- Python 的 ORM(Object-Relational Mapping)工具浅讲
Code_Geo
python开发语言
SQLAlchemy相关讲解1.SQLAlchemy是什么?定义:一个Python的ORM(Object-RelationalMapping)工具,允许开发者通过Python类与对象操作数据库,而非直接编写SQL。核心组件:Core:底层SQL表达式语言,提供数据库无关的SQL操作接口。ORM:基于Core的高层抽象,将数据库表映射为Python类(模型),记录映射为对象。适用场景:需要灵活操作数
- nginx ngx_event_t结构体详解
securitysun
nginx开发学习汇总nginxopenresty计算机网络
结构体EventHandling|NGINXngx_event_t:为添加到循环event事件使用的event事件结构体。typedefstructngx_event_sngx_event_t;结构体声明所在位置ngx_core.h。ngx_event_s结构体所在位置ngx_event.h。structngx_event_s{//事件上下文数据,通常data都是指向ngx_connection_
- AI 时代,学习 Java 应如何入手?
琢磨先生David
人工智能java
一、Java的现状:生态繁荣与AI融合的双重机遇在2025年的技术版图中,Java依然稳坐企业级开发的“头把交椅”。根据行业统计,Java在全球企业级应用中的市场份额仍超过65%,尤其在微服务架构、大数据平台和物联网(IoT)领域占据核心地位。随着云原生技术的普及,Java生态正经历新一轮进化:轻量化框架通过无服务器架构优化,启动速度提升300%,内存占用降低50%,使得Java在容器化部署中更具
- Java 处理 json 格式数据解析为 csv 格式
李昊哲小课
数据分析Java大数据javajson开发语言大数据数据分析
Java处理json格式数据解析为csv格式如果不使用JSON工具库,你可以手动解析JSON格式字符串并将其转换为CSV格式字符串。以下是一个简单示例,展示如何实现这一功能。示例代码下面的示例代码手动处理JSON字符串,将其转换为CSV格式字符串:/***接收JSON字符串,去掉开头和结尾的方括号,按对象划分。*通过extractKeys方法提取字段名,添加到CSV的第一行。*逐项解析JSON对象
- http框架核心之ngx_http.c源码分析
qiuhui00
nginx源码分析nginx源码分析http框架
ngx_http.c内主要实现了一个模块:ngx_http_module。ngx_http_module是nginx的http框架的一部分,它是所有http模块能够被加载的唯一入口,承担了http块配置解析,合并,以及http框架及其相关数据结构的初始化。它本身是NGX_CORE_MODULE类型,只有一个指令,就是http,如下所示:staticngx_command_tngx_http_com
- 3DMAX点云算法:实现毫米级BIM模型偏差检测(附完整代码)
夏末之花
人工智能
摘要本文基于激光雷达点云数据与BIM模型的高精度对齐技术,提出一种融合动态体素化与多模态特征匹配的偏差检测方法。通过点云预处理、语义分割、模型配准及差异分析,最终实现建筑构件毫米级偏差的可视化检测。文中提供关键代码实现,涵盖点云处理、特征提取与深度学习模型搭建。一、核心算法流程点云预处理与特征增强去噪与下采样:采用统计滤波与体素网格下采样,去除离群点并降低数据量。语义分割:基于PointNet++
- SelectDB 实时分析性能突出,宝舵成本锐减与性能显著提升的双赢之旅
SelectDB技术团队
大数据物联网dorisselectdb人工智能电商场景数据分析
