- 论文阅读笔记——Learning Fine-Grained Bimanual Manipulation with Low-Cost Hardware
寻丶幽风
论文阅读笔记论文阅读笔记人工智能深度学习机器人
ALOHA论文ALOHA解决了策略中的错误可能随时间累积,且人类演示可能是非平稳的,提出了ACT(ActionChunkingwithTransformers)方法。ActionChunking模仿学习中,compoundingerror是致使任务失败的主要原因。具体来说,当智能体(agent)在测试时遇到训练集中未见过的情况时,可能会产生预测误差。这些误差会逐步累积,导致智能体进入未知状态,最终
- 【论文阅读】LayoutPrompter: Awaken the Design Ability of Large Language Models
进击的乔洋
论文阅读语言模型人工智能
LayoutPrompter:AwakentheDesignAbilityofLargeLanguageModelsabstract条件图形布局生成是一种自动将用户约束映射为高质量布局的技术,目前受到了广泛关注。尽管最近的工作取得了很好的性能,但缺乏通用性和数据效率阻碍了它们的实际应用。本文提出Layout-Prompter,利用大型语言模型(llm)通过上下文学习来解决上述问题。LayoutPr
- 论文阅读方法
某风吾起
work哲学与人生论文阅读
文章目录步骤一:对论文进行自我判断阅读题目和关键词。阅读摘要阅读总结要点步骤二:阅读文章阅读图表和图表的注释阅读引言阅读实验部分阅读结果和作者对结果的讨论(创新点)要点步骤三:精度论文回答问题1回答问题2回答问题3要点步骤一:对论文进行自我判断阅读题目和关键词。观察这些关键词是否与你的研究的内容有关。如果不相干,可以随时停止,换篇文章看。阅读摘要摘要一般包含了整篇文章的主要内容,是非常非常重要的部
- 论文阅读:Recipe for a General, Powerful, Scalable Graph Transformer
不会&编程
图神经网络论文阅读论文阅读transformer深度学习图神经网络人工智能
RecipeforaGeneral,Powerful,ScalableGraphTransformer论文和代码地址1介绍与贡献2GPS模型2.1模型框架图2.2PE和SE2.3GPSlayer:一种MPNN+Transformer的混合模型GraphTransformer)论文和代码地址论文地址:https://arxiv.org/pdf/2205.12454v4代码地址:https://git
- Self-Attentive Sequential Recommendation论文阅读笔记
调包调参侠
推荐系统学习深度学习机器学习神经网络算法
SASRec论文阅读笔记论文标题:Self-AttentiveSequentialRecommendation发表于:2018ICDM作者:Wang-ChengKang,JulianMcAuley论文代码:https://github.com/pmixer/SASRec.pytorch论文地址:https://arxiv.org/pdf/1808.09781v1.pdf摘要顺序动态是许多现代推荐系
- Angular Superresolution of Real Aperture Radar for Target Scale Measurement 论文阅读
青铜锁00
论文阅读Radar论文阅读
AngularSuperresolutionofRealApertureRadarforTargetScaleMeasurement1.研究目标与实际意义1.1研究目标1.2实际意义2.创新方法与模型设计2.1广义混合正则化(GHR)框架核心公式与传统方法对比2.2自适应迭代重加权(AIR)求解器算法设计复杂度分析3.实验设计与结果验证3.1仿真实验实验设置关键结果3.2实际数据验证4.未来研究方
- Angular Superresolution of Real Aperture Radar Using Online Detect-Before-Reconstruct Framework 论文阅读
青铜锁00
论文阅读Radar论文阅读
AngularSuperresolutionofRealApertureRadarUsingOnlineDetect-Before-ReconstructFramework1.论文的研究目标与实际问题意义1.1研究目标1.2实际问题与产业意义2.论文的创新方法、模型与公式分析(重点)2.1核心创新点2.2关键公式与模型2.2.1信号模型2.2.2稀疏正则化优化问题2.2.3坐标循环最小化2.2.4
