- 三点or多点的变换矩阵求解opencv & eigen
合工大机器人实验室
C++矩阵opencv线性代数
《Estimating3-DRigidBodyTransformations:AComparisonofFourMajorAlgorithms》,它使用SVD方法计算T和t。只要算出变换矩阵,就可以算出A坐标系的一个点P在坐标系B里的对应点坐标,即R为3x3的转换矩阵,t为3x1的位移变换向量,这里点坐标均为3x1的列向量(非齐次形式,齐次形式下为4x1列向量,多出的一个元素值补1而已)。理论上只
- 【机器学习】必会降维算法之:奇异值分解(SVD)
Carl_奕然
机器学习算法人工智能
奇异值分解(SVD)1、引言2、奇异值分解(SVD)2.1定义2.2应用场景2.3核心原理2.4算法公式2.5代码示例3、总结1、引言一转眼,小屌丝:鱼哥,就要到每年最开心的节日了:六一儿童节。小鱼:你有啥想法?小屌丝:想法没有,玩的地方倒是想小鱼:拉倒吧,我可不去小屌丝:确定?小鱼:看情况。小屌丝:嘿嘿,难得过节日,我们也得放松一下小鱼:正有此意。2、奇异值分解(SVD)2.1定义奇异值分解(S
- 使用SVD将图像压缩四分之一(MATLAB)
superdont
matlab开发语言
SVD压缩前后数据量减少的原因在于,通过奇异值分解(SVD),我们将原始数据(如图像)转换成了一种更加紧凑的表示形式。这种转换依赖于数据内部的结构和相关性,以及数据中信息的不均匀分布。让我们简单分析一下这个过程为何能减少所需的数据量:数据的结构和相关性高度相关的数据:图像数据往往包含大量的空间相关性,即图像中相邻的像素点在颜色和亮度上通常非常接近。这种高度的相关性意味着原始图像可以通过更少的信息来
- 【图像压缩】奇异值分解SVD灰色图像压缩(可设置压缩比)【含Matlab源码 4358期】
Matlab武动乾坤
Matlab图像处理(进阶版)matlab
✅博主简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,Matlab项目合作可私信。个人主页:海神之光代码获取方式:海神之光Matlab王者学习之路—代码获取方式⛳️座右铭:行百里者,半于九十。更多Matlab仿真内容点击Matlab图像处理(进阶版)路径规划(Matlab)神经网络预测与分类(Matlab)优化求解(Matlab)语音处理(Matlab)信号处理(Matlab)车间调度
- 线性代数基础
wq_151
mathematic线性代数
Base对于矩阵A,对齐做SVD分解,即UΣV=svd(A)U\SigmaV=svd(A)UΣV=svd(A).其中U为AATAA^TAAT的特征向量,V为ATAA^TAATA的特征向量。Σ\SigmaΣ的对角元素为降序排序的特征值。显然,U、V矩阵中的列向量相互正交,所以也可以视V为svd分解给出了A的列向量空间的正交基,其中最大奇异值(或特征值)对应的特征向量捕捉了数据变化的最大方向。求满足A
- 计算机毕业设计hadoop+spark知识图谱房源推荐系统 房价预测系统 房源数据分析 房源可视化 房源大数据大屏 大数据毕业设计 机器学习
计算机毕业设计大全
创新点:1.支付宝沙箱支付2.支付邮箱通知(JavaMail)3.短信验证码修改密码4.知识图谱5.四种推荐算法(协同过滤基于用户、物品、SVD混合神经网络、MLP深度学习模型)6.线性回归算法预测房价7.Python爬虫采集链家数据8.AI短信识别9.百度地图API10.lstm情感分析11.spark大屏可视化开发技术:springbootvue.jspythonechartssparkmys
- 【Python机器学习】NLP词频背后的含义——隐性语义分析
zhangbin_237
Python机器学习python机器学习自然语言处理人工智能开发语言
隐性语义分析基于最古老和最常用的降维技术——奇异值分解(SVD)。SVD将一个矩阵分解成3个方阵,其中一个是对角矩阵。SVD的一个应用是求逆矩阵。一个矩阵可以分解成3个最简单的方阵,然后对这些方阵求转置后再把它们相乘,就得到了原始矩阵的逆矩阵。它为我们提供了一个对大型复杂矩阵求逆的捷径。SVD适用于桁架结构的应力和应变分析等机械工程问题,它对电气工程中的电路分析也很有用,它甚至在数据科学中被用于基
- 深度学习100问7-向量降维的算法有那些
不断持续学习ing
深度学习机器学习人工智能