BOCDOP宝舵早期基于TiDB构建实时数仓,随着数据量增长,在数据处理效率、OLAP能力扩展、功能支持、成本与资源方面存在一定优化空间。为提升数据分析能力并优化成本,宝舵引入SelectDB,达成写入速度提升10倍,成本直降30%的显著成效。本文转录自高瑞军(宝尊科技高级架构师)在DorisSummitAsia2024上的演讲,经编辑整理。业务背景宝尊集团创立于2007年,是中国品牌电商服务行业
- Apache Doris整合Iceberg + Flink CDC构建实时湖仓体的联邦查询分析架构
MfvShell
apacheflink架构Flink
随着大数据技术的迅猛发展,构建实时湖仓体并进行联邦查询分析成为了许多企业的迫切需求。在这篇文章中,我们将探讨如何利用ApacheDoris整合Iceberg和FlinkCDC来构建这样一个架构,并提供相应的源代码示例。简介实时湖仓体是一种灵活、可扩展的数据架构,结合了数据湖和数据仓库的优势。ApacheDoris是一款开源的分布式SQL引擎,专注于实时分析和查询。Iceberg是一种开放式表格格式
- 【Apache Storm】
茉菇
apachestorm大数据
一、Storm简介1、概述官网地址:https://storm.apache.org/index.htmlApacheStorm是一个开源的、分布式的实时计算系统,专为处理流式数据而设计。它能够处理大量数据流并在极低的延迟下提供实时的结果。相比于传统的批处理系统,Storm具有处理无限数据流的能力,支持非常高的可扩展性和容错机制。Storm可以适用于多种编程语言,具有高度的灵活性。2、核心功能分布
- Python 爬虫实战:如何爬取小红书数据并进行分析
Python爬虫项目
python爬虫开发语言selenium测试工具
一、引言随着社交电商的崛起,小红书(Xiaohongshu)作为一款结合了社交和电商的应用,吸引了大量年轻用户。用户在平台上分享购物心得、生活经验以及个性化的消费推荐内容,形成了庞大的用户数据与内容生态。因此,如何从小红书获取数据进行分析,成为了数据科学、市场营销和社交媒体研究中的一个重要课题。本文将介绍如何使用Python编写爬虫爬取小红书的数据,分析如何通过小红书的开放API获取用户信息、帖子
- Java数据类型 Arrays VS ArraysList VS LikedList 解析
fantasy_4
Javajava
在学习Java过程中,在刷题时总是搞不清楚这三种数据结构的区别,打算写篇文章记录一下ArraysVSArrayListArrayListVSLinkedList总结ArraysVSArrayListArraysArrayList类型Java的基本数据类型Java集合框架中的一个类,实现了List接口存储内容基本数据类型+对象引用对象引用可变性数组长度创建后不可变长度可变适用场景查询元素会比较快,直
- Python 常用内建模块-base64
赔罪
Python系统学习python前端linux
目录base64小结练习base64Base64是一种用64个字符来表示任意二进制数据的方法。用记事本打开exe、jpg、pdf这些文件时,我们都会看到一大堆乱码,因为二进制文件包含很多无法显示和打印的字符,所以,如果要让记事本这样的文本处理软件能处理二进制数据,就需要一个二进制到字符串的转换方法。Base64是一种最常见的二进制编码方法。Base64的原理很简单,首先,准备一个包含64个字符的数
- 基于python的ansys_基于python的感知机
weixin_39687990
基于python的ansys
一、1、感知机可以描述为一个线性方程,用python的伪代码可表示为:sum(weight_i*x_i)+bias->activation#activation表示激活函数,x_i和weight_i是分别为与当前神经元连接的其它神经元的输入以及连接的权重。bias表示当前神经元的输出阀值(或称偏置)。箭头(->)左边的数据,就是激活函数的输入2、定义激活函数f:deffunc_activator(
- 信创系统安全优化与持续改进策略有哪些?
