tf. get_variable()
用于获取一个变量,先搜索变量名,没有就新建,有就直接用,并且不受name_scope的约束
遇到重名的变量创建且变量名没有设置为共享变量时,则会报错
tf.Variable()
每次都会新建变量
会自动检测命名冲突并自行处理
name_scope
作用于操作:主要用于管理一个图里面的各种op,返回的是一个以scope_name命名的context manager。一个graph会维护一个name_space的堆,每一个namespace下面可以定义各种op或者子namespace,实现一种层次化有条理的管理,避免各个op之间命名冲突。
variable_scope
可以通过设置reuse 标志以及初始化方式来影响域下的变量,一般与tf.name_scope()配合使用,用于管理一个graph中变量的名字,避免变量之间的命名冲突,tf.variable_scope()允许在一个variable_scope下面共享变量。
import tensorflow as tf
with tf.name_scope('name_scope_x'):
var1 = tf.get_variable(name='var1', shape=[1], dtype=tf.float32)
var3 = tf.Variable(name='var2', initial_value=[2], dtype=tf.float32)
var4 = tf.Variable(name='var2', initial_value=[2], dtype=tf.float32)
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
print(var1.name, sess.run(var1))
print(var3.name, sess.run(var3))
print(var4.name, sess.run(var4))
# 输出结果:
# var1:0 [-0.30036557] 可以看到前面不含有指定的'name_scope_x'
# name_scope_x/var2:0 [ 2.]
# name_scope_x/var2_1:0 [ 2.] 可以看到变量名自行变成了'var2_1',避免了和'var2'冲突
如果使用tf.get_variable()创建变量,且没有设置共享变量,重名时会报错
作者:C Li
链接:https://www.zhihu.com/question/54513728/answer/181819324
来源:知乎
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。
import tensorflow as tf
with tf.name_scope('name_scope_1'):
var1 = tf.get_variable(name='var1', shape=[1], dtype=tf.float32)
var2 = tf.get_variable(name='var1', shape=[1], dtype=tf.float32)
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
print(var1.name, sess.run(var1))
print(var2.name, sess.run(var2))
# ValueError: Variable var1 already exists, disallowed. Did you mean
# to set reuse=True in VarScope? Originally defined at:
# var1 = tf.get_variable(name='var1', shape=[1], dtype=tf.float32)
所以要共享变量,需要使用tf.variable_scope()
作者:C Li
链接:https://www.zhihu.com/question/54513728/answer/181819324
来源:知乎
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。
import tensorflow as tf
with tf.variable_scope('variable_scope_y') as scope:
var1 = tf.get_variable(name='var1', shape=[1], dtype=tf.float32)
scope.reuse_variables() # 设置共享变量
var1_reuse = tf.get_variable(name='var1')
var2 = tf.Variable(initial_value=[2.], name='var2', dtype=tf.float32)
var2_reuse = tf.Variable(initial_value=[2.], name='var2', dtype=tf.float32)
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
print(var1.name, sess.run(var1))
print(var1_reuse.name, sess.run(var1_reuse))
print(var2.name, sess.run(var2))
print(var2_reuse.name, sess.run(var2_reuse))
# 输出结果:
# variable_scope_y/var1:0 [-1.59682846]
# variable_scope_y/var1:0 [-1.59682846] 可以看到变量var1_reuse重复使用了var1
# variable_scope_y/var2:0 [ 2.]
# variable_scope_y/var2_1:0 [ 2.]
也可以这样
with tf.variable_scope('foo') as foo_scope:
v = tf.get_variable('v', [1])
with tf.variable_scope('foo', reuse=True):
v1 = tf.get_variable('v')
assert v1 == v
或者这样:
with tf.variable_scope('foo') as foo_scope:
v = tf.get_variable('v', [1])
with tf.variable_scope(foo_scope, reuse=True):
v1 = tf.get_variable('v')
assert v1 == v