一、主成分分析(PCA)PCA就像你整理一堆考试成绩单。假如成绩单上有好多科目成绩,这就像一个高维向量。但有些科目成绩关系很紧密,比如数学好的同学一般物理也不错,化学也还行。那PCA就会找这些成绩单里最主要的特点,把关系近的科目合成几个新的“大科目”。这样就把原来很多科目的高维向量变成几个“大科目”的低维向量啦。二、奇异值分解(SVD)SVD呢,就好比你有一本很厚的书。书的每一页上的字可以看成一个
- 主成分分析(PCA)附Python实现
不染53
数学建模数学建模python算法
主成分分析矩阵分解特征值和特征向量特征值分解奇异值分解主成分分析(PCA)Python实现主成分分析方法(PrincipalComponentAnalysis,PCA)是一种常用的数据分析方法。PCA通过线性变换将原始数据变换为一组各维度线性无关的表示,将多个变量压缩为少数几个综合指标(称为主成分),是一种使用最广泛的数据降维算法。此外,由于主成分分析独特的性质,压缩之后的主成分之间线性无关,因此
- 计算机毕业设计Hadoop+Spark知识图谱体育赛事推荐系统 体育赛事热度预测系统 体育赛事数据分析 体育赛事可视化 体育赛事大数据 机器学习 大数据毕业设计 大数据毕设 机器学习 人工智能
计算机毕业设计大全
开发技术前端:vue.js、element-ui、echarts后端:springboot、mybatis大数据:spark、hadoop数据库:mysql关系型数据库、neo4j图数据库算法:协同过滤推荐算法、MLP深度学习模型、SVD神经网络混合推荐算法、lstm模型、KNN、CNN、Sklearn、K-Means第三方平台:百度AI、阿里云短信、支付宝沙箱支付爬虫:Pythonchrome-
- 计算机毕业设计hadoop+spark知识图谱美食推荐系统 美食价格预测 美团推荐系统 美团爬虫 大众点评爬虫 美食数据分析 美食可视化大屏 大数据毕设
计算机毕业设计大全
创新点:1.支付宝沙箱支付2.支付邮箱通知(JavaMail)3.短信验证码修改密码4.知识图谱5.四种推荐算法(协同过滤基于用户、物品、SVD混合神经网络、MLP深度学习模型)6.线性回归算法预测房价7.Python爬虫采集大众点评美食数据8.AI短信识别9.百度地图API10.lstm情感分析11.spark大屏可视化开发技术:springbootvue.jspythonechartsspar
- 计算机毕业设计hadoop+spark知识图谱高考分数预测系统 高考志愿推荐系统 高考可视化大屏 高考大数据 高考数据分析 高考爬虫 大数据毕业设计
计算机毕业设计大全
开发技术hadoopsparkspringbootvue.jsPython爬虫、机器学习、深度学习mybatis-plusneo4j知识图谱图数据库mysql协同过滤算法(基于物品、基于用户模式)MLP模型SVD神经网络CNN、KNN、GNN卷积神经网络预测算法阿里云平台百度AI平台阿里大于短信平台lstm模型创新点4种机器学习推荐算法进行高考志愿学校推荐1种深度学习模型进行高考分数线预测hado
- 数学基础(四)
几两春秋梦_
数学基础算法人工智能机器学习
一、特征值与特征向量特征空间:特征向量的应用:特征值表达了重要程度且和特征向量所对应,那么特征值大的就是主要信息了,基于这点我们可以提供各种有价值的信息。二、SVD矩阵分解基变换:特征值分解:SVD:离散型随机变量概率函数(概率质量函数):连续型随机变量似然函数
- 第2章 线性代数
His Last Bow
#深度学习线性代数机器学习深度学习人工智能算法
目录1.标量、向量、矩阵和张量2.矩阵和向量相乘3.单位矩阵和逆矩阵4.线性相关和生成子空间5.范数6.特殊类型的矩阵和向量7.特征分解8.奇异值分解9.Moore-Penrose伪逆10.迹运算11.行列式1.标量、向量、矩阵和张量标量(scalar):数向量(vector):一列数x=[x1x2...xn]x=\begin{bmatrix}x_1\\x_2\\.\\.\\.\\x_n\end{
- 转载--OpenAI视频生成模型Sora的全面解析:从ViViT、Diffusion Transformer到NaViT、VideoPoet
依然风yrlf
人工智能
前言真没想到,距离视频生成上一轮的集中爆发(详见《Sora之前的视频生成发展史:从Gen2、EmuVideo到PixelDance、SVD、Pika1.0》)才过去三个月,没想OpenAI一出手,该领域又直接变天了自打2.16日OpenAI发布sora以来(其开发团队包括DALLE3的4作TimBrooks、DiT一作BillPeebles、三代DALLE的核心作者之一AdityaRamesh等1
- OpenAI 今天刷屏的Sora视频模型,对未来影响几何?
