- ResNet的半监督和半弱监督模型
Valar_Morghulis
Billion-scalesemi-supervisedlearningforimageclassificationhttps://arxiv.org/pdf/1905.00546.pdfhttps://github.com/facebookresearch/semi-supervised-ImageNet1K-models/权重在timm中也有:https://hub.fastgit.org/r
- 验证resneXt,densenet,mobilenet和SENet的特色结构
dfj77477
人工智能python
简介图像分类对网络结构的要求,一个是精度,另一个是速度。这两个需求推动了网络结构的发展。resneXt:分组卷积,降低了网络参数个数。densenet:密集的跳连接。mobilenet:标准卷积分解成深度卷积和逐点卷积,即深度分离卷积。SENet:注意力机制。简单起见,使用了[1]的代码,注释掉layer4,作为基本框架resnet14。然后改变局部结构,验证分类效果。实验结果GPU:gtx107
- Pytorch ResNet Fashion-Mnist
hyhchaos
pytorch实现ResNetonFashion-MNISTfrom__future__importprint_functionimporttorchimporttimeimporttorch.nnasnnimporttorch.nn.functionalasFimporttorchvisionimporttorchvision.transformsastransformsfromtorchimp
- 基于PyTorch的ResNet50的10分类模型
Covirtue
人工智能pythonPytorchpytorch分类人工智能
使用PyTorch框架构建一个基于ResNet50的10分类模型并进行训练,需要首先确保已经安装了PyTorch和必要的库(如torchvision,用于加载预训练的ResNet50模型)。以下是一个简单的步骤指导,包括模型构建、数据加载、训练循环和测试过程。第一步:导入必要的库importtorchimporttorch.nnasnnimporttorch.optimasoptimfromtor
- VIT论文阅读: A Image is Worth 16x16 Words
Undefined游侠
论文阅读
简介在2024年,大家都知道了transformer的故事,但是在4年前,CNN和Transformer谁才是CV的未来,还没有那么确定。在简介部分,作者提到了一个令人失望的事实,在基于imagenet的实验中发现,transformer的表现差于同尺寸的ResNet。作者把原因归结到biastranslationequivarianceandlocality,这些CNN具有,但是transfor
- Unet 高阶分割网络实战、多类别分割、迁移学习(deeplab、resnet101等等)
听风吹等浪起
图像分割计算机视觉人工智能
1、前言Unet图像分割之前介绍了不少,具体可以参考图像分割专栏为了实现多类别的自适应分割,前段时间利用numpy的unique函数实现了一个项目。通过numpy函数将mask的灰度值提取出来,保存在txt文本里,这样txt里面就会有类似012...等等的灰度值。而有几个灰度值,就代表分割要分出几个类别。具体可以参考:Unet实战分割项目、多尺度训练、多类别分割将vgg换成resnet的unet参
- 深度学习(16)--基于经典网络架构resnet训练图像分类模型
GodFishhh
深度学习深度学习python人工智能pytorch
目录一.项目介绍二.项目流程详解2.1.引入所需的工具包2.2.数据读取和预处理2.3.加载resnet152模型2.4.初始化模型2.5.设置需要更新的参数2.6.训练模块设置2.7.再次训练所有层2.8.测试网络效果三.完整代码一.项目介绍使用PyTorch工具包调用经典网络架构resnet训练图像分类模型,用于分辨不同类型的花二.项目流程详解2.1.引入所需的工具包importosimpor