- 论文阅读笔记2
sixfrogs
论文阅读笔记论文阅读cnn
OptimizingMemoryEfficiencyforDeepConvolutionalNeuralNetworksonGPUs1论文简介作者研究了CNN各层的访存效率,并揭示了数据结构和访存模式对CNN的性能影响。并提出了优化方法。2方法介绍2.1Benchmarks数据集:MNIST,CIFAR,ImageNetCNN:AlexNet,ZFNet,VGG2.2实验设置CPU:IntelXe
- [论文阅读]DAMO-YOLO——实时目标检测设计报告
一朵小红花HH
知识蒸馏目标检测YOLO目标检测目标跟踪论文阅读人工智能
DAMO-YOLODAMO-YOLO:AReportonReal-TimeObjectDetectionDesign实时目标检测设计报告论文网址:DAMO-YOLO简读论文这篇论文介绍了一个名为DAMO-YOLO的新型目标检测方法,相比YOLO系列的其他方法有着更好的性能。该方法的优势来自于几项新技术:使用了MAE-NAS作为骨干网络,可以自动搜索出不同延迟预算下的优化网络结构。MAE-NAS被称
- 大模型隐空间推理论文阅读笔记
猴猴猪猪
AIGCpython实验记录人工智能深度学习
文章目录TrainingLargeLanguageModelstoReasoninaContinuousLatentSpace一.简介1.1摘要1.2引言TrainingLargeLanguageModelstoReasoninaContinuousLatentSpace一.简介机构:Meta代码:任务:特点:方法:1.1摘要现状:大语言模型往往局限在“languagespace"进行推理,在解决
- 【网安AIGC专题】46篇前沿代码大模型论文、24篇论文阅读笔记汇总_大模型在代码缺陷检测领域的应用实践(1)
2401_84972910
程序员AIGC论文阅读笔记
欢迎一起踏上探险之旅,挖掘无限可能,共同成长!写在最前面本文为邹德清教授的《网络安全专题》课堂笔记系列的文章,本次专题主题为大模型。本系列文章不仅涵盖了46篇关于前沿代码大模型的论文,还包含了24篇深度论文阅读笔记,全面覆盖了代码生成、漏洞检测、程序修复、生成测试等多个应用方向,深刻展示了这些技术如何在网络安全领域中起到革命性作用。同时,本系列还细致地介绍了大模型技术的基础架构、增强策略、关键数据
- 取消endnotes参考文献格式域的步骤_从来没有打开过的尾注功能,居然可以实现参考文献的引用...
xu kaihe
在写论文的时候,免不了要引用外部文献或者书刊杂志的内容来辅助表达观点。论文中需要在引用了参考文献的地方予以标明,并在论文的参考文献章节对应列出。一般来讲,插入参考文献在word中需要做到:①如何正确生成参考文献格式②如何让参考文献完成自动编号快速获取正确参考文献格式正确的参考文献格式在GB/T7714-2005《文后参考文献著录规则》中详细规定了,我就不一一援引了,这里告诉大家一个快速获得格式文段
- An Iterative Technique for the Rectification of Observed Distributions 论文阅读
青铜锁00
论文阅读论文阅读
AnIterativeTechniquefortheRectificationofObservedDistributions-L.B.Lucy1.研究目标与实际意义1.1研究目标1.2实际意义2.新方法与公式分析2.1核心思路:基于贝叶斯定理的迭代框架2.1.1贝叶斯逆概率公式2.1.2迭代更新规则2.1.3多维推广2.2方法优势2.3对比传统方法3.实验验证3.1数值实验设计3.2关键结果4.雷
- Azimuth Superresolution of Forward-Looking Radar Imaging Which Relies on Linearized Bregman论文阅读
青铜锁00
论文阅读Radar论文阅读
AzimuthSuperresolutionofForward-LookingRadarImagingWhichReliesonLinearizedBregman1.论文的研究目标与意义1.1研究目标1.2实际应用意义2.论文提出的新方法、公式与优势(重点)2.1方法框架2.1.1贝叶斯建模2.1.2线性化Bregman算法2.2与传统方法的对比2.3公式总结3.实验设计与结果3.1点目标仿真3.
