Main diagonal - Wikipedia
主对角线(main diagonal)
In linear algebra, the main diagonal (sometimes :principal diagonal, primary diagonal, leading diagonal, major diagonal, or good diagonal) of a matrix A is the list of entries a i j a_{ij} aijwhere i = j i=j i=j.
All off-diagonal elements are zero in a diagonal matrix.
副对角线(antidiagonal)
三角形行列式
主对角线三角行列式的值等于主对角线元素的乘积,(包括上三角和下三角行列式)
∣ A T D ∣ = ∏ i = 1 n a i j |A_{TD}|=\prod\limits_{i=1}^{n}a_{ij} ∣ATD∣=i=1∏naij
∣ a 11 a 12 ⋯ a 1 n a 22 ⋯ a 2 n ⋱ ⋮ a n n ∣ = ∣ a 11 a 21 a 22 ⋮ ⋮ ⋱ a n 1 a n 2 ⋯ a n n ∣ = ( − 1 ) τ ( 12 ⋯ n ) a 11 a 22 ⋯ a n n = a 11 a 22 ⋯ a n n = ∏ i = 1 n a i i \\ \begin{vmatrix} a_{11}& a_{12}& \cdots & a_{1n} \\ & a_{22}& \cdots & a_{2n} \\ & & \ddots & \vdots \\ & & & a_{nn} \end{vmatrix} =\begin{vmatrix} a_{11}& & & \\ a_{21}& a_{22}& & \\ \vdots & \vdots & \ddots & \\ a_{n1}& a_{n2}& \cdots & a_{nn} \end{vmatrix} \\=(-1)^{\tau{(12\cdots{n})}}a_{11}a_{22}\cdots{a_{nn}} =a_{11}a_{22}\cdots{a_{nn}} \\ =\prod_{i=1}^{n}a_{ii} a11a12a22⋯⋯⋱a1na2n⋮ann = a11a21⋮an1a22⋮an2⋱⋯ann =(−1)τ(12⋯n)a11a22⋯ann=a11a22⋯ann=i=1∏naii
∣ A A T D ∣ = ( − 1 ) 1 2 n ( n − 1 ) ∏ i = 1 n a i j |A_{ATD}|=(-1)^{\frac{1}{2}n(n-1)}\prod\limits_{i=1}^{n}a_{ij} ∣AATD∣=(−1)21n(n−1)i=1∏naij
∣ a 11 a 12 ⋯ a 1 , n − 1 a 1 n a 21 a 22 ⋯ a 2 , n − 1 0 ⋮ ⋮ ⋮ ⋮ a n − 1 , 1 a n − 1 , 2 ⋯ 0 0 a n 1 0 ⋯ 0 0 ∣ = ∣ 0 0 ⋯ 0 a 1 n 0 0 ⋯ a 2 , n − 1 a 2 n ⋮ ⋮ ⋮ ⋮ 0 a n − 2 , 2 ⋯ a n − 2 , n − 2 a n − 2 , n a n 1 a n 2 ⋯ a n , n − 1 a n , n ∣ = ( − 1 ) τ ( n ⋯ 21 ) a 1 n a 2 , n − 1 ⋯ a n 1 = ( − 1 ) 1 2 n ( n − 1 ) a 1 n a 2 , n − 1 ⋯ a n 1 \\ \begin{vmatrix} a_{11}& a_{12}& \cdots &a_{1,n-1} & a_{1n} \\ a_{21}& a_{22}& \cdots &a_{2,n-1} & 0 \\ \vdots & \vdots & &\vdots & \vdots \\ a_{n-1,1}&a_{n-1,2}&\cdots&0&0\\ a_{n1}& 0& \cdots &0 &0 \end{vmatrix} =\begin{vmatrix} 0&0& \cdots &0 & a_{1n} \\ 0& 0&\cdots &a_{2,n-1} & a_{2n} \\ \vdots & \vdots & &\vdots & \vdots \\ 0&a_{n-2,2}&\cdots&a_{n-2,n-2}&a_{n-2,n}\\ a_{n1}& a_{n2}& \cdots &a_{n,n-1} &a_{n,n} \end{vmatrix} \\ =(-1)^{\tau(n\cdots21)}a_{1n}a_{2,n-1}\cdots{a_{n1}} \\ =(-1)^{\frac{1}{2}n(n-1)}a_{1n}a_{2,n-1}\cdots{a_{n1}} a11a21⋮an−1,1an1a12a22⋮an−1,20⋯⋯⋯⋯a1,n−1a2,n−1⋮00a1n0⋮00 = 00⋮0an100⋮an−2,2an2⋯⋯⋯⋯0a2,n−1⋮an−2,n−2an,n−1a1na2n⋮an−2,nan,n =(−1)τ(n⋯21)a1na2,n−1⋯an1=(−1)21n(n−1)a1na2,n−1⋯an1
可以通过行列式性质将副对角线三角行列式转换为主对角线行列式.