明月与玄武
人工智能
今天凌晨,OpenAI发布了新的文生视频大模型,名为“Sora”。从OpenAI在官网展示的Sora生成视频的效果来看,在生成视频质量、分辨率、文本语义还原、视频动作一致性、可控性、细节、色彩等方面非常好!特别是可以生成最长1分钟的视频!生成的画面可以很好的展现场景中的光影关系、各个物体间的物理遮挡、碰撞关系,并且镜头丝滑可变。超过Gen-2、SVD-XT、Pika等主流产品,一出手就是王炸。So
- Sparse Principal Component Analysis via Rotation and Truncation
馒头and花卷
SPCArt算法,利用旋转(正交变换更为恰当,因为没有体现出旋转这个过程),交替迭代求解sparsePCA。对以往一些SPCA算法复杂度的总结在这里插入图片描述注:是选取的主成分数目,为迭代次数,为样本维度,为样本数目。本文算法,需要先进行SVD,并未在上表中给出。Notation在这里插入图片描述论文概述就是普通PCA的前个载荷向量(loadings,按照特征值降序排列)也是彼此正交的,张成同一
- (2024|ICLR,SVD,软加权正则化,推理时文本嵌入优化)文本到图像扩散模型的图像内容抑制
EDPJ
论文笔记人工智能
GetWhatYouWant,NotWhatYouDon't-ImageContentSuppressionforText-to-ImageDiffusionModels公和众和号:EDPJ(进Q交流群:922230617或加VX:CV_EDPJ进V交流群)目录0.摘要2.相关工作3.方法3.1扩散模型3.2[EOT]嵌入的分析3.3基于文本嵌入的语义抑制3.4推理时文本嵌入优化4.实验5.局限性
- 164基于matlab的奇异值分解、小波降噪、zoom细化
顶呱呱程序
matlab工程应用matlab开发语言zoom细化小波降噪奇异值分解
基于matlab的奇异值分解、小波降噪、zoom细化。程序已调通,可直接运行。164奇异值分解小波降噪zoom细化(xiaohongshu.com)
- OpenAI视频生成模型Sora的全面解析:从扩散Transformer到ViViT、DiT、NaViT、VideoPoet
v_JULY_v
扩散TransformerViViTDiTVideoPoet视频生成OpenAISora
前言真没想到,距离视频生成上一轮的集中爆发(详见《视频生成发展史:从Gen2、EmuVideo到PixelDance、SVD、Pika1.0、W.A.L.T》)才过去三个月,没想OpenAI一出手,该领域又直接变天了自打2.16日OpenAI发布sora以来,不但把同时段Google发布的GemmiPro1.5干没了声音,而且网上各个渠道,大量新闻媒体、自媒体(含公号、微博、博客、视频)做了大量的
- 【信道估计】基于LS+MMSE+SVD三种算法5径电力线通信系统信道估计附Matlab代码
前程算法matlab屋
信号处理算法matlab开发语言
✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。个人主页:Matlab科研工作室个人信条:格物致知。更多Matlab完整代码及仿真定制内容点击智能优化算法神经网络预测雷达通信无线传感器电力系统信号处理图像处理路径规划元胞自动机无人机内容介绍电力线通信(PLC)是一种利用电力线作为传输介质进行数据通信的技术。由于电力线具有多径、衰减大、噪声高
- 机器学习入门--奇异值分解原理与实践
Dr.Cup
机器学习入门机器学习人工智能
奇异值分解奇异值分解(SingularValueDecomposition,SVD)是一种矩阵分解技术,可以将一个矩阵分解为三个部分的乘积。在SVD中,原始矩阵被分解为左奇异向量矩阵、奇异值矩阵和右奇异向量矩阵的乘积。奇异值分解数学原理奇异值分解是一种矩阵分解技术,可以将一个矩阵分解为三个部分的乘积。在SVD中,原始矩阵被分解为左奇异向量矩阵、奇异值矩阵和右奇异向量矩阵的乘积。具体来说,对于一个m
- SVD奇异值分解
jjm2002
机器学习人工智能