- (7)PyTorch预训练
顽皮的石头7788121
(1)直接加载预训练模型如果我们使用的模型和原模型完全一样,那么我们可以直接加载别人训练好的模型:my_resnet=MyResNet(*args,**kwargs)my_resnet.load_state_dict(torch.load("my_resnet.pth"))当然这样的加载方法是基于PyTorch推荐的存储模型的方法:torch.save(my_resnet.state_dict()
- DS Wannabe之5-AM Project: DS 30day int prep day14
wendyponcho
MachineLearning深度学习机器学习人工智能
Q1.WhatisAlexnet?Q2.WhatisVGGNet?Q3.WhatisVGG16?Q4.WhatisResNet?AttheILSVRC2015,so-calledResidualNeuralNetwork(ResNet)bytheKaimingHeetalintroducedtheanovelarchitecturewith“skipconnections”andfeaturesh
- 基于PaddlePaddle2.0的蝴蝶图像识别分类
bianhuaHYQ
笔记python图像识别人工智能
基于PaddlePaddle2.0的蝴蝶图像识别分类——利用预训练残差网络ResNet101模型分类资源来源如下:https://aistudio.baidu.com/aistudio/education/group/info/119391.蝴蝶识别分类任务概述本项目将利用人工智能技术来对蝴蝶图像进行分类,需要能对蝴蝶的类别、属性进行细粒度的识别分类。相关研究工作者能够根据采集到的蝴蝶图片,快速识
- MIT-BEVFusion系列七--量化2_Camera、Fuser、Decoder网络的量化
端木的AI探索屋
自动驾驶算法python人工智能网络
目录Camera量化CameraBackbone(Resnet50)量化替换量化层,增加residual_quantizer,修改bottleneck的前向对Add操作进行量化CameraNeck(GeneralizedLSSFPN)量化将Conv2d模块替换为QuantConv2d模块CameraNeck中添加对拼接操作的量化替换CameraNeck中的ForwardCameraVTransfo
- CNN网络的宽度和深度
zhnidj
CNN网络的宽度和深度都很重要ResNet、DenseNet解决的是如何让网络更深且避免梯度消失、网络退化各类组卷积的方法解决的是如何让网络以更高效的方式变得更宽
- Unet+ResNet 实战分割项目、多尺度训练、多类别分割
听风吹等浪起
图像分割人工智能计算机视觉
1.介绍传统的Unet网络,特征提取的backbone采用的是vgg模型,vgg的相关介绍和实战参考以前的博文:pytorch搭建VGG网络VGG的特征提取能力其实是不弱的,但网络较为臃肿,容易产生梯度消失或者梯度爆炸的问题。而Resnet可以解决这一问题,参考:ResNet训练CIFAR10数据集,并做图片分类本章在之前文章的基础上,只是将Unet的backbone进行替换,将vgg换成了res
- 深度学习的新进展:从图像识别到自然语言处理
一休哥助手
话题深度学习自然语言处理人工智能
导语:深度学习作为人工智能领域的重要分支,近年来取得了巨大的突破和进展。从最初的图像识别到如今的自然语言处理,深度学习正逐渐渗透到我们日常生活的方方面面。本文将带您一探深度学习的新进展,了解其在图像识别和自然语言处理领域的应用。一、图像识别:从精确度到实时性的提升深度学习在图像识别领域的应用已经取得了令人瞩目的成果。从最早的AlexNet到如今的ResNet、Inception等模型,深度学习模型
- 卷积神经网络(CNN)
栉风沐雪
深度学习cnn人工智能神经网络
