- YOLOv8数据增强
热心小张
研究生yolov8
1.找到augment.py(ultralytics/data/augment.py),修改对应内容#TransformsT=[A.Blur(p=0.01),A.MedianBlur(p=0.01),A.ToGray(p=0.01),A.CLAHE(p=0.01),A.RandomBrightnessContrast(p=0.0),A.RandomGamma(p=0.0),A.ImageCompr
- 计算机视觉中的数据增强方法总结
CV技术指南(公众号)
CV技术总结计算机视觉深度学习卷积神经网络
前言:在计算机视觉方向,数据增强的本质是人为地引入人视觉上的先验知识,可以很好地提升模型的性能,目前基本成为模型的标配。最近几年逐渐出了很多新的数据增强方法,在本文将对数据增强做一个总结。本文介绍了数据增强的作用,数据增强的分类,数据增强的常用方法,一些特殊的方法,如Cutout,RandomErasing,Mixup,Hide-and-Seek,CutMix,GridMask,FenceMask
- 第3篇:LangChain的架构总览与设计理念
Gemini技术窝
langchain架构大数据人工智能AIGCnlp
LangChain库是一个专为自然语言处理(NLP)设计的强大工具包,致力于简化复杂语言模型链的构建和执行。在本文中,我们将深入解析LangChain库的架构,详细列出其核心组件、设计理念及其在不同场景中的应用,并讨论其优缺点。文章目录1.LangChain库简介2.核心组件2.1数据输入模块作用2.2数据预处理模块作用2.3数据增强模块作用2.4数据加载与批处理模块作用2.5模型训练模块作用2.
- pytorh基础知识和函数的学习:torchvision.transforms()
深蓝海拓
机器视觉和人工智能学习学习pytorch
transforms是PyTorch的torchvision库中用于图像处理的一个模块。它提供了一组工具,用于在图像数据集上进行常见的预处理和数据增强操作,以便更好地训练深度学习模型。以下是一些常用的torchvision.transforms转换:基础图像转换:transforms.ToTensor():将PIL图像或NumPy数组转换为PyTorch的张量,并将像素值范围从[0,255]缩放到
- 深度学习速通系列:鲁棒性和稳定性
Ven%
深度学习速通系列深度学习自然语言处理人工智能pythonnlp
在机器学习中,鲁棒性和稳定性是评估模型性能的两个关键指标,它们对于确保模型在实际应用中的可靠性至关重要。鲁棒性(Robustness)定义:鲁棒性指的是模型对于输入数据的扰动、噪声、异常值或对抗性攻击的抵抗能力。一个鲁棒的模型能够在面对这些不利因素时保持其性能。提高鲁棒性的方法:数据增强:通过对训练数据进行变换(如旋转、缩放、裁剪等),使模型能够更好地泛化到未见过的数据。对抗训练:在训练过程中引入
- 6. 深度学习中的正则化技术:防止过拟合
Network_Engineer
机器学习深度学习人工智能
引言过拟合是深度学习模型在训练过程中常遇到的挑战。过拟合会导致模型在训练数据上表现良好,但在新数据上表现不佳。为了防止过拟合,研究者们提出了多种正则化技术,如L1/L2正则化、Dropout、数据增强等。这些技术通过约束模型的复杂度或增加数据的多样性,有效提高了模型的泛化能力。本篇博文将深入探讨这些正则化技术的原理、应用及其在实际深度学习任务中的效果。1.过拟合的原因与影响过拟合通常发生在模型的复
- 经典网络训练图像分类模型一
三十度角阳光的问候
分类数据挖掘人工智能
目录数据预处理部分:网络模块设置:网络模型保存与测试数据读取与预处理操作制作好数据源:读取标签对应的实际名字加载models中提供的模型,并且直接用训练的好权重当做初始化参数模型参数更新把模型输出层改成自己的设置哪些层需要训练优化器设置数据预处理部分:-数据增强:torchvision中transforms模块自带功能,比较实用-数据预处理:torchvision中transforms也帮我们实现
- 训练过程训练集的准确率都低于验证集和测试集的准确率可能的原因
Wils0nEdwards
python人工智能深度学习
每一个epoch训练集的准确率都低于验证集和测试集的准确率,这种现象不太常见,可能有以下几个原因:1.数据增强过强如果你在训练集上使用了较强的数据增强(如随机翻转、ColorJitter等),而验证集和测试集仅进行了基础的预处理。这会导致训练集的样本更具挑战性,模型在训练集上的表现不如在验证集和测试集上的表现。2.训练和验证集分布差异训练集、验证集和测试集的分布可能存在差异。如果训练集包含更多的噪
