- LLM论文笔记 20: How to think step-by-step: A mechanistic understanding of chain-of-thought reasoning
Zhouqi_Hua
大模型论文阅读人工智能chatgpt论文阅读机器学习深度学习语言模型
Arxiv日期:2024.5.16机构:IIT关键词CoT本质LLM推理本质核心结论1.CoT推理的功能组件尽管不同阶段的推理任务具有不同的推理需求,模型内部的功能组件几乎是相同的(共享而非独享)不同的神经算法实际上是由类似归纳头(inductionheads)等机制组合而成2.注意力机制中的信息流动attentionheads在不同的模型层之间传递信息,特别是当它们涉及到本体论相关(ontolo
- Neurlps2024论文解析|Understanding Representation of Deep Equilibrium Models from Neural Collapse
SJ_HP
论文合集深度均衡模型神经坍缩隐式神经网络不平衡数据集特征收敛自对偶性质
论文标题UnderstandingRepresentationofDeepEquilibriumModelsfromNeuralCollapsePerspective从神经坍缩视角理解深度均衡模型的表示论文链接UnderstandingRepresentationofDeepEquilibriumModelsfromNeuralCollapsePerspective论文下载论文作者Haixiang
- 使用Nuclia Understanding API 处理和索引非结构化数据
dgay_hua
python
技术背景介绍在当今信息化社会中,非结构化数据如视频、音频、图像和文档在企业中占据了大量的数据存储资源。处理这些数据以提取有效信息并进行快速检索已经成为一项重要任务。NucliaUnderstanding是一个强大的工具,可自动索引这些非结构化数据,提供优化的搜索结果和生成式答案。NucliaUnderstandingAPI支持处理各种非结构化数据,包括文本、网页、文档和音视频内容。它能够提取文本(
- Beyond Scaling Laws: Understanding Transformer Performance with Associative Memory
UnknownBody
LLMDailytransformer深度学习人工智能语言模型
本文是LLM系列文章,针对《BeyondScalingLaws:UnderstandingTransformerPerformancewithAssociativeMemory》的翻译。超越缩放定律:用联想记忆理解Transformer性能摘要1引言2相关工作3模型4新的能量函数5交叉熵损失6实验结果7结论摘要增大Transformer模型的大小并不总是能够提高性能。这种现象不能用经验缩放定律来解
- UNDERSTANDING HTK ERROR MESSAGES
jingtianzi
Variousproblems&solutionsI'vecomeacrossinusingHTKforbuildingaWSJrecognizerandformydissertationworkinLanguageModeling.Ifyou'reheretofindanswersforyourownproject,considerpostingyourproblems&solutionsony
- React Props: Understanding and Utilizing Props in React Applications
froginwe11
开发语言
ReactProps:UnderstandingandUtilizingPropsinReactApplicationsIntroductionIntheworldofReact,propsplayacrucialroleincomponentcommunication.Shortfor"properties,"propsareessentiallyargumentspassedintoReact
- [论文精读]Understanding Diffusion Models: A Unified Perspective
0x211
论文精读数学建模
发布链接:http://arxiv.org/abs/2208.11970文章详细讨论了扩散模型(DiffusionModels)作为一种生成模型的工作原理,并从多个角度解释其背后的数学机制。阅读原因:实验需要理解SD的数学建模过程数学层面更好的解释:diffusionmodel(一):DDPM技术小结(denoisingdiffusionprobabilistic)|莫叶何竹1.扩散模型简介扩散模
- 论文-A Stack-Propagation Framework with Token-Level Intent Detection for Spoken Language Understanding
魏鹏飞
1.简称论文《AStack-PropagationFrameworkwithToken-LevelIntentDetectionforSpokenLanguageUnderstanding》,作者LiboQin(HarbinInstituteofTechnology,China),经典的NLU论文(SemanticFrame)。2.摘要意图检测和槽位填充是构建口语理解(SLU)系统的两个主要任务。