一、奇异值奇异值(SingularValues)是线性代数中矩阵的重要性质之一,与奇异值分解(SVD)密切相关。让我们来更详细地了解一下奇异值的概念:定义:对于一个矩阵(A),它的奇异值是矩阵(A)的奇异值分解()中对角矩阵()的对角线元素的非负实数平方根。换句话说,如果(A)是一个大小为()的矩阵,那么它有()个奇异值。几何解释:奇异值可以被视为矩阵在变换过程中每个方向的缩放因子。在奇异值分解中
- 在ComfyUI上安装动画生成插件Stable Video Diffusion
BBM的开源HUB
stablediffusion
上一章节我们介绍了Stablevideodiffusion的安装及初步使用,我们发现SVD的运行需要较大的显存,但是如果将SVD作为插件安装在ComfyUI上面,发现ComfyUI可以很好的管理显存,同时配合ComfyUI的动画制功能,可以让应用更加丰富。这一节我们主要介绍的就是在ComfyUI上安装SVD插件。安装前请注意你已经安装了ComfyUIManager,安装后的页面如下:ComfyUI
- 在Ubuntu上部署Stable Video Diffusion动画制作
BBM的开源HUB
ubuntulinux
StableDiffusion团队推出的开源模型StableVideoDiffusion,支持生成约3秒的视频,分辨率为576×1024。通过测试视频展示了其令人瞩目的性能,SVD模型是一个生成图像到视频的扩散模型,通过对静止图像的条件化生成短视频。其特点主要包括:1、微调优化:通过在特定条件下进行微调,提高了视频输出的一致性和质量。2、改进的生成性能:在生成视频的清晰度、分辨率以及帧数方面可能有
- 数据处理方法—— 7 种数据降维操作 !!
JOYCE_Leo16
Python数据降维python数据处理
文章目录数据降维1.主成分分析(PCA)2.线性判别分析(LDA)3.t-分布随机邻域嵌入(t-SNE)4.局部线性嵌入(LLE)5.多维缩放(MDS)6.奇异值分解(SVD)7.自动编码器(Autoencoders)总结数据降维数据降维是一种将高维数据转换为低纬数据的技术,同时尽量保留原始数据的重要信息。这对于处理大规模数据集非常有用,因为它有助于减少计算资源的需要,并提高算法的效率。以下是一些
- 每天一个数据分析题(一百五十六)
紫色沙
数据分析题库数据分析数据挖掘
在数据建模过程中,对于变量的筛选与维度归约,以下哪项描述是正确的?A.主成分分析适用于可解释性较强的预测模型,因为它减少了变量间的相关性。B.变量聚类旨在通过保留所有变量来减少信息损失,适合于所有类型的数据模型。C.因子分析通常不适用于预测类模型,因为它更侧重于变量的可解释性而非预测准确性。D.奇异值分解专门用于方阵数据的维度归约,不适用于非方阵情况。题目来源于CDA模拟题库点击此处获取答案
- Matlab图像处理——基于小波变换的数字图像水印嵌入和提取算法(GUI界面)
MatpyMaster
图像处理付费专栏算法人工智能计算机视觉
1.摘要数字图像水印技术在信息安全领域中扮演着至关重要的角色,本文结合离散小波变换、Arnold置乱变换和奇异值分解,实现了对数字图像水印的高效嵌入和提取。结果表明:该算法能够准确实现水印的嵌入和提取功能;嵌入的水印具有良好的隐身性,人眼不能感觉出水印嵌入带来的变化;算法具有较强的鲁棒性,经过椒盐噪声、高斯噪声、JPEG压缩、高斯平滑和裁剪操作等污染及攻击后,都能较好地恢复水印信息。2.研究方法算
- NLP自然语言处理实战(三):词频背后的语义--5.距离和相似度&反馈及改进
Nobitaxi
NLP自然语言处理实战学习自然语言处理机器学习人工智能
目录1.距离和相似度2.反馈及改进线性判别分析1.距离和相似度我们可以使用相似度评分(或距离),根据两篇文档的表达向量间的相似度(或距离)来判断文档间有多相似。LSA能够保持较大的距离,但它并不能总保持较小的距离(文档之间关系的精细结构)。LSA底层的SVD算法的重点是使新主题向量空间中所有文档之间的方差最大化。特征向量(词向量、主题向量、文档上下文向量等)之间的距离驱动着NLP流水线或任何机器学
- Moore-Penrose 伪逆与 Hadamard 乘积
ALGORITHM LOL
python
1.1Moore-Penrose伪逆Moore-Penrose伪逆Moore-Penrose伪逆是一种矩阵的广义逆,通常用于处理矩阵不可逆或奇异的情况。给定一个矩阵A,其Moore-Penrose伪逆通常表示为A⁺。计算方法计算Moore-Penrose伪逆的一种常见方法是使用奇异值分解(SingularValueDecomposition,SVD)。假设A是一个大小为m×n的矩阵,其SVD为A=