- caffe/PyTorch/TensorFlow 在Jupyter Notebook GPU中运用
俊俏的萌妹纸
caffe人工智能深度学习
在JupyterNotebook中使用Caffe框架并利用GPU加速,可以实现多种效果和目的,主要集中在深度学习领域。以下是一些主要的应用场景:快速训练模型:GPU加速可以显著提高模型训练的速度。对于大型数据集和复杂的神经网络结构,使用GPU可以大大减少训练时间。实时数据增强:在训练过程中,可以实时地对输入数据进行变换和增强,以提高模型的泛化能力。GPU加速使得这些操作更加高效。大规模数据处理:深
- 4. 生成对抗网络(GAN):生成模型的崛起
Network_Engineer
机器学习python深度学习机器学习算法人工智能
引言生成对抗网络(GAN)是近年来深度学习领域中最具创新性和影响力的模型之一。GAN通过生成器和判别器的对抗性训练,能够生成逼真的图像、音频、文本等数据,广泛应用于图像生成、数据增强、风格迁移等任务中。本篇博文将深入解析GAN的基本原理、训练过程,以及其在各类生成任务中的应用。1.GAN的基本架构生成对抗网络(GAN)由两个核心部分组成:生成器(Generator)和判别器(Discriminat
- 深度学习100问44:如何避免模型出现过拟合现象
不断持续学习ing
人工智能自然语言处理机器学习
嘿,想让你的模型不出现过拟合现象?来看看这些妙招吧!一、增加数据量这就好比让学生多做各种不同的练习题。数据多了,模型就能学到更普遍的规律,而不是只记住那一点点数据里的小细节。你可以去收集更多真实的数据,或者用数据增强的办法。就像在图像识别里,把图片转一转、翻一翻、剪一剪,这样数据就变得更多样啦。二、简化模型要是模型太复杂,那就像盖了一座超级华丽的城堡,容易记住一些不该记的东西。那就把模型弄得简单点
- PyTorch库学习之torch.repeat_interleave函数
Midsummer-逐梦
#torchpytorch学习人工智能
PyTorch库学习之torch.repeat_interleave函数一、简介torch.repeat_interleave是PyTorch库中的一个函数,它用于重复张量中的元素。这个函数可以沿着指定的维度重复张量中的每个元素,返回一个新的张量。当不指定维度时,会将输入张量展平,并重复每个元素。这个函数在处理序列数据或生成数据增强样本时非常有用。二、语法和参数语法:torch.repeat_in
- 第T10周:数据增强
OreoCC
深度学习人工智能tensorflow2
>-**本文为[365天深度学习训练营]中的学习记录博客**>-**原作者:[K同学啊]**第10周:数据增强难度:夯实基础⭐⭐语言:Python3、TensorFlow2要求:学会在代码中使用数据增强手段来提高acc请探索更多的数据增强手段并记录在本教程中,你将学会如何进行数据增强,并通过数据增强用少量数据达到非常非常棒的识别准确率。我将展示两种数据增强方式,以及如何自定义数据增强方式并将其放到
- Datawhale AI夏令营-task03
ghost_him
人工智能
DatawhaleAI夏令营-task03笔记来源:DatawhaleAI夏令营数据增强基础数据增强是一种在机器学习和深度学习领域常用的技术,尤其是在处理图像和视频数据时。**数据增强的目的是通过人工方式增加训练数据的多样性,从而提高模型的泛化能力,使其能够在未见过的数据上表现得更好。**数据增强涉及对原始数据进行一系列的变换操作,生成新的训练样本。这些变换模拟了真实世界中的变化,对于图像而言,数
- 基于PIL实现亮度、噪声、随机黑块数据增强
小陈phd
pythonnumpy人工智能
importosimportshutilfromPILimportImage,ImageEnhanceimportnumpyasnpimportrandomfromtqdmimporttqdm#ColorJitteringfunctiondefapply_color_jitter(image,brightness=0.5,contrast=0.5,saturation=0.5):"""Applyc
- 图像数据增强
菜鸟瞎编