本文仅在理论方面讲述CNN相关的知识,并给出AlexNet,Agg,ResNet等网络结构的代码。1.构成由输入层、卷积层、池化层、全连接层构成。输入层:输入数据卷积层:提取图像特征池化层:压缩特征全连接层:为输出准备,形同一维神经网络,下文不另起文笔描述2.神经网络与CNN对比左边为神经网络,右边为卷积神经网络。均采用的时较为简单的结构,卷积神经网络是对基础神经网络的延申,由一维扩展到三位空间,
- 《动手学深度学习(PyTorch版)》笔记7.6
南七澄江
深度学习笔记python深度学习pytorch笔记算法人工智能python
注:书中对代码的讲解并不详细,本文对很多细节做了详细注释。另外,书上的源代码是在JupyterNotebook上运行的,较为分散,本文将代码集中起来,并加以完善,全部用vscode在python3.9.18下测试通过,同时对于书上部分章节也做了整合。Chapter7ModernConvolutionalNeuralNetworks7.6ResidualNetworks(ResNet)随着我们设计越
- 深度学习知识点汇总-目标检测(1)
深度学习模型优化
8.1R-FCNR-FCN属于two-stage的目标检测算法。backbone部分RPN,这里使用ResNet。head部分R-FCN,使用全连接网络。其中ResNet-101+R-FCN的方法在PASCALVOC2007测试数据集的mmAP达到83.6%。图1人脸检测R-FCN的核心思想得到目标多个特征。假设我们只有一个特征图用来检测右眼。那么我们可以使用它定位人脸吗?应该可以。因为右眼应该在
- 探秘深度学习的巅峰之作:ResNet101与其在图像识别领域的革命性应用
程序员Chino的日记
深度学习人工智能
引言深度学习和图像识别的世界已经被深度卷积神经网络的引入所革命化,而在这些网络中,ResNet101架构作为一个重要的里程碑脱颖而出。本文旨在详细探讨ResNet101架构、其设计、功能和应用。ResNet革命2015年在计算机视觉和模式识别会议(CVPR)上介绍的ResNet(残差网络)家族,标志着深度学习图像识别的一个转折点。这些网络引入了残差学习的概念,解决了深度神经网络中的梯度消失问题,使
- 【转载】详解残差网络
yepeng2007fei
深度学习
转载自https://zhuanlan.zhihu.com/p/42706477在VGG中,卷积网络达到了19层,在GoogLeNet中,网络史无前例的达到了22层。那么,网络的精度会随着网络的层数增多而增多吗?在深度学习中,网络层数增多一般会伴着下面几个问题计算资源的消耗模型容易过拟合梯度消失/梯度爆炸问题的产生问题1可以通过GPU集群来解决,对于一个企业资源并不是很大的问题;问题2的过拟合通过
- 深度学习的进展
李建军
软件使用深度学习人工智能
深度学习近年来的进展在各个领域均展现出非凡的实力,以下将进一步详述几个关键领域的具体突破和应用:1.计算机视觉图像分类与识别:随着深度卷积神经网络的发展,如AlexNet、VGG、Inception系列、ResNet以及DenseNet等模型,图像分类准确率显著提高。尤其是ImageNet大规模视觉识别挑战赛上,错误率逐年降低,现在已经接近人类水平。目标检测:RCNN系列(FastRCNN、Fas
- 「竞赛调研」GeoLifeCLEF 2022 x FGVC9 - 任务及解决方案
Sternstunden
竞赛计算机视觉机器学习人工智能
任务说明本次竞赛的目标是预测植物和动物物种的地理分布,比赛方提供了来自法国和美国的1.6M个地理定位的观测数据,涵盖17K个物种(其中9K个为植物物种,8K个为动物物种)。解决方案rank1-SensioTeam总体概述团队集成了3个模型:1.一个双模态网络。团队使用Nir+G+B,在预训练的resnet34上,将其最后一层堆叠到一个3层FCN(包含环境向量+纬度+经度+国家+海拔平均值+最大-最
- 常见分类网络的结构
hzhj
计算机视觉
VGG16图片来自这里MobilenetV3small和large版本参数,图片来着这里Resnet图片来自这里
- 人工智能:破局与创新的较量,谁将主宰未来?