- A Bayesian Angular Superresolution Method With Lognormal Constraint for Sea-Surface Target 论文阅读
青铜锁00
论文阅读Radar论文阅读
目录1.研究背景与问题2.方法创新3.关键优势4.实验验证5.与传统方法对比6.结论与意义1.研究背景与问题核心挑战:实孔径雷达受限于天线孔径尺寸,导致角分辨率不足,影响海面目标(如船舶)的精细化探测。传统方法局限性:谱估计方法(如MUSIC、IAA):依赖多快拍数据,机械扫描雷达难以满足。正则化方法(如TSVD、l1/l2约束):假设噪声服从高斯分布,未考虑海杂波的非高斯特性(如Rayleigh
- 论文阅读笔记——Prediction with Action: Visual Policy Learning via Joint Denoising Process
寻丶幽风
论文阅读笔记论文阅读笔记人工智能
以前的method是输入视频输出视频或者输入视频和action学习action,该方法认为action,video和othercondition具有一定联系,所以一次性对所有的进行jointdenoise。网络结构采用MaskedMulti-headAttention关联不同模态,使用DiT的backbone。
- 深度学习重要论文阅读笔记 ResNet (2025.2.26)
北岛寒沫
逐界星辰2025计算机科研深度学习论文阅读笔记
文章目录问题背景数据预处理神经网络模型模型性能知识点积累英语单词积累问题背景随着神经网络变得更深(层数变多),模型的训练过程也会变得更加困难。当神经网络的深度增加,就会出现梯度消失和梯度下降现象,妨碍模型的收敛。不过,这种情况可以通过归一化的模型初始化和中间的归一化层基本解决。但是,尽管在增加了归一化技术的情况下很深的神经网络可以收敛,又出现了另外一个问题,即随着模型深度的增加,模型的准确率反而下
- 9、论文阅读:无监督的感知驱动深水下图像增强
Maker~
图像增强论文阅读深度学习计算机视觉
Perception-DrivenDeepUnderwaterImageEnhancementWithoutPairedSupervision前言引言相关工作UIE模型基于非物理模型基于物理模型基于深度学习质量度量在图像增强中的应用方法论问题表述PQR模型PDD网络生成器损失函数实验A.数据集B.训练细节C.实验结果**PQR模型结果****定量UIE结果****定量UIE结果****可视化增强结
- 论文阅读笔记1——DARTS:Differentiable Architecture Search可微分架构搜索(一)(论文翻译学习)
fuhao7i
论文阅读笔记深度学习人工智能机器学习算法计算机视觉
DARTS:DifferentiableArchitectureSearch可微分架构搜索(一)DARTS:DifferentiableArchitectureSearch(一)ABSTRACT摘要1.INTRODUCTION介绍2.可微的结构搜索加油加油!如果你感觉你现在很累,那么恭喜你,你现在正在走上坡路!让我们一起加油!欢迎关注我的讲解视频,让我们一起学习:Bilibili主页:https:
- 从零开始Real-ESRGAN的复现
晒阳光的咸鱼
超分辨率重建python
前言要初步了解Real-ESRGAN,可以看我之前发布的博客。初学Real-Esrgan-CSDN博客本文主要是对Real-ESRGAN的一个复现,主要就是对环境的配置进行记录,因为是实现之后才做的记录,所以只能尽可能的对其进行复现。大家可以看一下这个博主的文章进行一个参考。【论文阅读+测试】Real-Esrgan超分辨率算法_realesrgan-CSDN博客项目开始首先,我们要知道Real-E
- Web of Science如何导出参考文献(EndNote)
泡泡Java
前端htmlWebofScienceEndNote论文管理引用格式学术资源
打开WebofScience网站,找到要下载的论文,选中,然后导出到EndNote导出后用EndNote打开下载的CIW文件,选中,然后用Word打开,如图所示,插入引文,样式处可点击下拉三角,选择需要的引文格式。
- 【CCM-SLAM论文阅读笔记】
随机取名字
协同SLAM论文阅读slam
CCM-SLAM论文阅读笔记整体框架结构如图所示:单智能体只负责采集图像数据,运行实时视觉里程计VO以估计当前位姿和环境地图,由于单智能体计算资源有限,负责生成的局部地图只包含当前N个最近的关键帧。服务器负责地图管理、地点识别、地图融合和全局BA优化。所有局部地图使用本地里程计框架,地图信息在从一个本地里程计到另一个本地里程计框架的相对坐标中进行交换。CCM-SLAM不假设任何关于智能体初始位置的