- babel系列科普文
赖次Go
《Babel插件开发入门指南》https://www.chyingp.com/posts/how-to-write-a-babel-plugin/《babel-preset-env学习指南》https://www.chyingp.com/posts/understanding-babel-preset-env/《Babel:plugin、preset的区别与使用》https://www.chyin
- YOLOv8中的C2f模块代码详解
王了了哇
YOLO计算机视觉
C2f模块代码详解1.C2f模块组成2.C2f模块作用3.具体流程4.代码实现5.关键组件和参数说明6.运行流程7.输入输出示例 在YOLOv8网络结构中,C2F模块(CSPBottleneckwith2Convolutions)是一个关键组件,用于实现跨阶段部分聚合(CrossStagePartialFusion)。 YOLOv8整体网络结构图: 其中C2f的模块结构如下图所示: Bot
- DOM CSS: Understanding the Intersection of HTML and Style
lly202406
开发语言
DOMCSS:UnderstandingtheIntersectionofHTMLandStyleIntroductionTheDocumentObjectModel(DOM)andCascadingStyleSheets(CSS)aretwofundamentalcomponentsofwebdevelopment.DOMprovidesastructuredrepresentationofHT
- UNDERSTANDING HTML WITH LARGE LANGUAGE MODELS
liferecords
LLM语言模型人工智能自然语言处理
UNDERSTANDINGHTMLWITHLARGELANGUAGEMODELS相关链接:arXiv关键字:大型语言模型、HTML理解、Web自动化、自然语言处理、机器学习摘要大型语言模型(LLMs)在各种自然语言任务上表现出色。然而,它们在HTML理解方面的能力——即解析网页的原始HTML,对于自动化基于Web的任务、爬取和浏览器辅助检索等应用——尚未被充分探索。我们为HTML理解模型(经过微调
- 编码、理解和实现LLM中的自注意力、多头注意力、交叉注意力和因果注意力
lichunericli
Transformer人工智能语言模型transformer
原文链接:understanding-and-coding-self-attention2024年1月14日自注意力是LLM的一大核心组件。对大模型及相关应用开发者来说,理解自注意力非常重要。近日,AheadofAI杂志运营者、机器学习和AI研究者SebastianRaschka发布了一篇文章,介绍并用代码从头实现了LLM中的自注意力、多头注意力、交叉注意力和因果注意力。这篇文章将介绍Transf
- 论文学习1----理解深度学习需要重新思考泛化Understanding deep learning requires rethinking generalization
夏洛的网
机器学习深度学习论文深度学习神经网络
——论文地址:Understandingdeeplearningrequiresrethinkinggeneralization1、有关新闻1.1新闻一:参考1:机器之心尽管深度人工神经网络规模庞大,但它们的训练表现和测试表现之间可以表现出非常小的差异。传统的思考是将小的泛化误差要么归结为模型族的特性,要么就认为与训练过程中的正则化技术有关。通过广泛的系统性实验,我们表明这些传统的方法并不能解释大
- 欧拉角与四元数
乐墩
利用二元数(复数)表示一维平面的旋转;利用四元数表示三维平面的旋转。UnderstandingQuaternions中文翻译《理解四元数》https://www.qiujiawei.com/understanding-quaternions/利用欧拉角(x,y,z),表示一个点绕自身坐标旋转x,y,z度。万向节死锁(GimbalLock)http://www.ceeger.com/Unity/Do
- rts单位移动知识
一头愚蠢的驴
转向力的理解:https://blog.csdn.net/i_dovelemon/article/details/36380409?winzoom=1ROV2库:http://gamma.cs.unc.edu/RVO2/矢量场寻路:https://gamedevelopment.tutsplus.com/tutorials/understanding-goal-based-vector-field
- Advances in Deep Concealed Scene Understanding (伪装场景理解综述解读)
交换喜悲
伪装目标检测模型深度学习目标检测计算机视觉人工智能机器学习cnn
论文地址:https://link.springer.com/article/10.1007/s44267-023-00019-6摘要伪装场景理解是一个热门的计算机视觉课题,旨在感知展示伪装的物体,当前技术和应用的繁荣需要最新的研究调查,这可以帮助研究人员更好的了解全球CSU领域,包括当前的成就和剩余的挑战。本文提出了四个贡献:(1)首次全面介绍了面向CSU的深度学习技术的调查,包括分类法、任务特
- Understanding TCP Congestion Control
nicename56
tcp/ip网络服务器