猫之角
一、AI发展趋势1.1数据驱动的增长AI的快速发展离不开大量数据的支撑。随着5G、物联网等技术的普及,数据的采集、传输和处理能力得到了极大提升。这使得数据驱动的AI技术取得了突破性进展,尤其是在计算机视觉、自然语言处理等领域。1.2深度学习与神经网络的创新深度学习作为AI的核心技术之一,其基于神经网络的算法在近年来得到了快速发展。从LeNet、AlexNet到ResNet,再到GPT、BERT等模
- 批量归一化和残差网络
英文名字叫dawntown
1.批量归一化标准化:使得任意一个特征在数据集中所有样本上的均值为0、标准差为1。标准化处理输入数据使各个特征的分布相近。批量归一化:就是在批次范围内做标准化。其目的是不断调整神经网络中间输出,从而使整个神经网络在各层的中间输出的数值更稳定。1.1不同网络的BN层1.1.1全连接层的BN放在全连接层中的仿射变换和激活函数之间,引入的可学习的参数:拉伸参数γ和偏移参数β,允许学习后使得批量归一化无效
- 2024.2.4周报
Nyctophiliaa
人工智能深度学习
目录摘要一、文献阅读1、题目2、摘要3、模型架构4、文献解读一、Introduction二、实验三、结论二、PINN一、PINN比传统数值方法有哪些优势二、PINN方法三、正问题与反问题总结摘要本周我阅读了一篇题目为DeepResidualLearningforImageRecognition的文献,文章的贡献是作者提出了残差网络的思想,且证明了更深层的残差网络具有比VGG网络更低的复杂度和更高的
- [动手学深度学习-PyTorch版]-5.11卷积神经网络-残差网络(ResNet)
蒸饺与白茶
5.11残差网络(ResNet)让我们先思考一个问题:对神经网络模型添加新的层,充分训练后的模型是否只可能更有效地降低训练误差?理论上,原模型解的空间只是新模型解的空间的子空间。也就是说,如果我们能将新添加的层训练成恒等映射f(x)=x,新模型和原模型将同样有效。由于新模型可能得出更优的解来拟合训练数据集,因此添加层似乎更容易降低训练误差。然而在实践中,添加过多的层后训练误差往往不降反升。即使利用
- Deeplearning with pytorch p1ch2
风与海的半神
深度学习
Deeplearningwithpytorchp1ch2AlexNet&ResNetResNet&resnet101AlexNet&ResNetResNet&resnet101ResNet:residualnetworksresnet101多层神经网络结构,今天的主要收获如下更改jupyter默认文件路径;torchvision中的models,transforms模块;PIL的Image模块;t
- pytorch gpu推理、onnxruntime gpu推理、tensorrt gpu推理比较,及安装教程,有详细代码解释
idealmu
pytorch人工智能python
需要下载的测试用的文件测试图片:https://upload.wikimedia.org/wikipedia/commons/2/26/YellowLabradorLooking_new.jpg-Odog.jpg类别文件:https://raw.githubusercontent.com/Lasagne/Recipes/master/examples/resnet50/imagenet_class
- 【RT-DETR有效改进】利用YOLO-MS的MSBlock模块改进ResNet中的Bottleneck(RT-DETR深度改进)
Snu77
RT-DETR有效改进专栏YOLO深度学习目标检测人工智能计算机视觉pythonRT-DETR
欢迎大家订阅本专栏,一起学习RT-DETR一、本文介绍本文给大家带来的改进机制是利用YOLO-MS提出的一种针对于实时目标检测的MSBlock模块(其其实不能算是Conv但是其应该是一整个模块),我们将其用于替换我们ResNet中Basic组合出一种新的结构,来替换我们网络中的模块可以达到一种轻量化的作用,我将其用于我的数据集上实验,其在轻量网络结构的同时,却能够提高一定的mAP精度,所以这是一种
- OBB头篇 | 原创自研 | YOLOv8 更换 SEResNeXtBottleneck 头 | 附详细结构图
迪菲赫尔曼
YOLOv8改进实战YOLOultralytics旋转目标检测OBB原创改进
左图:ResNet的一个模块。右图:复杂度大致相同的ResNeXt模块,基数(cardinality)为32。图中的一层表示为(输入通道数,滤波器大小,输出通道数)。1.思路ResNeXt是微软研究院在2017年发表的成果。它的设计灵感来自于经典的ResNet模型,但ResNeXt有个特别之处:它采用了多个并行的“组”来处理数据,而不是单一的小路径。这种设计让ResNeXt能更高效地学习多样的特征
- jvm调优总结(从基本概念 到 深度优化)
oloz
javajvmjdk虚拟机应用服务器
JVM参数详解:http://www.cnblogs.com/redcreen/archive/2011/05/04/2037057.html