weixin_37579147
系统安全安全
信创系统(信息技术应用创新系统)的安全优化与持续改进是保障国产化技术生态安全可靠运行的关键。以下从技术、管理、组织等多个维度提出系统性策略,并结合实际场景展开说明:一、技术层面的安全优化策略1.核心组件安全加固国产化组件漏洞管理:建立针对国产操作系统(如统信UOS、麒麟)、数据库(达梦、OceanBase)的漏洞扫描与修复机制,联合厂商建立漏洞情报共享平台。硬件层可信计算:采用基于国产芯片(如鲲鹏
- 数据增强:扩充数据集提升模型泛化能力
AI天才研究院
计算AI大模型企业级应用开发实战ChatGPT计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
1.背景介绍1.1.数据增强的重要性在机器学习领域,模型的泛化能力至关重要。一个泛化能力强的模型能够在未见数据上表现良好,而过拟合的模型则会在训练数据上表现出色,但在新数据上表现糟糕。数据增强是一种有效提升模型泛化能力的技术,它通过对现有数据进行各种变换,人为地扩充数据集,从而增加训练数据的数量和多样性。1.2.数据增强的应用场景数据增强广泛应用于各种机器学习任务中,包括:图像识别:对图像进行旋转
- 数据增强:扩充数据集,提升模型的鲁棒性
AI天才研究院
DeepSeekR1&大数据AI人工智能大模型LLM大模型落地实战指南计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
数据增强:扩充数据集,提升模型的鲁棒性1.背景介绍1.1数据集的重要性在机器学习和深度学习领域中,数据集是训练模型的基础。高质量的数据集对于构建准确、鲁棒的模型至关重要。然而,在现实世界中,获取大量高质量的数据通常是一个巨大的挑战。数据采集过程耗时耗力,而且成本高昂。此外,某些领域的数据存在隐私和安全问题,难以获取。1.2数据集不足的挑战当数据集规模有限时,模型很容易过拟合,无法很好地推广到新的、
- Pandas完全指南:数据处理与分析从入门到实战
xiaoyu❅
pythonpythonpandas开发语言
目录引言一、Pandas环境配置与核心概念1.1安装Pandas1.2导入惯例1.3核心数据结构二、数据结构详解2.1Series创建与操作2.2DataFrame创建三、数据查看与基本操作3.1数据预览3.2索引与选择3.3数据排序四、数据清洗实战4.1处理缺失值4.2处理重复值4.3数据类型转换4.4字符串处理五、数据处理进阶5.1数据筛选5.2列操作5.3应用函数六、数据分组与聚合6.1基础
- NL2SQL 优化之 Schema 编写标准
kakaZhui
oracle数据库AIGCpythonllamachatgpt
写在前面在自然语言转SQL(NL2SQL,或Text-to-SQL)任务中,数据库Schema的质量和表示方式对模型的性能有着至关重要的影响。一个清晰、规范、易于理解的Schema能够帮助模型更好地理解数据库结构,从而生成更准确的SQL查询。相反,一个混乱、不规范的Schema会增加模型的理解难度,导致生成的SQL查询错误百出。本文将深入探讨NL2SQL任务中Schema的编写标准,详细介绍如何为
- weixin049校园外卖平台设计与实现+ssm(文档+源码)_kaic
开心毕设kaic_kaic
模拟退火算法散列表随机森林支持向量机启发式算法逻辑回归
校园外卖平台设计与实现摘要随着信息技术在管理上越来越深入而广泛的应用,管理信息系统的实施在技术上已逐步成熟。本文介绍了校园外卖平台的开发全过程。通过分析校园外卖平台管理的不足,创建了一个计算机管理校园外卖平台的方案。文章介绍了校园外卖平台的系统分析部分,包括可行性分析等,系统设计部分主要介绍了系统功能设计和数据库设计。本校园外卖平台有管理员,用户,商家。管理员功能有个人中心,用户管理,商家管理,菜
- Node.js系列(4)--微服务架构实践
一进制ᅟᅠ
Node.js架构node.js微服务
Node.js微服务架构实践引言微服务架构已成为构建大规模Node.js应用的主流选择。本文将深入探讨Node.js微服务架构的设计与实现,包括服务拆分、服务治理、通信机制等方面,帮助开发者构建可扩展的微服务系统。微服务架构概述Node.js微服务架构主要包括以下方面:服务拆分:业务领域划分与服务边界服务治理:服务注册、发现与负载均衡通信机制:同步与异步通信方案数据管理:分布式事务与数据一致性可观
- 【免费】1952-2020年全国人均GDP数据
2501_90487648
数据#全国全国人均GDP
1952-2020年全国人均GDP数据1、时间:1952-2020年2、来源:国家统计局、统计年鉴3、指标:全国人均GDP4、范围:全国层面5、指标解释:人均GDP(GrossDomesticProductpercapita)是指一个国家或地区在一定时期内(通常为一年)创造的国内生产总值(GDP)与该地区人口总数的比值。它是衡量国家经济发展水平和居民生活水平的重要指标之一。6、下载链接:1952-