- A new method for forward-looking scanning radar imaging based on L1/2 regularization 论文阅读
yangqoor
论文阅读
Anewmethodforforward-lookingscanningradarimagingbasedonL1/2regularization论文阅读内容概述关键创新点1.论文的研究目标研究目标2.新方法的特点与优势传统方法局限L1/2L_{1/2}L1/2正则化的创新优势对比3.实验设计与结果分析实验设置关键结果数据支持可借鉴的创新点与学习建议核心创新点推荐学习路径内容概述该论文提出了一种基
- [论文阅读] SeeSR: Towards Semantics-Aware Real-World Image Super-Resolution
qianx77
论文阅读pytorch论文阅读人工智能计算机视觉
文章目录一、前言二、主要贡献三、Introduction四、Methodology4.1Motivation:4.2FrameworkOverview.**一、前言通信作者是香港理工大学&OPPO研究所的张磊教授,也是图像超分ISR的一个大牛了。论文如下SeeSR:TowardsSemantics-AwareReal-WorldImageSuper-Resolution[paper][code]二
- 【论文阅读】Revisiting the Assumption of Latent Separability for Backdoor Defenses
开心星人
论文阅读论文阅读
https://github.com/Unispac/Circumventing-Backdoor-Defenses摘要和介绍在各种后门毒化攻击中,来自目标类别的毒化样本和干净样本通常在潜在空间中形成两个分离的簇。这种潜在的分离性非常普遍,甚至在防御研究中成为了一种默认假设,我们称之为潜在分离性假设。基于这一假设设计的防御方法通过在潜在空间中进行聚类分析来识别毒化样本。具体来说,这些防御方法首先在
- [论文阅读] CLIP-based fusion-modal reconstructing hashing for large-scaleunsupervised cross-modal retri
2301_80732299
论文阅读
摘要随着多模态数据的激增,人们不再满足于单一的数据检索模式来获取信息。深度哈希检索算法以其存储效率高、查询速度快等优点受到广泛关注。目前,现有的无监督哈希方法普遍存在两方面的局限性:(1)现有方法不能充分捕获不同模态数据中潜在的语义相关性和共存信息,导致缺乏有效的特征和哈希编码表示来弥合多模态数据中的异构和语义差距。(2)现有的无监督方法通常构造相似矩阵来指导哈希码学习,存在不准确的相似度问题,导
- F-PointNet 论文阅读理解
咸鱼和白菜
目标检测f-pointnet点云目标检测
总述本文提出一种方法:使用成熟的2D的目标检测方法中cnn提供的regionproposal和3D的目标检测定位(也就是pointnet处理点云),将二者结合利用RGB-D映射和一个叫做锥体(Frustum)?形成一个3D的box参数进行输出。本文主要贡献就是在“一个叫做锥(Frustum)”的使用上结合2D的regionpropos和点云进行3D的分割和box的输出。为方便理解与书写,按照文中顺
- 【论文阅读笔记|EMNLP2023】DemoSG: Demonstration-enhanced Schema-guided Generation for Low-resource Event Ext
Rose sait
论文阅读笔记
论文题目:DemoSG:Demonstration-enhancedSchema-guidedGenerationforLow-resourceEventExtraction论文来源:EMNLP2023论文链接:2023.findings-emnlp.121.pdf(aclanthology.org)代码链接:https://github.com/GangZhao98/DemoSG0摘要当前大多数
- 深度学习论文阅读路线图
喜欢打酱油的老鸟
深度学习论文阅读路线图深度学习论文阅读路线图论文阅读路线图
https://www.toutiao.com/a6703859415763649031/作者:floodsun编译:ronghuaiyang这是作者一年前整理的东西,有些最新的论文没有包含进去,但是对于新手来说,入门足够了!如果你是深度学习领域的新人,你的第一个问题可能是“我该从哪些论文开始读起呢?”这就是深度学习论文的阅读路线图!这个路线图是根据下面几个规则构建的:从概要到细节从老的到最新的业