Java虚拟机中,数据类型可以分为两类:基本类型和引用类型。基本类型的变量保存原始值,即:他代表的值就是数值本身;而引用类型的变量保存引用值。“引用值”代表了某个对象的引用,而不是对象本身,对象本身存放在这个引用值所表示的地址的位置。
- 【Scala十六】Scala核心十:柯里化函数
bit1129
scala
本篇文章重点说明什么是函数柯里化,这个语法现象的背后动机是什么,有什么样的应用场景,以及与部分应用函数(Partial Applied Function)之间的联系 1. 什么是柯里化函数
A way to write functions with multiple parameter lists. For instance
def f(x: Int)(y: Int) is a
- HashMap
dalan_123
java
HashMap在java中对很多人来说都是熟的;基于hash表的map接口的非同步实现。允许使用null和null键;同时不能保证元素的顺序;也就是从来都不保证其中的元素的顺序恒久不变。
1、数据结构
在java中,最基本的数据结构无外乎:数组 和 引用(指针),所有的数据结构都可以用这两个来构造,HashMap也不例外,归根到底HashMap就是一个链表散列的数据
- Java Swing如何实时刷新JTextArea,以显示刚才加append的内容
周凡杨
java更新swingJTextArea
在代码中执行完textArea.append("message")后,如果你想让这个更新立刻显示在界面上而不是等swing的主线程返回后刷新,我们一般会在该语句后调用textArea.invalidate()和textArea.repaint()。
问题是这个方法并不能有任何效果,textArea的内容没有任何变化,这或许是swing的一个bug,有一个笨拙的办法可以实现
- servlet或struts的Action处理ajax请求
g21121
servlet
其实处理ajax的请求非常简单,直接看代码就行了:
//如果用的是struts
//HttpServletResponse response = ServletActionContext.getResponse();
// 设置输出为文字流
response.setContentType("text/plain");
// 设置字符集
res
- FineReport的公式编辑框的语法简介
老A不折腾
finereport公式总结
FINEREPORT用到公式的地方非常多,单元格(以=开头的便被解析为公式),条件显示,数据字典,报表填报属性值定义,图表标题,轴定义,页眉页脚,甚至单元格的其他属性中的鼠标悬浮提示内容都可以写公式。
简单的说下自己感觉的公式要注意的几个地方:
1.if语句语法刚接触感觉比较奇怪,if(条件式子,值1,值2),if可以嵌套,if(条件式子1,值1,if(条件式子2,值2,值3)
- linux mysql 数据库乱码的解决办法
墙头上一根草
linuxmysql数据库乱码
linux 上mysql数据库区分大小写的配置
lower_case_table_names=1 1-不区分大小写 0-区分大小写
修改/etc/my.cnf 具体的修改内容如下:
[client]
default-character-set=utf8
[mysqld]
datadir=/var/lib/mysql
socket=/va
- 我的spring学习笔记6-ApplicationContext实例化的参数兼容思想
aijuans
Spring 3
ApplicationContext能读取多个Bean定义文件,方法是:
ApplicationContext appContext = new ClassPathXmlApplicationContext(
new String[]{“bean-config1.xml”,“bean-config2.xml”,“bean-config3.xml”,“bean-config4.xml
- mysql 基准测试之sysbench
annan211
基准测试mysql基准测试MySQL测试sysbench
1 执行如下命令,安装sysbench-0.5:
tar xzvf sysbench-0.5.tar.gz
cd sysbench-0.5
chmod +x autogen.sh
./autogen.sh
./configure --with-mysql --with-mysql-includes=/usr/local/mysql
- sql的复杂查询使用案列与技巧
百合不是茶
oraclesql函数数据分页合并查询
本片博客使用的数据库表是oracle中的scott用户表;
------------------- 自然连接查询
查询 smith 的上司(两种方法)
&
- 深入学习Thread类
bijian1013
javathread多线程java多线程
一. 线程的名字