- C++学习笔记:引用
etp_
c++学习笔记
引用是已知变量的别名,通过将引用变量用作参数,函数将使用原始数据而不是其副本。下面将r作为a的别名:inta;int&r=a;就像char*是指向char的指针一样,int&是指向int的引用。(a和r指向相同的值和内存单元)注意:&r表示r引用变量的地址。引用和指针的区别1.必须在声明引用时将其初始化,而不能像指针那样先声明再赋值。2.引用更接近const指针,一旦与某个变量关联起来便有一直效忠
- 2025年计算机毕业设计springboot 智慧社区管理系统
zhihao503
课程设计springboot后端
本系统(程序+源码)带文档lw万字以上文末可获取一份本项目的java源码和数据库参考。系统程序文件列表开题报告内容选题背景关于智慧社区管理系统的研究,现有成果多聚焦于单一功能模块的数字化(如物业缴费或门禁系统),缺乏对多场景服务整合与用户体验优化的系统性研究。国外研究侧重物联网技术应用(如新加坡“智慧国”计划中的社区传感器网络),而国内研究更多关注管理平台的基础框架设计,但针对业主、物业、设备多方
- 关于使用python进行处理雷达数据笔记
六毛驴
python数据分析
好久不见,甚是想念本人深知这段时间鸽了一篇博(上一篇博),后续会补上的,今天想写一下关于使用python进行TI雷达接收回波数据处理的一些常见问题和解决方法。这也是前几天领导给我布置的任务,所以我将这段时间自己遇到的并且已经解决的问题进行了简单的汇总,也会推荐几本这几天阅读了python书籍。python书籍推荐:python学习手册MarkLutz著(对应python版本3.X,2.X都可)Py
- 安卓无线调试连接不上
王的备忘录
A1_android开发基础android
今天发现的一个问题,如果要连接的是新手机,会无法连接上。提示connectfail。原因是第一次调试,先要在手机上进行授权。解决方法就是要先通过数据线连接手机,在手机端同意连接,之后再运用adb无线调试就可以连接了。
- 【C++】:位图(bitset)
-元清-
重制C++版c++开发语言c语言数据结构算法
目录位图的概念位图的应用场景位图的构造函数位图的使用位图的概念位图(Bitmap)是一种基于二进制位(bit)的高效数据结构,用于表示一组布尔值(存在或不存在、真或假)。它的核心思想是:用每一个二进制位(0或1)来标记某个状态或资源是否被占用。第i位为1→表示第i个元素存在/被占用。第i位为0→表示第i个元素不存在/未被占用。关键特性:内存高效:每个布尔值仅占用1个二进制位(bit),而非传统布尔
- 常见的数学统计模型
若木胡
数学模型
以下是常见的数学统计模型分类及简要说明,适用于数据分析、预测和推断等场景:1.参数模型(ParametricModels)假设数据服从特定分布(如正态分布),通过估计参数来描述数据规律。1.1线性回归模型数学形式:(y=\beta_0+\beta_1x_1+\beta_2x_2+\cdots+\beta_px_p+\epsilon)应用:预测连续型目标变量(如房价预测)。特点:简单、可解释性强,假
- Tsfresh + TA-Lib + LightGBM :A 股市场量化投资策略实战入门
船长@Quant
Python金融科技pythontsfreshTA-LibLightGBM量化技术策略开发
Tsfresh+TA-Lib+LightGBM:A股市场量化投资策略实战入门本项目以A股市场为研究对象,通过量化技术对市场数据进行分析,构建量化投资策略,并利用历史数据回测验证策略的有效性。项目旨在为量化技术初学者提供一个系统的学习框架,帮助读者掌握从数据获取到策略评估的全流程操作。文中内容仅限技术学习与代码实践参考,市场存在不确定性,技术分析需谨慎验证,不构成任何投资建议。适合量化新手建立系统认
- flink从kafka读取数据写入clickhouse本地表的实现
Breatrice_li
kafkaflink分布式大数据
实现功能因为直接写clickhouse的分布式表在数据量比较大的时候会有各种问题,所以做了一个flink读取kafka数据然后路由写入到相应的本地表节点,并且关于不同的表的配置信息可以随时更改并设置生效时间。实现流程首先从kafka将数据读取过来然后进行相应的处理及逻辑判断写入到对应的clickhouse表格中最后根据CDC读取来的配置信息进行相应节点的hash路由,直接写入本地表读取kafka数
- Oracle中union用法
邓伟林
OracleOracleunion