- 多线程编程之存钱与取钱
周凡杨
javathread多线程存钱取钱
生活费问题是这样的:学生每月都需要生活费,家长一次预存一段时间的生活费,家长和学生使用统一的一个帐号,在学生每次取帐号中一部分钱,直到帐号中没钱时 通知家长存钱,而家长看到帐户还有钱则不存钱,直到帐户没钱时才存钱。
问题分析:首先问题中有三个实体,学生、家长、银行账户,所以设计程序时就要设计三个类。其中银行账户只有一个,学生和家长操作的是同一个银行账户,学生的行为是
- java中数组与List相互转换的方法
征客丶
JavaScriptjavajsonp
1.List转换成为数组。(这里的List是实体是ArrayList)
调用ArrayList的toArray方法。
toArray
public T[] toArray(T[] a)返回一个按照正确的顺序包含此列表中所有元素的数组;返回数组的运行时类型就是指定数组的运行时类型。如果列表能放入指定的数组,则返回放入此列表元素的数组。否则,将根据指定数组的运行时类型和此列表的大小分
- Shell 流程控制
daizj
流程控制if elsewhilecaseshell
Shell 流程控制
和Java、PHP等语言不一样,sh的流程控制不可为空,如(以下为PHP流程控制写法):
<?php
if(isset($_GET["q"])){
search(q);}else{// 不做任何事情}
在sh/bash里可不能这么写,如果else分支没有语句执行,就不要写这个else,就像这样 if else if
if 语句语
- Linux服务器新手操作之二
周凡杨
Linux 简单 操作
1.利用关键字搜寻Man Pages man -k keyword 其中-k 是选项,keyword是要搜寻的关键字 如果现在想使用whoami命令,但是只记住了前3个字符who,就可以使用 man -k who来搜寻关键字who的man命令 [haself@HA5-DZ26 ~]$ man -k
- socket聊天室之服务器搭建
朱辉辉33
socket
因为我们做的是聊天室,所以会有多个客户端,每个客户端我们用一个线程去实现,通过搭建一个服务器来实现从每个客户端来读取信息和发送信息。
我们先写客户端的线程。
public class ChatSocket extends Thread{
Socket socket;
public ChatSocket(Socket socket){
this.sock
- 利用finereport建设保险公司决策分析系统的思路和方法
老A不折腾
finereport金融保险分析系统报表系统项目开发
决策分析系统呈现的是数据页面,也就是俗称的报表,报表与报表间、数据与数据间都按照一定的逻辑设定,是业务人员查看、分析数据的平台,更是辅助领导们运营决策的平台。底层数据决定上层分析,所以建设决策分析系统一般包括数据层处理(数据仓库建设)。
项目背景介绍
通常,保险公司信息化程度很高,基本上都有业务处理系统(像集团业务处理系统、老业务处理系统、个人代理人系统等)、数据服务系统(通过
- 始终要页面在ifream的最顶层
林鹤霄
index.jsp中有ifream,但是session消失后要让login.jsp始终显示到ifream的最顶层。。。始终没搞定,后来反复琢磨之后,得到了解决办法,在这儿给大家分享下。。
index.jsp--->主要是加了颜色的那一句
<html>
<iframe name="top" ></iframe>
<ifram
- MySQL binlog恢复数据
aigo
mysql
1,先确保my.ini已经配置了binlog:
# binlog
log_bin = D:/mysql-5.6.21-winx64/log/binlog/mysql-bin.log
log_bin_index = D:/mysql-5.6.21-winx64/log/binlog/mysql-bin.index
log_error = D:/mysql-5.6.21-win
- OCX打成CBA包并实现自动安装与自动升级
alxw4616
ocxcab
近来手上有个项目,需要使用ocx控件
(ocx是什么?