一、做随机亮度、对比度、饱和度修改,使用tensorflowAPI核心部分是aug_op函数,这可是菜鸟的心血啊!#coding:utf-8importtensorflowastfimportcv2importrandomimportsysimportosimportshutil#os.environ["CUDA_VISIBLE_DEVICES"]=""defrandom_normal(img,m
- 基于Diffusion Model的数据增强方法应用——毕业设计 其三
大鸟仙童
课程设计计算机视觉深度学习
文章目录题目简介前言StableDiffusionLatentdiffusion自动编码器(VAE)U-NetText-EncoderStableDiffusion的推理过程从零开始配置实验环境IDEAnacondaCUDA和CuDNNCuDNNStableDiffusion的本地部署运行测试总结题目简介笔者个人的毕业设计课题如下:简介:使用预训练的DiffusionModel图像生成模型生成图像
- 【面经——《广州敏视数码科技有限公司》——图像处理算法工程师-深度学习方向】
有情怀的机械男
面试offer面经
目录笔试HR面专业面——60多分钟主管面反问:笔试8道题——简答题+1道编程苹果、香蕉、梨、菠萝,彩色图像如何进行分类?一辆带车牌的汽车,图像亮度整体呈现偏亮状态,如何去提高图像的清晰度?并设计一个准确定位车牌位置的方案。训练集和测试集各5000张,进行目标检测,写出选择的模型以及设计方案?样本量不足怎么去提高检测的准确性?数据增强梯度下降法的优化算法有哪些,各有什么优缺点?损失函数有哪些?优缺点
- 【论文阅读笔记】AutoAugment:Learning Augmentation Strategies from Data
少写代码少看论文多多睡觉
#论文阅读笔记论文阅读笔记
AutoAugment:LearningAugmentationStrategiesfromData摘要研究方法:本文描述了一种名为AutoAugment的简单程序,通过这个程序可以自动寻找改进的数据增强策略。研究设计了一个策略空间,其中策略包含多个子策略,在每个小批量数据中针对每张图片随机选择一个子策略。每个子策略由两个操作组成,每个操作是图像处理函数(如平移、旋转或剪切),以及应用这些函数的概
- 【论文阅读笔记】Contrastive Learning with Stronger Augmentations
少写代码少看论文多多睡觉
#论文阅读笔记论文阅读笔记
ContrastiveLearningwithStrongerAugmentations摘要基于提供的摘要,该论文的核心焦点是在对比学习领域提出的一个新框架——利用强数据增强的对比学习(ContrastiveLearningwithStrongerAugmentations,简称CLSA)。以下是对摘要的解析:问题陈述:表征学习(representationlearning)已在对比学习方法的推动
- 低资源学习与知识图谱:构建与应用
cooldream2009
AI技术知识图谱知识图谱人工智能低资源
目录前言1低资源学习方法1.1数据增强1.2特征增强1.3模型增强2低资源知识图谱构建与推理2.1元关系学习2.2对抗学习2.3零样本关系抽取2.4零样本学习与迁移学习2.5零样本学习与辅助信息3基于知识图谱的低资源学习应用3.1零样本图像分类3.2知识增强的零样本学习3.3语义与知识信息的利用结语前言在当今人工智能领域,低资源学习成为一个备受关注的话题,尤其是在少样本学习和零样本学习方面。这种学
- MogaNet实战:使用 MogaNet实现图像分类任务(二)
AI浩
图像分类人工智能人工智能深度学习计算机视觉
文章目录训练部分导入项目使用的库设置随机因子设置全局参数图像预处理与增强读取数据设置Loss设置模型设置优化器和学习率调整策略设置混合精度,DP多卡,EMA定义训练和验证函数训练函数验证函数调用训练和验证方法运行以及结果查看测试完整的代码在上一篇文章中完成了前期的准备工作,见链接:MogaNet实战:使用MogaNet实现图像分类任务(一)前期的工作主要是数据的准备,安装库文件,数据增强方式的讲解
- 科普:坐标系中几何变换及常见公式
9命怪猫
几何学计算机视觉几何学
几何变换”通常指的是对图像进行平移、旋转、缩放、翻转等操作,以改变图像的位置、大小和方向。这些几何变换常用于图像处理、计算机视觉和深度学习领域,用于数据增强、图像预处理、物体检测等任务。具体来说,几何变换包括以下几种主要操作:平移:将图像沿着水平和垂直方向移动一定的距离。旋转:围绕图像中心点或指定点进行旋转,改变图像的方向。缩放:按照指定的比例增大或缩小图像的尺寸。翻转:沿水平或垂直方向对图像进行
- 大模型注入领域知识,模型体验和Token重复知识