Oracle中union用法一、union用于查询结果可能存在多张表中的数据,并剔除重复数据据。二、unionall用于查询结果可能存在多张表中的数据,并将所有数据返回。三、写法:selecta.name,a.idfrom(selectb.namename,b.ididfrombwhereb.id=‘1’unionselectc.namename,c.ididfromcwherec.id=‘1’u
- Nginx负载均衡
510888780
nginx应用服务器
Nginx负载均衡一些基础知识:
nginx 的 upstream目前支持 4 种方式的分配
1)、轮询(默认)
每个请求按时间顺序逐一分配到不同的后端服务器,如果后端服务器down掉,能自动剔除。
2)、weight
指定轮询几率,weight和访问比率成正比
- RedHat 6.4 安装 rabbitmq
bylijinnan
erlangrabbitmqredhat
在 linux 下安装软件就是折腾,首先是测试机不能上外网要找运维开通,开通后发现测试机的 yum 不能使用于是又要配置 yum 源,最后安装 rabbitmq 时也尝试了两种方法最后才安装成功
机器版本:
[root@redhat1 rabbitmq]# lsb_release
LSB Version: :base-4.0-amd64:base-4.0-noarch:core
- FilenameUtils工具类
eksliang
FilenameUtilscommon-io
转载请出自出处:http://eksliang.iteye.com/blog/2217081 一、概述
这是一个Java操作文件的常用库,是Apache对java的IO包的封装,这里面有两个非常核心的类FilenameUtils跟FileUtils,其中FilenameUtils是对文件名操作的封装;FileUtils是文件封装,开发中对文件的操作,几乎都可以在这个框架里面找到。 非常的好用。
- xml文件解析SAX
不懂事的小屁孩
xml
xml文件解析:xml文件解析有四种方式,
1.DOM生成和解析XML文档(SAX是基于事件流的解析)
2.SAX生成和解析XML文档(基于XML文档树结构的解析)
3.DOM4J生成和解析XML文档
4.JDOM生成和解析XML
本文章用第一种方法进行解析,使用android常用的DefaultHandler
import org.xml.sax.Attributes;
- 通过定时任务执行mysql的定期删除和新建分区,此处是按日分区
酷的飞上天空
mysql
使用python脚本作为命令脚本,linux的定时任务来每天定时执行
#!/usr/bin/python
# -*- coding: utf8 -*-
import pymysql
import datetime
import calendar
#要分区的表
table_name = 'my_table'
#连接数据库的信息
host,user,passwd,db =
- 如何搭建数据湖架构?听听专家的意见
蓝儿唯美
架构
Edo Interactive在几年前遇到一个大问题:公司使用交易数据来帮助零售商和餐馆进行个性化促销,但其数据仓库没有足够时间去处理所有的信用卡和借记卡交易数据
“我们要花费27小时来处理每日的数据量,”Edo主管基础设施和信息系统的高级副总裁Tim Garnto说道:“所以在2013年,我们放弃了现有的基于PostgreSQL的关系型数据库系统,使用了Hadoop集群作为公司的数
- spring学习——控制反转与依赖注入
a-john
spring
控制反转(Inversion of Control,英文缩写为IoC)是一个重要的面向对象编程的法则来削减计算机程序的耦合问题,也是轻量级的Spring框架的核心。 控制反转一般分为两种类型,依赖注入(Dependency Injection,简称DI)和依赖查找(Dependency Lookup)。依赖注入应用比较广泛。
- 用spool+unixshell生成文本文件的方法
aijuans
xshell
例如我们把scott.dept表生成文本文件的语句写成dept.sql,内容如下:
set pages 50000;
set lines 200;
set trims on;
set heading off;
spool /oracle_backup/log/test/dept.lst;
select deptno||','||dname||','||loc
- 1、基础--名词解析(OOA/OOD/OOP)
asia007
学习基础知识
OOA:Object-Oriented Analysis(面向对象分析方法)
是在一个系统的开发过程中进行了系统业务调查以后,按照面向对象的思想来分析问题。OOA与结构化分析有较大的区别。OOA所强调的是在系统调查资料的基础上,针对OO方法所需要的素材进行的归类分析和整理,而不是对管理业务现状和方法的分析。