下面来看一下Thread类的name属性,它的类型是String。它其实就是线程的名字。在Thread类中,有String getName()和void setName(String)两个方法用来设置和获取这个属性的值。
同时,Thr
- JSON串转换成Map以及如何转换到对应的数据类型
bijian1013
javafastjsonnet.sf.json
在实际开发中,难免会碰到JSON串转换成Map的情况,下面来看看这方面的实例。另外,由于fastjson只支持JDK1.5及以上版本,因此在JDK1.4的项目中可以采用net.sf.json来处理。
一.fastjson实例
JsonUtil.java
package com.study;
impor
- 【RPC框架HttpInvoker一】HttpInvoker:Spring自带RPC框架
bit1129
spring
HttpInvoker是Spring原生的RPC调用框架,HttpInvoker同Burlap和Hessian一样,提供了一致的服务Exporter以及客户端的服务代理工厂Bean,这篇文章主要是复制粘贴了Hessian与Spring集成一文,【RPC框架Hessian四】Hessian与Spring集成
在
【RPC框架Hessian二】Hessian 对象序列化和反序列化一文中
- 【Mahout二】基于Mahout CBayes算法的20newsgroup的脚本分析
bit1129
Mahout
#!/bin/bash
#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements. See the NOTICE file distributed with
# this work for additional information re
- nginx三种获取用户真实ip的方法
ronin47
随着nginx的迅速崛起,越来越多公司将apache更换成nginx. 同时也越来越多人使用nginx作为负载均衡, 并且代理前面可能还加上了CDN加速,但是随之也遇到一个问题:nginx如何获取用户的真实IP地址,如果后端是apache,请跳转到<apache获取用户真实IP地址>,如果是后端真实服务器是nginx,那么继续往下看。
实例环境: 用户IP 120.22.11.11
- java-判断二叉树是不是平衡
bylijinnan
java
参考了
http://zhedahht.blog.163.com/blog/static/25411174201142733927831/
但是用java来实现有一个问题。
由于Java无法像C那样“传递参数的地址,函数返回时能得到参数的值”,唯有新建一个辅助类:AuxClass
import ljn.help.*;
public class BalancedBTree {
- BeanUtils.copyProperties VS PropertyUtils.copyProperties
诸葛不亮
PropertyUtilsBeanUtils
BeanUtils.copyProperties VS PropertyUtils.copyProperties
作为两个bean属性copy的工具类,他们被广泛使用,同时也很容易误用,给人造成困然;比如:昨天发现同事在使用BeanUtils.copyProperties copy有integer类型属性的bean时,没有考虑到会将null转换为0,而后面的业
- [金融与信息安全]最简单的数据结构最安全
comsci
数据结构
现在最流行的数据库的数据存储文件都具有复杂的文件头格式,用操作系统的记事本软件是无法正常浏览的,这样的情况会有什么问题呢?
从信息安全的角度来看,如果我们数据库系统仅仅把这种格式的数据文件做异地备份,如果相同版本的所有数据库管理系统都同时被攻击,那么
- vi区段删除
Cwind
linuxvi区段删除
区段删除是编辑和分析一些冗长的配置文件或日志文件时比较常用的操作。简记下vi区段删除要点备忘。
vi概述
引文中并未将末行模式单独列为一种模式。单不单列并不重要,能区分命令模式与末行模式即可。
vi区段删除步骤:
1. 在末行模式下使用:set nu显示行号
非必须,随光标移动vi右下角也会显示行号,能够正确找到并记录删除开始行
- 清除tomcat缓存的方法总结
dashuaifu
tomcat缓存
用tomcat容器,大家可能会发现这样的问题,修改jsp文件后,但用IE打开 依然是以前的Jsp的页面。
出现这种现象的原因主要是tomcat缓存的原因。
解决办法如下:
在jsp文件头加上
<meta http-equiv="Expires" content="0"> <meta http-equiv="kiben&qu
- 不要盲目的在项目中使用LESS CSS
dcj3sjt126com
Webless
如果你还不知道LESS CSS是什么东西,可以看一下这篇文章,是我一朋友写给新人看的《CSS——LESS》
不可否认,LESS CSS是个强大的工具,它弥补了css没有变量、无法运算等一些“先天缺陷”,但它似乎给我一种错觉,就是为了功能而实现功能。
比如它的引用功能
?