lichunericli
LLM人工智能语言模型
1如何给LLM注入领域知识?给LLM(低层次模型,如BERT、GPT等)注入领域知识的方法有很多。以下是一些建议:数据增强:在训练过程中,可以通过添加领域相关的数据来增强模型的训练数据。这可以包括从领域相关的文本中提取示例、对现有数据进行扩充或生成新的数据。迁移学习:使用预训练的LLM模型作为基础,然后在特定领域的数据上进行微调。这样可以利用预训练模型学到的通用知识,同时使其适应新领域。领域专家标
- stupid_brain
MORE_77
深度学习深度学习python人工智能
前言:本文用于记录本人AI新手期间犯的各种错误,时常更新。正文开始:读取数据的num_worker设置过少,以至于训练速度卡在读取数据上。训练集数据处理:数据增强有利于解决过拟合问题。模型:relu少写、batchnorm位置写错。test记得关闭梯度更新withtorch.no_grad():
- 基于轻量级模型YOLOX-Nano的菜品识别系统
钟良堂
笔记深度学习目标检测yolox-nano菜品识别
工程Gitee地址:https://gitee.com/zhong-liangtang/ncnn-android-yolox-nano一、YOLOX简介YOLOX是一个在2021年被旷视科技公司提出的高性能且无锚框(Anchor-free)的检测器,在YOLO系列的基础上吸收近年来目标检测学术界的最新成果,如解耦头(DecoupledHead)、数据增强、无锚框、标签分配策略SimOTA(Simp
- 论文笔记:NIPS 2020 Graph Contrastive Learning with Augmentations
饮冰l
图弱监督数据挖掘机器学习神经网络深度学习
前言本文主要提出在图对比学习大框架下的图数据增强的若干方法。概括来说,本文提出了一种图对比学习框架来无监督的完成图表示学习,首先作者提出了基于各种先验信息的四种图数据增强方法。然后,作者分析了在四种不同的图数据增强条件下,不同组合对多个数据集的影响:半监督、无监督、迁移学习以及对抗性攻击。作者为GNN的预训练提出了基于图数据增强的对比学习框架来解决图中数据异质性的挑战,本文的主要贡献如下:作者提出
- Graph Contrastive Learning with Augmentations
tutoujiehegaosou
Graph笔记
GraphCL学习笔记Abstract提出GNN对自监督学习和pre-training较少。本文提出了GraphCL框架,用于学习图的无监督表示。设计四种类型的数据增强,在不同的settings(learningrate,batchsize,dropout参数)下,研究这四种增强对不同数据集的影响。Introduction大多数graph-level的任务场景,GNN都是在监督的情况下进行端到端的
- Vim实战:使用 Vim实现图像分类任务(二)
静静AI学堂
图像分类实战vim分类深度学习
文章目录训练部分导入项目使用的库设置随机因子设置全局参数图像预处理与增强读取数据设置Loss设置模型设置优化器和学习率调整策略设置混合精度,DP多卡,EMA定义训练和验证函数训练函数验证函数调用训练和验证方法运行以及结果查看测试完整的代码在上一篇文章中完成了前期的准备工作,见链接:Vim实战:使用Vim实现图像分类任务(一)前期的工作主要是数据的准备,安装库文件,数据增强方式的讲解,模型的介绍和实
- imgaug数据增强神器:增强器一览
a flying bird
计算机视觉计算机视觉
官网:imgaug—imgaug0.4.0documentationhttps://imgaug.readthedocs.io/en/latest/github:GitHub-aleju/imgaug:Imageaugmentationformachinelearningexperiments.imgaug数据增强神器:增强器一览_iaa图像增强改变颜色-CSDN博客文章浏览阅读9.8k次,点赞3
- java线程的无限循环和退出
3213213333332132
java
最近想写一个游戏,然后碰到有关线程的问题,网上查了好多资料都没满足。
突然想起了前段时间看的有关线程的视频,于是信手拈来写了一个线程的代码片段。
希望帮助刚学java线程的童鞋
package thread;
import java.text.SimpleDateFormat;
import java.util.Calendar;
import java.util.Date