OOA(面向对象的分析)模型由5个层次(主题层、对象类层、结构层、属性层和服务层)
- 浅谈java转成json编码格式技术
百合不是茶
json编码java转成json编码
json编码;是一个轻量级的数据存储和传输的语言
在java中需要引入json相关的包,引包方式在工程的lib下就可以了
JSON与JAVA数据的转换(JSON 即 JavaScript Object Natation,它是一种轻量级的数据交换格式,非
常适合于服务器与 JavaScript 之间的数据的交
- web.xml之Spring配置(基于Spring+Struts+Ibatis)
bijian1013
javaweb.xmlSSIspring配置
指定Spring配置文件位置
<context-param>
<param-name>contextConfigLocation</param-name>
<param-value>
/WEB-INF/spring-dao-bean.xml,/WEB-INF/spring-resources.xml,
/WEB-INF/
- Installing SonarQube(Fail to download libraries from server)
sunjing
InstallSonar
1. Download and unzip the SonarQube distribution
2. Starting the Web Server
The default port is "9000" and the context path is "/". These values can be changed in &l
- 【MongoDB学习笔记十一】Mongo副本集基本的增删查
bit1129
mongodb
一、创建复本集
假设mongod,mongo已经配置在系统路径变量上,启动三个命令行窗口,分别执行如下命令:
mongod --port 27017 --dbpath data1 --replSet rs0
mongod --port 27018 --dbpath data2 --replSet rs0
mongod --port 27019 -
- Anychart图表系列二之执行Flash和HTML5渲染
白糖_
Flash
今天介绍Anychart的Flash和HTML5渲染功能
HTML5
Anychart从6.0第一个版本起,已经逐渐开始支持各种图的HTML5渲染效果了,也就是说即使你没有安装Flash插件,只要浏览器支持HTML5,也能看到Anychart的图形(不过这些是需要做一些配置的)。
这里要提醒下大家,Anychart6.0版本对HTML5的支持还不算很成熟,目前还处于
- Laravel版本更新异常4.2.8-> 4.2.9 Declaration of ... CompilerEngine ... should be compa
bozch
laravel
昨天在为了把laravel升级到最新的版本,突然之间就出现了如下错误:
ErrorException thrown with message "Declaration of Illuminate\View\Engines\CompilerEngine::handleViewException() should be compatible with Illuminate\View\Eng
- 编程之美-NIM游戏分析-石头总数为奇数时如何保证先动手者必胜
bylijinnan
编程之美
import java.util.Arrays;
import java.util.Random;
public class Nim {
/**编程之美 NIM游戏分析
问题:
有N块石头和两个玩家A和B,玩家A先将石头随机分成若干堆,然后按照BABA...的顺序不断轮流取石头,
能将剩下的石头一次取光的玩家获胜,每次取石头时,每个玩家只能从若干堆石头中任选一堆,
- lunce创建索引及简单查询
chengxuyuancsdn
查询创建索引lunce
import java.io.File;
import java.io.IOException;
import org.apache.lucene.analysis.Analyzer;
import org.apache.lucene.analysis.standard.StandardAnalyzer;
import org.apache.lucene.document.Docume
- [IT与投资]坚持独立自主的研究核心技术
comsci
it
和别人合作开发某项产品....如果互相之间的技术水平不同,那么这种合作很难进行,一般都会成为强者控制弱者的方法和手段.....