Exercise1:UnderstandingTCPCongestionControlusingns-2WehavestudiedtheTCPcongestioncontrolalgorithmindetailinthelecture(andSection3.6ofthetext).Youmaywishtoreviewthisbeforecontinuingwiththisexercise.Rec
- 论文笔记--Improving Language Understanding by Generative Pre-Training
Isawany
论文阅读论文阅读自然语言处理chatgpt语言模型nlp
论文笔记GPT1--ImprovingLanguageUnderstandingbyGenerativePre-Training1.文章简介2.文章导读2.1概括2.2文章重点技术2.2.1无监督预训练2.2.2有监督微调2.2.3不同微调任务的输入3.Bert&GPT4.文章亮点5.原文传送门6.References1.文章简介标题:ImprovingLanguageUnderstandingb
- Improving Language Understanding by Generative Pre-Training 论文阅读
老熊软糖
论文阅读人工智能机器学习
论文题目:通过生成式预训练提高语言理解能力GPT的全称:GenerativePre-trainedTransformer。Generative是指GPT可以利用先前的输入文本来生成新的文本。GPT的生成过程是基于统计的,它可以预测输入序列的下一个单词或字符,从而生成新的文本。【参考自春日充电季——ChatGPT的GPT是什么意思】机翻:自然语言理解包括一系列不同的任务,如文本蕴含、问题回答、语义相
- Improving Language Understanding by Generative Pre-Training
liangdengne_123
深度学习自然语言处理机器学习
今天阅读的是OpenAI2018年的论文《ImprovingLanguageUnderstandingbyGenerativePre-Training》,截止目前共有600多引用。在这篇论文中,作者提出了一种半监督学习方法——GenerativePre-Training(以下简称GPT),GPT采用无监督学习的Pre-training充分利用大量未标注的文本数据,利用监督学习的Fine-tunin
- 经典论文介绍:GPT的由来,Improving Language Understanding by Generative Pre-Training
才能我浪费
AI应用gpt深度学习机器学习
《ImprovingLanguageUnderstandingbyGenerativePre-Training》是谷歌AI研究团队在2018年提出的一篇论文,作者提出了一种新的基于生成式预训练的自然语言处理方法(GenerativePre-trainingTransformer,GPT),在多项下游任务中均取得了优秀的效果。论文地址:https://s3-us-west-2.amazonaws.c
- GPT原始论文:Improving Language Understanding by Generative Pre-Training论文翻译
iKang_dlut
gpt人工智能深度学习
1摘要自然语理解包括文本蕴含、问题回答、语义相似性评估和文档分类等一系列多样化的任务。尽管大量未标注的文本语料库很丰富,但用于学习这些特定任务的标注数据却很稀缺,这使得基于区分性训练的模型难以充分发挥作用。我们展示了通过在多样化的未标注文本语料库上对语言模型进行生成式预训练,随后对每个特定任务进行区分性微调,可以实现这些任务的大幅度改进。与以往的方法不同,我们在微调过程中使用了任务感知的输入转换,
- Re-understanding of data storytelling tools from a narrative perspective
青筑
storytelling
作者:任芃锟,王轶&赵凡发表:VisualIntelligence,新刊,实行单盲同行评议制度。由施普林格以开放获取(OpenAccess)模式出版。获2022“中国科技期刊卓越行动计划高起点新刊”项目资助,目前出版不收取文章处理费总述:本文是一篇综述类论文,工作为:①对近10年来的数据叙事文献进行整理,②从叙事的角度提出了一种全新的创作工具(authoringtools)分类方案。本篇博文略读文
- Photorealistic Text-to-Image Diffusion Modelswith Deep Language Understanding
umbrellazg
人工智能
1TitlePhotorealisticText-to-ImageDiffusionModelswithDeepLanguageUnderstanding(ChitwanSaharia,WilliamChan,SaurabhSaxenay,LalaLiy,JayWhangy,EmilyDenton,SeyedKamyarSeyedGhasemipour,BurcuKaragolAyan,S.Sar
- Debezium发布历史103
大大蚊子
debeziumCDCFlinkCDC数据库运维大数据