- 神经网络压缩实验-Deep-compression
无用技术研究所
首发于个人博客,结合论文阅读笔记更佳实验准备基础网络搭建为了实现神经网络的deepcompression,首先要训练一个深度神经网络,为了方便实现,这里实现一个两层卷积+两层MLP的神经网络classnet(pt.nn.Module):def__init__(self):super(net,self).__init__()self.conv1=pt.nn.Conv2d(in_channels=1,
- 关于旗正规则引擎中的MD5加密问题
何必如此
jspMD5规则加密
一般情况下,为了防止个人隐私的泄露,我们都会对用户登录密码进行加密,使数据库相应字段保存的是加密后的字符串,而非原始密码。
在旗正规则引擎中,通过外部调用,可以实现MD5的加密,具体步骤如下:
1.在对象库中选择外部调用,选择“com.flagleader.util.MD5”,在子选项中选择“com.flagleader.util.MD5.getMD5ofStr({arg1})”;
2.在规
- 【Spark101】Scala Promise/Future在Spark中的应用
bit1129
Promise
Promise和Future是Scala用于异步调用并实现结果汇集的并发原语,Scala的Future同JUC里面的Future接口含义相同,Promise理解起来就有些绕。等有时间了再仔细的研究下Promise和Future的语义以及应用场景,具体参见Scala在线文档:http://docs.scala-lang.org/sips/completed/futures-promises.html
- spark sql 访问hive数据的配置详解
daizj
spark sqlhivethriftserver
spark sql 能够通过thriftserver 访问hive数据,默认spark编译的版本是不支持访问hive,因为hive依赖比较多,因此打的包中不包含hive和thriftserver,因此需要自己下载源码进行编译,将hive,thriftserver打包进去才能够访问,详细配置步骤如下:
1、下载源码
2、下载Maven,并配置
此配置简单,就略过
- HTTP 协议通信
周凡杨
javahttpclienthttp通信
一:简介
HTTPCLIENT,通过JAVA基于HTTP协议进行点与点间的通信!
二: 代码举例
测试类:
import java
- java unix时间戳转换
g21121
java
把java时间戳转换成unix时间戳:
Timestamp appointTime=Timestamp.valueOf(new SimpleDateFormat("yyyy-MM-dd HH:mm:ss").format(new Date()))
SimpleDateFormat df = new SimpleDateFormat("yyyy-MM-dd hh:m
- web报表工具FineReport常用函数的用法总结(报表函数)
老A不折腾
web报表finereport总结
说明:本次总结中,凡是以tableName或viewName作为参数因子的。函数在调用的时候均按照先从私有数据源中查找,然后再从公有数据源中查找的顺序。
CLASS
CLASS(object):返回object对象的所属的类。
CNMONEY
CNMONEY(number,unit)返回人民币大写。
number:需要转换的数值型的数。
unit:单位,
- java jni调用c++ 代码 报错
墙头上一根草
javaC++jni
#
# A fatal error has been detected by the Java Runtime Environment:
#
# EXCEPTION_ACCESS_VIOLATION (0xc0000005) at pc=0x00000000777c3290, pid=5632, tid=6656
#
# JRE version: Java(TM) SE Ru
- Spring中事件处理de小技巧
aijuans
springSpring 教程Spring 实例Spring 入门Spring3