所以弱者,在遇到技术难题的时候,最好不要一开始就去寻求强者的帮助,因为在我们这颗星球上,生物都有一种控制其
- flashback transaction闪回事务查询
daizj
oraclesql闪回事务
闪回事务查询有别于闪回查询的特点有以下3个:
(1)其正常工作不但需要利用撤销数据,还需要事先启用最小补充日志。
(2)返回的结果不是以前的“旧”数据,而是能够将当前数据修改为以前的样子的撤销SQL(Undo SQL)语句。
(3)集中地在名为flashback_transaction_query表上查询,而不是在各个表上通过“as of”或“vers
- Java I/O之FilenameFilter类列举出指定路径下某个扩展名的文件
游其是你
FilenameFilter
这是一个FilenameFilter类用法的例子,实现的列举出“c:\\folder“路径下所有以“.jpg”扩展名的文件。 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
- C语言学习五函数,函数的前置声明以及如何在软件开发中合理的设计函数来解决实际问题
dcj3sjt126com
c
# include <stdio.h>
int f(void) //括号中的void表示该函数不能接受数据,int表示返回的类型为int类型
{
return 10; //向主调函数返回10
}
void g(void) //函数名前面的void表示该函数没有返回值
{
//return 10; //error 与第8行行首的void相矛盾
}
in
- 今天在测试环境使用yum安装,遇到一个问题: Error: Cannot retrieve metalink for repository: epel. Pl
dcj3sjt126com
centos
今天在测试环境使用yum安装,遇到一个问题:
Error: Cannot retrieve metalink for repository: epel. Please verify its path and try again
处理很简单,修改文件“/etc/yum.repos.d/epel.repo”, 将baseurl的注释取消, mirrorlist注释掉。即可。
&n
- 单例模式
shuizhaosi888
单例模式
单例模式 懒汉式
public class RunMain {
/**
* 私有构造
*/
private RunMain() {
}
/**
* 内部类,用于占位,只有
*/
private static class SingletonRunMain {
priv
- Spring Security(09)——Filter
234390216
Spring Security
Filter
目录
1.1 Filter顺序
1.2 添加Filter到FilterChain
1.3 DelegatingFilterProxy
1.4 FilterChainProxy
1.5
- 公司项目NODEJS实践0.1
逐行分析JS源代码
mongodbnginxubuntunodejs
一、前言
前端如何独立用nodeJs实现一个简单的注册、登录功能,是不是只用nodejs+sql就可以了?其实是可以实现,但离实际应用还有距离,那要怎么做才是实际可用的。
网上有很多nod
- java.lang.Math
liuhaibo_ljf
javaMathlang
System.out.println(Math.PI);
System.out.println(Math.abs(1.2));
System.out.println(Math.abs(1.2));
System.out.println(Math.abs(1));
System.out.println(Math.abs(111111111));
System.out.println(Mat
- linux下时间同步
nonobaba
ntp
今天在linux下做hbase集群的时候,发现hmaster启动成功了,但是用hbase命令进入shell的时候报了一个错误 PleaseHoldException: Master is initializing,查看了日志,大致意思是说master和slave时间不同步,没办法,只好找一种手动同步一下,后来发现一共部署了10来台机器,手动同步偏差又比较大,所以还是从网上找现成的解决方
- ZooKeeper3.4.6的集群部署
roadrunners
zookeeper集群部署
ZooKeeper是Apache的一个开源项目,在分布式服务中应用比较广泛。它主要用来解决分布式应用中经常遇到的一些数据管理问题,如:统一命名服务、状态同步、集群管理、配置文件管理、同步锁、队列等。这里主要讲集群中ZooKeeper的部署。
1、准备工作
我们准备3台机器做ZooKeeper集群,分别在3台机器上创建ZooKeeper需要的目录。
数据存储目录
- Java高效读取大文件
tomcat_oracle
java
读取文件行的标准方式是在内存中读取,Guava 和Apache Commons IO都提供了如下所示快速读取文件行的方法: Files.readLines(new File(path), Charsets.UTF_8); FileUtils.readLines(new File(path)); 这种方法带来的问题是文件的所有行都被存放在内存中,当文件足够大时很快就会导致
- 微信支付api返回的xml转换为Map的方法
xu3508620
xmlmap微信api
举例如下:
<xml>
<return_code><![CDATA[SUCCESS]]></return_code>
<return_msg><![CDATA[OK]]></return_msg>
<appid><