特别的,非0元素仅出现在对角线上的行列式称为对角行列式
∣ λ 1 λ 2 ⋱ λ n ∣ = λ 1 λ 2 ⋯ λ n = ∏ i = 1 n λ i \begin{vmatrix} {{\lambda _1}} & {} & {} & {} \cr {} & {{\lambda _2}} & {} & {} \cr {} & {} & \ddots & {} \cr {} & {} & {} & {{\lambda _n}} \cr \end{vmatrix} =\lambda_1\lambda_2\cdots\lambda_n =\prod_{i=1}^{n}\lambda_i λ1λ2⋱λn =λ1λ2⋯λn=i=1∏nλi
行列式
展开准主三角行列式:
设方阵A是 m + n m+n m+n阶的矩阵,且 A A A可以被划分为如下形式
∣ A m R m × n O n × m B n ∣ = ∣ A m O m × n C n × m B n ∣ = ∣ A m ∣ ⋅ ∣ B n ∣ \begin{vmatrix} A_m&R_{m\times{n}} \\ O_{n\times{m}}&B_n \end{vmatrix} = \begin{vmatrix} A_m& O_{m\times{n}}\\ C_{n\times{m}}&B_n \end{vmatrix} =|A_m|\cdot|B_n| AmOn×mRm×nBn = AmCn×mOm×nBn =∣Am∣⋅∣Bn∣
以"下三角"的情况为例:
∣ Q ∣ = ∣ a 11 ⋯ a 1 m ⋮ ⋮ 0 a m 1 ⋯ a m m c 11 ⋯ c 1 m b 11 ⋯ b 1 n ⋮ ⋮ ⋮ ⋮ c n 1 ⋯ c n m b n 1 ⋯ b n n ∣ |Q|=\begin{vmatrix} a_{11}&\cdots&a_{1m}&&&\\ \vdots&\quad&\vdots&&\mathcal{\Huge{0}}&\\ a_{m1}&\cdots&a_{mm}&&&\\ c_{11}&\cdots&c_{1m}&b_{11}&\cdots&b_{1n}\\ \vdots&\quad&\vdots&\vdots&&\vdots\\ c_{n1}&\cdots&c_{nm}&b_{n1}&\cdots&b_{nn}\\ \end{vmatrix} ∣Q∣= a11⋮am1c11⋮cn1⋯⋯⋯⋯a1m⋮ammc1m⋮cnmb11⋮bn10⋯⋯b1n⋮bnn
分块矩阵中的方阵A:可以通过若干次行倍增操作( r i + k r j r_i+kr_j ri+krj)将A化为行列式等值的小下三角阵.
分块矩阵中的方阵B:可以通过若干次列倍增操作( c i + k c j c_i+kc_j ci+kcj)将B化为小下三角阵.(逐行的将B的右上角元素化为0)
将上述2组变换对 ∣ Q ∣ |Q| ∣Q∣执行一遍,得到
∣ Q ∣ = ∣ a 11 ′ ⋮ ⋱ 0 a m 1 ′ ⋯ a m m ′ c 11 ⋯ c 1 m b 11 ′ ⋮ ⋮ ⋮ ⋱ c n 1 ⋯ c n m b n 1 ′ ⋯ b n n ′ ∣ = ∏ i = 1 m a i i ′ ∏ i = 1 n b i i ′ |Q|=\begin{vmatrix} a'_{11}&&&&&\\ \vdots&\ddots&&&\mathcal{\Huge{0}}&\\ a'_{m1}&\cdots&a'_{mm}&&&\\ c_{11}&\cdots&c_{1m}&b'_{11}&&\\ \vdots&\quad&\vdots&\vdots&\ddots&\\ c_{n1}&\cdots&c_{nm}&b'_{n1}&\cdots&b'_{nn}\\ \end{vmatrix} =\prod_{i=1}^{m}a'_{ii} \prod_{i=1}^{n}b'_{ii} ∣Q∣= a11′⋮am1′c11⋮cn1⋱⋯⋯⋯amm′c1m⋮cnmb11′⋮bn1′0⋱⋯bnn′ =i=1∏maii′i=1∏nbii′
Note:分块 C C C在 Q Q Q经过两组变换后并不受影响(将任意行列式化为等值的三角行列式只需要行倍增或列倍增中的一种即可实现)