.rounded_corners{
- [入门]更上一层楼
dcj3sjt126com
PHPyii2
更上一层楼
通篇阅读完整个“入门”部分,你就完成了一个完整 Yii 应用的创建。在此过程中你学到了如何实现一些常用功能,例如通过 HTML 表单从用户那获取数据,从数据库中获取数据并以分页形式显示。你还学到了如何通过 Gii 去自动生成代码。使用 Gii 生成代码把 Web 开发中多数繁杂的过程转化为仅仅填写几个表单就行。
本章将介绍一些有助于更好使用 Yii 的资源:
- Apache HttpClient使用详解
eksliang
httpclienthttp协议
Http协议的重要性相信不用我多说了,HttpClient相比传统JDK自带的URLConnection,增加了易用性和灵活性(具体区别,日后我们再讨论),它不仅是客户端发送Http请求变得容易,而且也方便了开发人员测试接口(基于Http协议的),即提高了开发的效率,也方便提高代码的健壮性。因此熟练掌握HttpClient是很重要的必修内容,掌握HttpClient后,相信对于Http协议的了解会
- zxing二维码扫描功能
gundumw100
androidzxing
经常要用到二维码扫描功能
现给出示例代码
import com.google.zxing.WriterException;
import com.zxing.activity.CaptureActivity;
import com.zxing.encoding.EncodingHandler;
import android.app.Activity;
import an
- 纯HTML+CSS带说明的黄色导航菜单
ini
htmlWebhtml5csshovertree
HoverTree带说明的CSS菜单:纯HTML+CSS结构链接带说明的黄色导航
在线体验效果:http://hovertree.com/texiao/css/1.htm代码如下,保存到HTML文件可以看到效果:
<!DOCTYPE html >
<html >
<head>
<title>HoverTree
- fastjson初始化对性能的影响
kane_xie
fastjson序列化
之前在项目中序列化是用thrift,性能一般,而且需要用编译器生成新的类,在序列化和反序列化的时候感觉很繁琐,因此想转到json阵营。对比了jackson,gson等框架之后,决定用fastjson,为什么呢,因为看名字感觉很快。。。
网上的说法:
fastjson 是一个性能很好的 Java 语言实现的 JSON 解析器和生成器,来自阿里巴巴的工程师开发。
- 基于Mybatis封装的增删改查实现通用自动化sql
mengqingyu
DAO
1.基于map或javaBean的增删改查可实现不写dao接口和实现类以及xml,有效的提高开发速度。
2.支持自定义注解包括主键生成、列重复验证、列名、表名等
3.支持批量插入、批量更新、批量删除
<bean id="dynamicSqlSessionTemplate" class="com.mqy.mybatis.support.Dynamic
- js控制input输入框的方法封装(数字,中文,字母,浮点数等)
qifeifei
javascript js
在项目开发的时候,经常有一些输入框,控制输入的格式,而不是等输入好了再去检查格式,格式错了就报错,体验不好。 /** 数字,中文,字母,浮点数(+/-/.) 类型输入限制,只要在input标签上加上 jInput="number,chinese,alphabet,floating" 备注:floating属性只能单独用*/
funct
- java 计时器应用
tangqi609567707
javatimer
mport java.util.TimerTask; import java.util.Calendar; public class MyTask extends TimerTask { private static final int
- erlang输出调用栈信息
wudixiaotie
erlang
在erlang otp的开发中,如果调用第三方的应用,会有有些错误会不打印栈信息,因为有可能第三方应用会catch然后输出自己的错误信息,所以对排查bug有很大的阻碍,这样就要求我们自己打印调用的栈信息。用这个函数:erlang:process_display (self (), backtrace).需要注意这个函数只会输出到标准错误输出。
也可以用这个函数:erlang:get_s