原文地址:https://debezium.io/blog/2021/03/18/understanding-non-key-joins-with-quarkus-extension-for-kafka-streams/欢迎关注留言,我是收集整理小能手,工具翻译,仅供参考,笔芯笔芯.了解KafkaStreams的Quarkus扩展的非键连接三月18,2021作者:AnishaMohantykafk
- 【读点论文】A Survey of Deep Learning Approaches for OCR and Document Understanding
羞儿
论文笔记深度学习ocr人工智能
ASurveyofDeepLearningApproachesforOCRandDocumentUnderstandingAbstract文档是许多领域(如法律、金融和技术等)中许多业务的核心部分。自动理解发票、合同和简历等文件是有利可图的,开辟了许多新的商业途径。通过深度学习的发展,自然语言处理和计算机视觉领域已经取得了巨大的进步,这些方法已经开始融入当代文档理解系统。在这篇调查论文中,我们回顾
- 机器学习系列4-特征工程
喜乐00
机器学习人工智能
机器学习系列4-特征工程学习内容来自:谷歌ai学习https://developers.google.cn/machine-learning/crash-course/framing/check-your-understanding?hl=zh-cn本文作为学习记录自己归纳整理的思维导图这里写目录标题机器学习系列4-特征工程一级目录二级目录三级目录1.数据集划分1.1将数据集划分为训练集和测试集1
- 机器学习-3降低损失(Reducing Loss)
喜乐00
机器学习人工智能
机器学习-3降低损失(ReducingLoss)学习内容来自:谷歌ai学习https://developers.google.cn/machine-learning/crash-course/framing/check-your-understanding?hl=zh-cn本文作为学习记录1.降低损失:迭代方法迭代学习下图展示了机器学习算法用于训练模型的迭代试错过程:迭代策略在机器学习中很常见,主
- 机器学习系列-1基础概念
喜乐00
机器学习人工智能
机器学习系列-1基础概念学习内容来自:谷歌ai学习https://developers.google.cn/machine-learning/crash-course/framing/check-your-understanding?hl=zh-cn本文作为学习记录1.什么是(监督式)机器学习?机器学习系统学习如何组合输入以对从未见过的数据生成有用的预测。2.机器学习的基本术语。2.1标签标签是指
- [黑洞与暗粒子]没有光的世界
comsci
无论是相对论还是其它现代物理学,都显然有个缺陷,那就是必须有光才能够计算
但是,我相信,在我们的世界和宇宙平面中,肯定存在没有光的世界....
那么,在没有光的世界,光子和其它粒子的规律无法被应用和考察,那么以光速为核心的
&nbs
- jQuery Lazy Load 图片延迟加载
aijuans
jquery
基于 jQuery 的图片延迟加载插件,在用户滚动页面到图片之后才进行加载。
对于有较多的图片的网页,使用图片延迟加载,能有效的提高页面加载速度。
版本:
jQuery v1.4.4+
jQuery Lazy Load v1.7.2
注意事项:
需要真正实现图片延迟加载,必须将真实图片地址写在 data-original 属性中。若 src
- 使用Jodd的优点
Kai_Ge
jodd
1. 简化和统一 controller ,抛弃 extends SimpleFormController ,统一使用 implements Controller 的方式。
2. 简化 JSP 页面的 bind, 不需要一个字段一个字段的绑定。
3. 对 bean 没有任何要求,可以使用任意的 bean 做为 formBean。
使用方法简介
- jpa Query转hibernate Query
120153216
Hibernate
public List<Map> getMapList(String hql,
Map map) {
org.hibernate.Query jpaQuery = entityManager.createQuery(hql);
if (null != map) {
for (String parameter : map.keySet()) {
jp
- Django_Python3添加MySQL/MariaDB支持
2002wmj
mariaDB
现状
首先,
[email protected] 中默认的引擎为 django.db.backends.mysql 。但是在Python3中如果这样写的话,会发现 django.db.backends.mysql 依赖 MySQLdb[5] ,而 MySQLdb 又不兼容 Python3 于是要找一种新的方式来继续使用MySQL。 MySQL官方的方案
首先据MySQL文档[3]说,自从MySQL
- 在SQLSERVER中查找消耗IO最多的SQL
357029540
SQL Server
返回做IO数目最多的50条语句以及它们的执行计划。
select top 50
(total_logical_reads/execution_count) as avg_logical_reads,
(total_logical_writes/execution_count) as avg_logical_writes,
(tot
- spring UnChecked 异常 官方定义!