- tomcat 容器
BlueSkator
tomcatWebservlet
Tomcat的组成部分 1、server
A Server element represents the entire Catalina servlet container. (Singleton) 2、service
service包括多个connector以及一个engine,其职责为处理由connector获得的客户请求。
3、connector
一个connector
- php递归,静态变量,匿名函数使用
dcj3sjt126com
PHP递归函数匿名函数静态变量引用传参
<!doctype html>
<html lang="en">
<head>
<meta charset="utf-8">
<title>Current To-Do List</title>
</head>
<body>
- 属性颜色字体变化
周华华
JavaScript
function changSize(className){
var diva=byId("fot")
diva.className=className;
}
</script>
<style type="text/css">
.max{
background: #900;
color:#039;
- 将properties内容放置到map中
g21121
properties
代码比较简单:
private static Map<Object, Object> map;
private static Properties p;
static {
//读取properties文件
InputStream is = XXX.class.getClassLoader().getResourceAsStream("xxx.properti
- [简单]拼接字符串
53873039oycg
字符串
工作中遇到需要从Map里面取值拼接字符串的情况,自己写了个,不是很好,欢迎提出更优雅的写法,代码如下:
import java.util.HashMap;
import java.uti
- Struts2学习
云端月影
最近开始关注struts2的新特性,从这个版本开始,Struts开始使用convention-plugin代替codebehind-plugin来实现struts的零配置。
配置文件精简了,的确是简便了开发过程,但是,我们熟悉的配置突然disappear了,真是一下很不适应。跟着潮流走吧,看看该怎样来搞定convention-plugin。
使用Convention插件,你需要将其JAR文件放
- Java新手入门的30个基本概念二
aijuans
java新手java 入门
基本概念: 1.OOP中唯一关系的是对象的接口是什么,就像计算机的销售商她不管电源内部结构是怎样的,他只关系能否给你提供电就行了,也就是只要知道can or not而不是how and why.所有的程序是由一定的属性和行为对象组成的,不同的对象的访问通过函数调用来完成,对象间所有的交流都是通过方法调用,通过对封装对象数据,很大限度上提高复用率。 2.OOP中最重要的思想是类,类是模板是蓝图,
- jedis 简单使用
antlove
javarediscachecommandjedis
jedis.RedisOperationCollection.java
package jedis;
import org.apache.log4j.Logger;
import redis.clients.jedis.Jedis;
import java.util.List;
import java.util.Map;
import java.util.Set;
pub
- PL/SQL的函数和包体的基础
百合不是茶
PL/SQL编程函数包体显示包的具体数据包
由于明天举要上课,所以刚刚将代码敲了一遍PL/SQL的函数和包体的实现(单例模式过几天好好的总结下再发出来);以便明天能更好的学习PL/SQL的循环,今天太累了,所以早点睡觉,明天继续PL/SQL总有一天我会将你永远的记载在心里,,,
函数;
函数:PL/SQL中的函数相当于java中的方法;函数有返回值
定义函数的
--输入姓名找到该姓名的年薪
create or re
- Mockito(二)--实例篇
bijian1013
持续集成mockito单元测试
学习了基本知识后,就可以实战了,Mockito的实际使用还是比较麻烦的。因为在实际使用中,最常遇到的就是需要模拟第三方类库的行为。