http://baike.baidu.com/view/393671.htm)
在生产过程中我遇到了如下问题.
1. 如何让 ocx 自动安装?
a) 如何签名?
b) 如何打包?
c) 如何安装到指定目录?
2.
- Hashmap队列和PriorityQueue队列的应用
百合不是茶
Hashmap队列PriorityQueue队列
HashMap队列已经是学过了的,但是最近在用的时候不是很熟悉,刚刚重新看以一次,
HashMap是K,v键 ,值
put()添加元素
//下面试HashMap去掉重复的
package com.hashMapandPriorityQueue;
import java.util.H
- JDK1.5 returnvalue实例
bijian1013
javathreadjava多线程returnvalue
Callable接口:
返回结果并且可能抛出异常的任务。实现者定义了一个不带任何参数的叫做 call 的方法。
Callable 接口类似于 Runnable,两者都是为那些其实例可能被另一个线程执行的类设计的。但是 Runnable 不会返回结果,并且无法抛出经过检查的异常。
ExecutorService接口方
- angularjs指令中动态编译的方法(适用于有异步请求的情况) 内嵌指令无效
bijian1013
JavaScriptAngularJS
在directive的link中有一个$http请求,当请求完成后根据返回的值动态做element.append('......');这个操作,能显示没问题,可问题是我动态组的HTML里面有ng-click,发现显示出来的内容根本不执行ng-click绑定的方法!
 
- 【Java范型二】Java范型详解之extend限定范型参数的类型
bit1129
extend
在第一篇中,定义范型类时,使用如下的方式:
public class Generics<M, S, N> {
//M,S,N是范型参数
}
这种方式定义的范型类有两个基本的问题:
1. 范型参数定义的实例字段,如private M m = null;由于M的类型在运行时才能确定,那么我们在类的方法中,无法使用m,这跟定义pri
- 【HBase十三】HBase知识点总结
bit1129
hbase
1. 数据从MemStore flush到磁盘的触发条件有哪些?
a.显式调用flush,比如flush 'mytable'
b.MemStore中的数据容量超过flush的指定容量,hbase.hregion.memstore.flush.size,默认值是64M 2. Region的构成是怎么样?
1个Region由若干个Store组成
- 服务器被DDOS攻击防御的SHELL脚本
ronin47
mkdir /root/bin
vi /root/bin/dropip.sh
#!/bin/bash/bin/netstat -na|grep ESTABLISHED|awk ‘{print $5}’|awk -F:‘{print $1}’|sort|uniq -c|sort -rn|head -10|grep -v -E ’192.168|127.0′|awk ‘{if($2!=null&a
- java程序员生存手册-craps 游戏-一个简单的游戏
bylijinnan
java
import java.util.Random;
public class CrapsGame {
/**
*
*一个简单的赌*博游戏,游戏规则如下:
*玩家掷两个骰子,点数为1到6,如果第一次点数和为7或11,则玩家胜,
*如果点数和为2、3或12,则玩家输,
*如果和为其它点数,则记录第一次的点数和,然后继续掷骰,直至点数和等于第一次掷出的点
- TOMCAT启动提示NB: JAVA_HOME should point to a JDK not a JRE解决
开窍的石头
JAVA_HOME
当tomcat是解压的时候,用eclipse启动正常,点击startup.bat的时候启动报错;
报错如下:
The JAVA_HOME environment variable is not defined correctly
This environment variable is needed to run this program
NB: JAVA_HOME shou
- [操作系统内核]操作系统与互联网
comsci
操作系统
我首先申明:我这里所说的问题并不是针对哪个厂商的,仅仅是描述我对操作系统技术的一些看法
操作系统是一种与硬件层关系非常密切的系统软件,按理说,这种系统软件应该是由设计CPU和硬件板卡的厂商开发的,和软件公司没有直接的关系,也就是说,操作系统应该由做硬件的厂商来设计和开发
- 富文本框ckeditor_4.4.7 文本框的简单使用 支持IE11
cuityang
富文本框
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />
<title>知识库内容编辑</tit
- Property null not found
darrenzhu
datagridFlexAdvancedpropery null
When you got error message like "Property null not found ***", try to fix it by the following way:
1)if you are using AdvancedDatagrid, make sure you only update the data in the data prov
- MySQl数据库字符串替换函数使用
dcj3sjt126com
mysql函数替换
需求:需要将数据表中一个字段的值里面的所有的 . 替换成 _
原来的数据是 site.title site.keywords ....