Spring 中提供一些Aware相关de接口,BeanFactoryAware、 ApplicationContextAware、ResourceLoaderAware、ServletContextAware等等,其中最常用到de匙ApplicationContextAware.实现ApplicationContextAwaredeBean,在Bean被初始后,将会被注入 Applicati
- linux shell ls脚本样例
annan211
linuxlinux ls源码linux 源码
#! /bin/sh -
#查找输入文件的路径
#在查找路径下寻找一个或多个原始文件或文件模式
# 查找路径由特定的环境变量所定义
#标准输出所产生的结果 通常是查找路径下找到的每个文件的第一个实体的完整路径
# 或是filename :not found 的标准错误输出。
#如果文件没有找到 则退出码为0
#否则 即为找不到的文件个数
#语法 pathfind [--
- List,Set,Map遍历方式 (收集的资源,值得看一下)
百合不是茶
listsetMap遍历方式
List特点:元素有放入顺序,元素可重复
Map特点:元素按键值对存储,无放入顺序
Set特点:元素无放入顺序,元素不可重复(注意:元素虽然无放入顺序,但是元素在set中的位置是有该元素的HashCode决定的,其位置其实是固定的)
List接口有三个实现类:LinkedList,ArrayList,Vector
LinkedList:底层基于链表实现,链表内存是散乱的,每一个元素存储本身
- 解决SimpleDateFormat的线程不安全问题的方法
bijian1013
javathread线程安全
在Java项目中,我们通常会自己写一个DateUtil类,处理日期和字符串的转换,如下所示:
public class DateUtil01 {
private SimpleDateFormat dateformat = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss");
public void format(Date d
- http请求测试实例(采用fastjson解析)
bijian1013
http测试
在实际开发中,我们经常会去做http请求的开发,下面则是如何请求的单元测试小实例,仅供参考。
import java.util.HashMap;
import java.util.Map;
import org.apache.commons.httpclient.HttpClient;
import
- 【RPC框架Hessian三】Hessian 异常处理
bit1129
hessian
RPC异常处理概述
RPC异常处理指是,当客户端调用远端的服务,如果服务执行过程中发生异常,这个异常能否序列到客户端?
如果服务在执行过程中可能发生异常,那么在服务接口的声明中,就该声明该接口可能抛出的异常。
在Hessian中,服务器端发生异常,可以将异常信息从服务器端序列化到客户端,因为Exception本身是实现了Serializable的
- 【日志分析】日志分析工具
bit1129
日志分析
1. 网站日志实时分析工具 GoAccess
http://www.vpsee.com/2014/02/a-real-time-web-log-analyzer-goaccess/
2. 通过日志监控并收集 Java 应用程序性能数据(Perf4J)
http://www.ibm.com/developerworks/cn/java/j-lo-logforperf/
3.log.io
和
- nginx优化加强战斗力及遇到的坑解决
ronin47
nginx 优化
先说遇到个坑,第一个是负载问题,这个问题与架构有关,由于我设计架构多了两层,结果导致会话负载只转向一个。解决这样的问题思路有两个:一是改变负载策略,二是更改架构设计。
由于采用动静分离部署,而nginx又设计了静态,结果客户端去读nginx静态,访问量上来,页面加载很慢。解决:二者留其一。最好是保留apache服务器。
来以下优化:
- java-50-输入两棵二叉树A和B,判断树B是不是A的子结构
bylijinnan
java
思路来自:
http://zhedahht.blog.163.com/blog/static/25411174201011445550396/
import ljn.help.*;
public class HasSubtree {
/**Q50.
* 输入两棵二叉树A和B,判断树B是不是A的子结构。
例如,下图中的两棵树A和B,由于A中有一部分子树的结构和B是一
- mongoDB 备份与恢复
开窍的石头
mongDB备份与恢复
Mongodb导出与导入
1: 导入/导出可以操作的是本地的mongodb服务器,也可以是远程的.