比如现在有一个类FTPFileTransfer,实现了向FTP传输文件的功能。这个类中使用了a
- 精通Oracle10编程SQL(7)编写控制结构
bijian1013
oracle数据库plsql
/*
*编写控制结构
*/
--条件分支语句
--简单条件判断
DECLARE
v_sal NUMBER(6,2);
BEGIN
select sal into v_sal from emp
where lower(ename)=lower('&name');
if v_sal<2000 then
update emp set
- 【Log4j二】Log4j属性文件配置详解
bit1129
log4j
如下是一个log4j.properties的配置
log4j.rootCategory=INFO, stdout , R
log4j.appender.stdout=org.apache.log4j.ConsoleAppender
log4j.appender.stdout.layout=org.apache.log4j.PatternLayout
log4j.appe
- java集合排序笔记
白糖_
java
public class CollectionDemo implements Serializable,Comparable<CollectionDemo>{
private static final long serialVersionUID = -2958090810811192128L;
private int id;
private String nam
- java导致linux负载过高的定位方法
ronin47
定位java进程ID
可以使用top或ps -ef |grep java
![图片描述][1]
根据进程ID找到最消耗资源的java pid
比如第一步找到的进程ID为5431
执行
top -p 5431 -H
![图片描述][2]
打印java栈信息
$ jstack -l 5431 > 5431.log
在栈信息中定位具体问题
将消耗资源的Java PID转
- 给定能随机生成整数1到5的函数,写出能随机生成整数1到7的函数
bylijinnan
函数
import java.util.ArrayList;
import java.util.List;
import java.util.Random;
public class RandNFromRand5 {
/**
题目:给定能随机生成整数1到5的函数,写出能随机生成整数1到7的函数。
解法1:
f(k) = (x0-1)*5^0+(x1-
- PL/SQL Developer保存布局
Kai_Ge
近日由于项目需要,数据库从DB2迁移到ORCAL,因此数据库连接客户端选择了PL/SQL Developer。由于软件运用不熟悉,造成了很多麻烦,最主要的就是进入后,左边列表有很多选项,自己删除了一些选项卡,布局很满意了,下次进入后又恢复了以前的布局,很是苦恼。在众多PL/SQL Developer使用技巧中找到如下这段:
&n
- [未来战士计划]超能查派[剧透,慎入]
comsci
计划
非常好看,超能查派,这部电影......为我们这些热爱人工智能的工程技术人员提供一些参考意见和思想........
虽然电影里面的人物形象不是非常的可爱....但是非常的贴近现实生活....
&nbs
- Google Map API V2
dai_lm
google map
以后如果要开发包含google map的程序就更麻烦咯
http://www.cnblogs.com/mengdd/archive/2013/01/01/2841390.html
找到篇不错的文章,大家可以参考一下
http://blog.sina.com.cn/s/blog_c2839d410101jahv.html
1. 创建Android工程
由于v2的key需要G
- java数据计算层的几种解决方法2
datamachine
javasql集算器
2、SQL
SQL/SP/JDBC在这里属于一类,这是老牌的数据计算层,性能和灵活性是它的优势。但随着新情况的不断出现,单纯用SQL已经难以满足需求,比如: JAVA开发规模的扩大,数据量的剧增,复杂计算问题的涌现。虽然SQL得高分的指标不多,但都是权重最高的。
成熟度:5星。最成熟的。
- Linux下Telnet的安装与运行
dcj3sjt126com
linuxtelnet