替换后要为 site_title site_keywords
使用的SQL语句如下:
updat
- mac上终端起动MySQL的方法
dcj3sjt126com
mysqlmac
首先去官网下载: http://www.mysql.com/downloads/
我下载了5.6.11的dmg然后安装,安装完成之后..如果要用终端去玩SQL.那么一开始要输入很长的:/usr/local/mysql/bin/mysql
这不方便啊,好想像windows下的cmd里面一样输入mysql -uroot -p1这样...上网查了下..可以实现滴.
打开终端,输入:
1
- Gson使用一(Gson)
eksliang
jsongson
转载请出自出处:http://eksliang.iteye.com/blog/2175401 一.概述
从结构上看Json,所有的数据(data)最终都可以分解成三种类型:
第一种类型是标量(scalar),也就是一个单独的字符串(string)或数字(numbers),比如"ickes"这个字符串。
第二种类型是序列(sequence),又叫做数组(array)
- android点滴4
gundumw100
android
Android 47个小知识
http://www.open-open.com/lib/view/open1422676091314.html
Android实用代码七段(一)
http://www.cnblogs.com/over140/archive/2012/09/26/2611999.html
http://www.cnblogs.com/over140/arch
- JavaWeb之JSP基本语法
ihuning
javaweb
目录
JSP模版元素
JSP表达式
JSP脚本片断
EL表达式
JSP注释
特殊字符序列的转义处理
如何查找JSP页面中的错误
JSP模版元素
JSP页面中的静态HTML内容称之为JSP模版元素,在静态的HTML内容之中可以嵌套JSP
- App Extension编程指南(iOS8/OS X v10.10)中文版
啸笑天
ext
当iOS 8.0和OS X v10.10发布后,一个全新的概念出现在我们眼前,那就是应用扩展。顾名思义,应用扩展允许开发者扩展应用的自定义功能和内容,能够让用户在使用其他app时使用该项功能。你可以开发一个应用扩展来执行某些特定的任务,用户使用该扩展后就可以在多个上下文环境中执行该任务。比如说,你提供了一个能让用户把内容分
- SQLServer实现无限级树结构
macroli
oraclesqlSQL Server
表结构如下:
数据库id path titlesort 排序 1 0 首页 0 2 0,1 新闻 1 3 0,2 JAVA 2 4 0,3 JSP 3 5 0,2,3 业界动态 2 6 0,2,3 国内新闻 1
创建一个存储过程来实现,如果要在页面上使用可以设置一个返回变量将至传过去
create procedure test
as
begin
decla
- Css居中div,Css居中img,Css居中文本,Css垂直居中div
qiaolevip
众观千象学习永无止境每天进步一点点css
/**********Css居中Div**********/
div.center {
width: 100px;
margin: 0 auto;
}
/**********Css居中img**********/
img.center {
display: block;
margin-left: auto;
margin-right: auto;
}
- Oracle 常用操作(实用)
吃猫的鱼
oracle
SQL>select text from all_source where owner=user and name=upper('&plsql_name');
SQL>select * from user_ind_columns where index_name=upper('&index_name'); 将表记录恢复到指定时间段以前
- iOS中使用RSA对数据进行加密解密
witcheryne
iosrsaiPhoneobjective c
RSA算法是一种非对称加密算法,常被用于加密数据传输.如果配合上数字摘要算法, 也可以用于文件签名.
本文将讨论如何在iOS中使用RSA传输加密数据. 本文环境
mac os
openssl-1.0.1j, openssl需要使用1.x版本, 推荐使用[homebrew](http://brew.sh/)安装.
Java 8
RSA基本原理
RS