7454103
spring
如果你接触过spring的 事物管理!那么你必须明白 spring的 非捕获异常! 即 unchecked 异常! 因为 spring 默认这类异常事物自动回滚!!
public static boolean isCheckedException(Throwable ex)
{
return !(ex instanceof RuntimeExcep
- mongoDB 入门指南、示例
adminjun
javamongodb操作
一、准备工作
1、 下载mongoDB
下载地址:http://www.mongodb.org/downloads
选择合适你的版本
相关文档:http://www.mongodb.org/display/DOCS/Tutorial
2、 安装mongoDB
A、 不解压模式:
将下载下来的mongoDB-xxx.zip打开,找到bin目录,运行mongod.exe就可以启动服务,默
- CUDA 5 Release Candidate Now Available
aijuans
CUDA
The CUDA 5 Release Candidate is now available at http://developer.nvidia.com/<wbr></wbr>cuda/cuda-pre-production. Now applicable to a broader set of algorithms, CUDA 5 has advanced fe
- Essential Studio for WinRT网格控件测评
Axiba
JavaScripthtml5
Essential Studio for WinRT界面控件包含了商业平板应用程序开发中所需的所有控件,如市场上运行速度最快的grid 和chart、地图、RDL报表查看器、丰富的文本查看器及图表等等。同时,该控件还包含了一组独特的库,用于从WinRT应用程序中生成Excel、Word以及PDF格式的文件。此文将对其另外一个强大的控件——网格控件进行专门的测评详述。
网格控件功能
1、
- java 获取windows系统安装的证书或证书链
bewithme
windows
有时需要获取windows系统安装的证书或证书链,比如说你要通过证书来创建java的密钥库 。
有关证书链的解释可以查看此处 。
public static void main(String[] args) {
SunMSCAPI providerMSCAPI = new SunMSCAPI();
S
- NoSQL数据库之Redis数据库管理(set类型和zset类型)
bijian1013
redis数据库NoSQL
4.sets类型
Set是集合,它是string类型的无序集合。set是通过hash table实现的,添加、删除和查找的复杂度都是O(1)。对集合我们可以取并集、交集、差集。通过这些操作我们可以实现sns中的好友推荐和blog的tag功能。
sadd:向名称为key的set中添加元
- 异常捕获何时用Exception,何时用Throwable
bingyingao
用Exception的情况
try {
//可能发生空指针、数组溢出等异常
} catch (Exception e) {
 
- 【Kafka四】Kakfa伪分布式安装
bit1129
kafka
在http://bit1129.iteye.com/blog/2174791一文中,实现了单Kafka服务器的安装,在Kafka中,每个Kafka服务器称为一个broker。本文简单介绍下,在单机环境下Kafka的伪分布式安装和测试验证 1. 安装步骤
Kafka伪分布式安装的思路跟Zookeeper的伪分布式安装思路完全一样,不过比Zookeeper稍微简单些(不
- Project Euler
bookjovi
haskell
Project Euler是个数学问题求解网站,网站设计的很有意思,有很多problem,在未提交正确答案前不能查看problem的overview,也不能查看关于problem的discussion thread,只能看到现在problem已经被多少人解决了,人数越多往往代表问题越容易。
看看problem 1吧:
Add all the natural num
- Java-Collections Framework学习与总结-ArrayDeque
BrokenDreams
Collections
表、栈和队列是三种基本的数据结构,前面总结的ArrayList和LinkedList可以作为任意一种数据结构来使用,当然由于实现方式的不同,操作的效率也会不同。
这篇要看一下java.util.ArrayDeque。从命名上看
- 读《研磨设计模式》-代码笔记-装饰模式-Decorator
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.io.BufferedOutputStream;
import java.io.DataOutputStream;
import java.io.FileOutputStream;
import java.io.Fi
- Maven学习(一)
chenyu19891124
Maven私服
学习一门技术和工具总得花费一段时间,5月底6月初自己学习了一些工具,maven+Hudson+nexus的搭建,对于maven以前只是听说,顺便再自己的电脑上搭建了一个maven环境,但是完全不了解maven这一强大的构建工具,还有ant也是一个构建工具,但ant就没有maven那么的简单方便,其实简单点说maven是一个运用命令行就能完成构建,测试,打包,发布一系列功
- [原创]JWFD工作流引擎设计----节点匹配搜索算法(用于初步解决条件异步汇聚问题) 补充
comsci
算法工作PHP搜索引擎嵌入式
本文主要介绍在JWFD工作流引擎设计中遇到的一个实际问题的解决方案,请参考我的博文"带条件选择的并行汇聚路由问题"中图例A2描述的情况(http://comsci.iteye.com/blog/339756),我现在把我对图例A2的一个解决方案公布出来,请大家多指点
节点匹配搜索算法(用于解决标准对称流程图条件汇聚点运行控制参数的算法)
需要解决的问题:已知分支
- Linux中用shell获取昨天、明天或多天前的日期
daizj
linuxshell上几年昨天获取上几个月
在Linux中可以通过date命令获取昨天、明天、上个月、下个月、上一年和下一年
# 获取昨天
date -d 'yesterday' # 或 date -d 'last day'
# 获取明天
date -d 'tomorrow' # 或 date -d 'next day'
# 获取上个月
date -d 'last month'
#
- 我所理解的云计算
dongwei_6688
云计算
在刚开始接触到一个概念时,人们往往都会去探寻这个概念的含义,以达到对其有一个感性的认知,在Wikipedia上关于“云计算”是这么定义的,它说:
Cloud computing is a phrase used to describe a variety of computing co
- YII CMenu配置
dcj3sjt126com
yii
Adding id and class names to CMenu
We use the id and htmlOptions to accomplish this. Watch.