可见 ∣ Q ∣ = ∣ A ∣ ∣ B ∣ |Q|=|A||B| ∣Q∣=∣A∣∣B∣
准副三角行列式
∣ T ∣ = ∣ O A m B n R ∣ = ∣ R A m B n O ∣ = ( − 1 ) m n ∣ A m ∣ ⋅ ∣ B n ∣ |T|=\begin{vmatrix} O&A_m \\ B_n&R \end{vmatrix} = \begin{vmatrix} R&A_m \\ B_n&O \end{vmatrix} =(-1)^{mn}|A_m|\cdot|B_n| ∣T∣= OBnAmR = RBnAmO =(−1)mn∣Am∣⋅∣Bn∣
其证明原理和形式1中的相仿,根据都是行列式的等值变换
类似于上述情况,通过若干行变换和列变换,转换为副对角线行列式:
这里方阵 T T T是 m + n m+n m+n阶的(为了计算或理解方便,可以令 t = m + n t=m+n t=m+n)
∣ A ∣ = ( − 1 ) 1 2 m ( m − 1 ) ∏ i = 1 m a i i ′ ∣ B ∣ = ( − 1 ) 1 2 n ( n − 1 ) ∏ i = 1 n b i i ′ ∣ T ∣ = ( − 1 ) 1 2 ( n + m ) ( n + m − 1 ) ∏ i = 1 m a i i ′ ∏ i = 1 n b i i ′ |A|=(-1)^{\frac{1}{2}m(m-1)}\prod_{i=1}^{m}a'_{ii} \\ |B|=(-1)^{\frac{1}{2}n(n-1)}\prod_{i=1}^{n}b'_{ii} \\ |T|=(-1)^{\frac{1}{2}{(n+m)(n+m-1)}} \prod_{i=1}^{m}a'_{ii}\prod_{i=1}^{n}b'_{ii} ∣A∣=(−1)21m(m−1)i=1∏maii′∣B∣=(−1)21n(n−1)i=1∏nbii′∣T∣=(−1)21(n+m)(n+m−1)i=1∏maii′i=1∏nbii′
该公式中的指数部分涉及表达式: τ = ( n + m ) ( n + m − 1 ) \tau=(n+m)(n+m-1) τ=(n+m)(n+m−1),由于我们仅关心 τ \tau τ的奇偶性,可对其形式进行变形
τ \tau τ= ( n + m ) 2 − ( n + m ) = n 2 + 2 m n + m 2 − n − m (n+m)^2-(n+m)=n^2+2mn+m^2-n-m (n+m)2−(n+m)=n2+2mn+m2−n−m
1 2 ( n + m ) ( n + m − 1 ) \frac{1}{2}{(n+m)(n+m-1)} 21(n+m)(n+m−1)= 1 2 n ( n − 1 ) + 1 2 m ( m − 1 ) + m n \frac{1}{2}n(n-1)+\frac{1}{2}m(m-1)+mn 21n(n−1)+21m(m−1)+mn
∣ T ∣ = ( − 1 ) 1 2 n ( n − 1 ) + 1 2 m ( m − 1 ) + m n ∏ i = 1 m a i i ′ ∏ i = 1 n b i i ′ = ( − 1 ) m n [ ( − 1 ) 1 2 m ( m − 1 ) ∏ i = 1 m a i i ′ ] [ ( − 1 ) 1 2 n ( n − 1 ) ∏ i = 1 n b i i ′ ] = ( − 1 ) m n ∣ A ∣ ∣ B ∣ \begin{aligned} |T|&=(-1)^{\frac{1}{2}n(n-1)+\frac{1}{2}m(m-1)+mn} \prod_{i=1}^{m}a'_{ii}\prod_{i=1}^{n}b'_{ii} \\ &=(-1)^{mn}[(-1)^{\frac{1}{2}m(m-1)}\prod_{i=1}^{m}a'_{ii}] [(-1)^{\frac{1}{2}n(n-1)}\prod_{i=1}^{n}b'_{ii}] \\&=(-1)^{mn}|A||B| \end{aligned} ∣T∣=(−1)21n(n−1)+21m(m−1)+mni=1∏maii′i=1∏nbii′=(−1)mn[(−1)21m(m−1)i=1∏maii′][(−1)21n(n−1)i=1∏nbii′]=(−1)mn∣A∣∣B∣