所以,都有如下通用选项:
-h host 主机
--port port 端口
-u username 用户名
-p passwd 密码
2: mongoexport 导出json格式的文件
- [网络与通讯]椭圆轨道计算的一些问题
comsci
网络
如果按照中国古代农历的历法,现在应该是某个季节的开始,但是由于农历历法是3000年前的天文观测数据,如果按照现在的天文学记录来进行修正的话,这个季节已经过去一段时间了。。。。。
也就是说,还要再等3000年。才有机会了,太阳系的行星的椭圆轨道受到外来天体的干扰,轨道次序发生了变
- 软件专利如何申请
cuiyadll
软件专利申请
软件技术可以申请软件著作权以保护软件源代码,也可以申请发明专利以保护软件流程中的步骤执行方式。专利保护的是软件解决问题的思想,而软件著作权保护的是软件代码(即软件思想的表达形式)。例如,离线传送文件,那发明专利保护是如何实现离线传送文件。基于相同的软件思想,但实现离线传送的程序代码有千千万万种,每种代码都可以享有各自的软件著作权。申请一个软件发明专利的代理费大概需要5000-8000申请发明专利可
- Android学习笔记
darrenzhu
android
1.启动一个AVD
2.命令行运行adb shell可连接到AVD,这也就是命令行客户端
3.如何启动一个程序
am start -n package name/.activityName
am start -n com.example.helloworld/.MainActivity
启动Android设置工具的命令如下所示:
# am start -
- apache虚拟机配置,本地多域名访问本地网站
dcj3sjt126com
apache
现在假定你有两个目录,一个存在于 /htdocs/a,另一个存在于 /htdocs/b 。
现在你想要在本地测试的时候访问 www.freeman.com 对应的目录是 /xampp/htdocs/freeman ,访问 www.duchengjiu.com 对应的目录是 /htdocs/duchengjiu。
1、首先修改C盘WINDOWS\system32\drivers\etc目录下的
- yii2 restful web服务[速率限制]
dcj3sjt126com
PHPyii2
速率限制
为防止滥用,你应该考虑增加速率限制到您的API。 例如,您可以限制每个用户的API的使用是在10分钟内最多100次的API调用。 如果一个用户同一个时间段内太多的请求被接收, 将返回响应状态代码 429 (这意味着过多的请求)。
要启用速率限制, [[yii\web\User::identityClass|user identity class]] 应该实现 [[yii\filter
- Hadoop2.5.2安装——单机模式
eksliang
hadoophadoop单机部署
转载请出自出处:http://eksliang.iteye.com/blog/2185414 一、概述
Hadoop有三种模式 单机模式、伪分布模式和完全分布模式,这里先简单介绍单机模式 ,默认情况下,Hadoop被配置成一个非分布式模式,独立运行JAVA进程,适合开始做调试工作。
二、下载地址
Hadoop 网址http:
- LoadMoreListView+SwipeRefreshLayout(分页下拉)基本结构
gundumw100
android
一切为了快速迭代
import java.util.ArrayList;
import org.json.JSONObject;
import android.animation.ObjectAnimator;
import android.os.Bundle;
import android.support.v4.widget.SwipeRefreshLayo
- 三道简单的前端HTML/CSS题目
ini
htmlWeb前端css题目
使用CSS为多个网页进行相同风格的布局和外观设置时,为了方便对这些网页进行修改,最好使用( )。http://hovertree.com/shortanswer/bjae/7bd72acca3206862.htm
在HTML中加入<table style=”color:red; font-size:10pt”>,此为( )。http://hovertree.com/s
- overrided方法编译错误
kane_xie
override
问题描述:
在实现类中的某一或某几个Override方法发生编译错误如下:
Name clash: The method put(String) of type XXXServiceImpl has the same erasure as put(String) of type XXXService but does not override it
当去掉@Over
- Java中使用代理IP获取网址内容(防IP被封,做数据爬虫)
mcj8089
免费代理IP代理IP数据爬虫JAVA设置代理IP爬虫封IP
推荐两个代理IP网站:
1. 全网代理IP:http://proxy.goubanjia.com/
2. 敲代码免费IP:http://ip.qiaodm.com/
Java语言有两种方式使用代理IP访问网址并获取内容,
方式一,设置System系统属性
// 设置代理IP
System.getProper
- Nodejs Express 报错之 listen EADDRINUSE
qiaolevip
每天进步一点点学习永无止境nodejs纵观千象
当你启动 nodejs服务报错:
>node app
Express server listening on port 80
events.js:85
throw er; // Unhandled 'error' event
^
Error: listen EADDRINUSE
at exports._errnoException (
- C++中三种new的用法
_荆棘鸟_
C++new
转载自:http://news.ccidnet.com/art/32855/20100713/2114025_1.html
作者: mt
其一是new operator,也叫new表达式;其二是operator new,也叫new操作符。这两个英文名称起的也太绝了,很容易搞混,那就记中文名称吧。new表达式比较常见,也最常用,例如:
string* ps = new string("
- Ruby深入研究笔记1
wudixiaotie
Ruby
module是可以定义private方法的
module MTest
def aaa
puts "aaa"
private_method
end
private
def private_method
puts "this is private_method"
end
end