Linux下Telnet的安装与运行 linux默认是使用SSH服务的 而不安装telnet服务 如果要使用telnet 就必须先安装相应的软件包 即使安装了软件包 默认的设置telnet 服务也是不运行的 需要手工进行设置 如果是redhat9,则在第三张光盘中找到 telnet-server-0.17-25.i386.rpm
- PHP中钩子函数的实现与认识
dcj3sjt126com
PHP
假如有这么一段程序:
function fun(){
fun1();
fun2();
}
首先程序执行完fun1()之后执行fun2()然后fun()结束。
但是,假如我们想对函数做一些变化。比如说,fun是一个解析函数,我们希望后期可以提供丰富的解析函数,而究竟用哪个函数解析,我们希望在配置文件中配置。这个时候就可以发挥钩子的力量了。
我们可以在fu
- EOS中的WorkSpace密码修改
蕃薯耀
修改WorkSpace密码
EOS中BPS的WorkSpace密码修改
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 201
- SpringMVC4零配置--SpringSecurity相关配置【SpringSecurityConfig】
hanqunfeng
SpringSecurity
SpringSecurity的配置相对来说有些复杂,如果是完整的bean配置,则需要配置大量的bean,所以xml配置时使用了命名空间来简化配置,同样,spring为我们提供了一个抽象类WebSecurityConfigurerAdapter和一个注解@EnableWebMvcSecurity,达到同样减少bean配置的目的,如下:
applicationContex
- ie 9 kendo ui中ajax跨域的问题
jackyrong
AJAX跨域
这两天遇到个问题,kendo ui的datagrid,根据json去读取数据,然后前端通过kendo ui的datagrid去渲染,但很奇怪的是,在ie 10,ie 11,chrome,firefox等浏览器中,同样的程序,
浏览起来是没问题的,但把应用放到公网上的一台服务器,
却发现如下情况:
1) ie 9下,不能出现任何数据,但用IE 9浏览器浏览本机的应用,却没任何问题
- 不要让别人笑你不能成为程序员
lampcy
编程程序员
在经历六个月的编程集训之后,我刚刚完成了我的第一次一对一的编码评估。但是事情并没有如我所想的那般顺利。
说实话,我感觉我的脑细胞像被轰炸过一样。
手慢慢地离开键盘,心里很压抑。不禁默默祈祷:一切都会进展顺利的,对吧?至少有些地方我的回答应该是没有遗漏的,是不是?
难道我选择编程真的是一个巨大的错误吗——我真的永远也成不了程序员吗?
我需要一点点安慰。在自我怀疑,不安全感和脆弱等等像龙卷风一
- 马皇后的贤德
nannan408
马皇后不怕朱元璋的坏脾气,并敢理直气壮地吹耳边风。众所周知,朱元璋不喜欢女人干政,他认为“后妃虽母仪天下,然不可使干政事”,因为“宠之太过,则骄恣犯分,上下失序”,因此还特地命人纂述《女诫》,以示警诫。但马皇后是个例外。
有一次,马皇后问朱元璋道:“如今天下老百姓安居乐业了吗?”朱元璋不高兴地回答:“这不是你应该问的。”马皇后振振有词地回敬道:“陛下是天下之父,
- 选择某个属性值最大的那条记录(不仅仅包含指定属性,而是想要什么属性都可以)
Rainbow702
sqlgroup by最大值max最大的那条记录
好久好久不写SQL了,技能退化严重啊!!!
直入主题:
比如我有一张表,file_info,
它有两个属性(但实际不只,我这里只是作说明用):
file_code, file_version
同一个code可能对应多个version
现在,我想针对每一个code,取得它相关的记录中,version 值 最大的那条记录,
SQL如下:
select
*
- VBScript脚本语言
tntxia
VBScript
VBScript 是基于VB的脚本语言。主要用于Asp和Excel的编程。
VB家族语言简介
Visual Basic 6.0
源于BASIC语言。
由微软公司开发的包含协助开发环境的事
- java中枚举类型的使用
xiao1zhao2
javaenum枚举1.5新特性
枚举类型是j2se在1.5引入的新的类型,通过关键字enum来定义,常用来存储一些常量.
1.定义一个简单的枚举类型
public enum Sex {
MAN,
WOMAN
}
枚举类型本质是类,编译此段代码会生成.class文件.通过Sex.MAN来访问Sex中的成员,其返回值是Sex类型.
2.常用方法
静态的values()方