Android系统 会自动寻找最符合你指定要求的应用 程序,并执行该程序。
下面列出几种Intent 的用法
显示网页:
- Spring定时器时间配置
adminjun
spring时间配置定时器
红圈中的值由6个数字组成,中间用空格分隔。第一个数字表示定时任务执行时间的秒,第二个数字表示分钟,第三个数字表示小时,后面三个数字表示日,月,年,< xmlnamespace prefix ="o" ns ="urn:schemas-microsoft-com:office:office" />
测试的时候,由于是每天定时执行,所以后面三个数
- POJ 2421 Constructing Roads 最小生成树
aijuans
最小生成树
来源:http://poj.org/problem?id=2421
题意:还是给你n个点,然后求最小生成树。特殊之处在于有一些点之间已经连上了边。
思路:对于已经有边的点,特殊标记一下,加边的时候把这些边的权值赋值为0即可。这样就可以既保证这些边一定存在,又保证了所求的结果正确。
代码:
#include <iostream>
#include <cstdio>
- 重构笔记——提取方法(Extract Method)
ayaoxinchao
java重构提炼函数局部变量提取方法
提取方法(Extract Method)是最常用的重构手法之一。当看到一个方法过长或者方法很难让人理解其意图的时候,这时候就可以用提取方法这种重构手法。
下面是我学习这个重构手法的笔记:
提取方法看起来好像仅仅是将被提取方法中的一段代码,放到目标方法中。其实,当方法足够复杂的时候,提取方法也会变得复杂。当然,如果提取方法这种重构手法无法进行时,就可能需要选择其他
- 为UILabel添加点击事件
bewithme
UILabel
默认情况下UILabel是不支持点击事件的,网上查了查居然没有一个是完整的答案,现在我提供一个完整的代码。
UILabel *l = [[UILabel alloc] initWithFrame:CGRectMake(60, 0, listV.frame.size.width - 60, listV.frame.size.height)]
- NoSQL数据库之Redis数据库管理(PHP-REDIS实例)
bijian1013
redis数据库NoSQL
一.redis.php
<?php
//实例化
$redis = new Redis();
//连接服务器
$redis->connect("localhost");
//授权
$redis->auth("lamplijie");
//相关操
- SecureCRT使用备注
bingyingao
secureCRT每页行数
SecureCRT日志和卷屏行数设置
一、使用securecrt时,设置自动日志记录功能。
1、在C:\Program Files\SecureCRT\下新建一个文件夹(也就是你的CRT可执行文件的路径),命名为Logs;
2、点击Options -> Global Options -> Default Session -> Edite Default Sett
- 【Scala九】Scala核心三:泛型
bit1129
scala
泛型类
package spark.examples.scala.generics
class GenericClass[K, V](val k: K, val v: V) {
def print() {
println(k + "," + v)
}
}
object GenericClass {
def main(args: Arr
- 素数与音乐
bookjovi
素数数学haskell
由于一直在看haskell,不可避免的接触到了很多数学知识,其中数论最多,如素数,斐波那契数列等,很多在学生时代无法理解的数学现在似乎也能领悟到那么一点。
闲暇之余,从图书馆找了<<The music of primes>>和<<世界数学通史>>读了几遍。其中素数的音乐这本书与软件界熟知的&l
- Java-Collections Framework学习与总结-IdentityHashMap
BrokenDreams
Collections
这篇总结一下java.util.IdentityHashMap。从类名上可以猜到,这个类本质应该还是一个散列表,只是前面有Identity修饰,是一种特殊的HashMap。
简单的说,IdentityHashMap和HashM
- 读《研磨设计模式》-代码笔记-享元模式-Flyweight
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.util.ArrayList;
import java.util.Collection;
import java.util.HashMap;
import java.util.List;
import java
- PS人像润饰&调色教程集锦
cherishLC
PS
1、仿制图章沿轮廓润饰——柔化图像,凸显轮廓
http://www.howzhi.com/course/retouching/
新建一个透明图层,使用仿制图章不断Alt+鼠标左键选点,设置透明度为21%,大小为修饰区域的1/3左右(比如胳膊宽度的1/3),再沿纹理方向(比如胳膊方向)进行修饰。
所有修饰完成后,对该润饰图层添加噪声,噪声大小应该和
- 更新多个字段的UPDATE语句
crabdave
update
更新多个字段的UPDATE语句
update tableA a
set (a.v1, a.v2, a.v3, a.v4) = --使用括号确定更新的字段范围
- hive实例讲解实现in和not in子句
daizj
hivenot inin
本文转自:http://www.cnblogs.com/ggjucheng/archive/2013/01/03/2842855.html
当前hive不支持 in或not in 中包含查询子句的语法,所以只能通过left join实现。
假设有一个登陆表login(当天登陆记录,只有一个uid),和一个用户注册表regusers(当天注册用户,字段只有一个uid),这两个表都包含
- 一道24点的10+种非人类解法(2,3,10,10)
dsjt
算法
这是人类算24点的方法?!!!