//in your view
$this->widget('zii.widgets.CMenu', array(
'id'=>'myMenu',
'items'=>$this-&g
- 设计模式之静态代理与动态代理
come_for_dream
设计模式
静态代理与动态代理
代理模式是java开发中用到的相对比较多的设计模式,其中的思想就是主业务和相关业务分离。所谓的代理设计就是指由一个代理主题来操作真实主题,真实主题执行具体的业务操作,而代理主题负责其他相关业务的处理。比如我们在进行删除操作的时候需要检验一下用户是否登陆,我们可以删除看成主业务,而把检验用户是否登陆看成其相关业务
- 【转】理解Javascript 系列
gcc2ge
JavaScript
理解Javascript_13_执行模型详解
摘要: 在《理解Javascript_12_执行模型浅析》一文中,我们初步的了解了执行上下文与作用域的概念,那么这一篇将深入分析执行上下文的构建过程,了解执行上下文、函数对象、作用域三者之间的关系。函数执行环境简单的代码:当调用say方法时,第一步是创建其执行环境,在创建执行环境的过程中,会按照定义的先后顺序完成一系列操作:1.首先会创建一个
- Subsets II
hcx2013
set
Given a collection of integers that might contain duplicates, nums, return all possible subsets.
Note:
Elements in a subset must be in non-descending order.
The solution set must not conta
- Spring4.1新特性——Spring缓存框架增强
jinnianshilongnian
spring4
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- shell嵌套expect执行命令
liyonghui160com
一直都想把expect的操作写到bash脚本里,这样就不用我再写两个脚本来执行了,搞了一下午终于有点小成就,给大家看看吧.
系统:centos 5.x
1.先安装expect
yum -y install expect
2.脚本内容:
cat auto_svn.sh
#!/bin/bash
- Linux实用命令整理
pda158
linux
0. 基本命令 linux 基本命令整理
1. 压缩 解压 tar -zcvf a.tar.gz a #把a压缩成a.tar.gz tar -zxvf a.tar.gz #把a.tar.gz解压成a
2. vim小结 2.1 vim替换 :m,ns/word_1/word_2/gc  
- 独立开发人员通向成功的29个小贴士
shoothao
独立开发
概述:本文收集了关于独立开发人员通向成功需要注意的一些东西,对于具体的每个贴士的注解有兴趣的朋友可以查看下面标注的原文地址。
明白你从事独立开发的原因和目的。
保持坚持制定计划的好习惯。
万事开头难,第一份订单是关键。
培养多元化业务技能。
提供卓越的服务和品质。
谨小慎微。
营销是必备技能。
学会组织,有条理的工作才是最有效率的。
“独立
- JAVA中堆栈和内存分配原理
uule
java
1、栈、堆
1.寄存器:最快的存储区, 由编译器根据需求进行分配,我们在程序中无法控制.2. 栈:存放基本类型的变量数据和对象的引用,但对象本身不存放在栈中,而是存放在堆(new 出来的对象)或者常量池中(字符串常量对象存放在常量池中。)3. 堆:存放所有new出来的对象。4. 静态域:存放静态成员(static定义的)5. 常量池:存放字符串常量和基本类型常量(public static f