事件缘由:今天晚上突然看到一条24点状态,当时惊为天人,这NM叫人啊?以下是那条状态
朱明西 : 24点,算2 3 10 10,我LX炮狗等面对四张牌痛不欲生,结果跑跑同学扫了一眼说,算出来了,2的10次方减10的3次方。。我草这是人类的算24点啊。。
然后么。。。我就在深夜很得瑟的问室友求室友算
刚出完题,文哥的暴走之旅开始了
5秒后
- 关于YII的菜单插件 CMenu和面包末breadcrumbs路径管理插件的一些使用问题
dcj3sjt126com
yiiframework
在使用 YIi的路径管理工具时,发现了一个问题。 <?php  
- 对象与关系之间的矛盾:“阻抗失配”效应[转]
come_for_dream
对象
概述
“阻抗失配”这一词组通常用来描述面向对象应用向传统的关系数据库(RDBMS)存放数据时所遇到的数据表述不一致问题。C++程序员已经被这个问题困扰了好多年,而现在的Java程序员和其它面向对象开发人员也对这个问题深感头痛。
“阻抗失配”产生的原因是因为对象模型与关系模型之间缺乏固有的亲合力。“阻抗失配”所带来的问题包括:类的层次关系必须绑定为关系模式(将对象
- 学习编程那点事
gcq511120594
编程互联网
一年前的夏天,我还在纠结要不要改行,要不要去学php?能学到真本事吗?改行能成功吗?太多的问题,我终于不顾一切,下定决心,辞去了工作,来到传说中的帝都。老师给的乘车方式还算有效,很顺利的就到了学校,赶巧了,正好学校搬到了新校区。先安顿了下来,过了个轻松的周末,第一次到帝都,逛逛吧!
接下来的周一,是我噩梦的开始,学习内容对我这个零基础的人来说,除了勉强完成老师布置的作业外,我已经没有时间和精力去
- Reverse Linked List II
hcx2013
list
Reverse a linked list from position m to n. Do it in-place and in one-pass.
For example:Given 1->2->3->4->5->NULL, m = 2 and n = 4,
return 
- Spring4.1新特性——页面自动化测试框架Spring MVC Test HtmlUnit简介
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- Hadoop集群工具distcp
liyonghui160com
1. 环境描述
两个集群:rock 和 stone
rock无kerberos权限认证,stone有要求认证。
1. 从rock复制到stone,采用hdfs
Hadoop distcp -i hdfs://rock-nn:8020/user/cxz/input hdfs://stone-nn:8020/user/cxz/运行在rock端,即源端问题:报版本
- 一个备份MySQL数据库的简单Shell脚本
pda158
mysql脚本
主脚本(用于备份mysql数据库): 该Shell脚本可以自动备份
数据库。只要复制粘贴本脚本到文本编辑器中,输入数据库用户名、密码以及数据库名即可。我备份数据库使用的是mysqlump 命令。后面会对每行脚本命令进行说明。
1. 分别建立目录“backup”和“oldbackup” #mkdir /backup #mkdir /oldbackup
- 300个涵盖IT各方面的免费资源(中)——设计与编码篇
shoothao
IT资源图标库图片库色彩板字体
A. 免费的设计资源
Freebbble:来自于Dribbble的免费的高质量作品。
Dribbble:Dribbble上“免费”的搜索结果——这是巨大的宝藏。
Graphic Burger:每个像素点都做得很细的绝佳的设计资源。
Pixel Buddha:免费和优质资源的专业社区。
Premium Pixels:为那些有创意的人提供免费的素材。
- thrift总结 - 跨语言服务开发
uule
thrift
官网
官网JAVA例子
thrift入门介绍
IBM-Apache Thrift - 可伸缩的跨语言服务开发框架
Thrift入门及Java实例演示
thrift的使用介绍
RPC
POM:
<dependency>
<groupId>org.apache.thrift</groupId>