- 决策树算法全解析:从零基础到Titanic实战,一文搞定机器学习经典模型
吴师兄大模型
0基础实现机器学习入门到精通算法机器学习决策树人工智能深度学习编程开发语言
Langchain系列文章目录01-玩转LangChain:从模型调用到Prompt模板与输出解析的完整指南02-玩转LangChainMemory模块:四种记忆类型详解及应用场景全覆盖03-全面掌握LangChain:从核心链条构建到动态任务分配的实战指南04-玩转LangChain:从文档加载到高效问答系统构建的全程实战05-玩转LangChain:深度评估问答系统的三种高效方法(示例生成、手
- 图像处理篇---图像预处理
Ronin-Lotus
图像处理篇深度学习篇程序代码篇图像处理人工智能opencvpython深度学习计算机视觉
文章目录前言一、通用目的1.1数据标准化目的实现1.2噪声抑制目的实现高斯滤波中值滤波双边滤波1.3尺寸统一化目的实现1.4数据增强目的实现1.5特征增强目的实现:边缘检测直方图均衡化锐化二、分领域预处理2.1传统机器学习(如SVM、随机森林)2.1.1特点2.1.2预处理重点灰度化二值化形态学操作特征工程2.2深度学习(如CNN、Transformer)2.2.1特点2.2.2预处理重点通道顺序
- 深入解析TTM市盈率在股票投资中的应用
scoone
杂项小计生活学习
摘要:本文对TTM市盈率的概念、计算方法、优缺点及其在股票投资决策中的作用进行了详细阐述,旨在帮助投资者更好地运用这一财务指标进行投资分析。一、TTM市盈率概述TTM市盈率,即TrailingTwelveMonths市盈率,是一种反映股票价格与公司最近12个月盈利能力的比率。它通过计算公司过去四个季度净利润的总和,再除以在外流通的普通股总数,得到每股收益(EPS),最后以股价除以每股收益得到TTM
- 从数据中心机房来看云服务器的可用性与性能!
数据中心云服务器
数据中心机房是云服务器的物理承载基础,机房的硬件设施、运行环境和管理水平直接影响云服务器的可用性和性能表现。了解数据中心机房,明白哪些因素可能导致云服务器出现故障或性能下降,就能够依据数据中心机房的实际情况做出更明智的决策,保障自身业务的稳定运行。数据中心机房的硬件设施是保障云服务器可用性的基础。网络设备作为数据传输的桥梁,高性能的路由器、交换机等确保了数据的快速、准确传输。电力供应则是云服务器运
- 【财经信息差】2024年12月27日最新财经资讯一览 每日财经热点一网打尽
代码简单说
AI观财经:财经信息差AI观财经财经信息差今日财经资讯财经热点今日资讯
大家好,欢迎来到财经信息差!每天,我们将带你直击全球财经动态,精选最新的市场变化、政策动向与产业趋势,让你在最短的时间内,轻松掌握最关键的财经资讯。随着人工智能技术的迅猛发展,我们将用AI的视角为你解析财经热点、企业动向及全球经济变化,让复杂的信息变得简单易懂,帮助你做出更明智的投资决策。财经领域股票市场美股三大指数集体低开,大型科技股多数下跌,纳斯达克金龙指数跌1.07%。小鹏汽车跌3.32%,
- 深度学习在医学影像分析中的应用:DeepSeek系统的实践与探索
Evaporator Core
#深度学习#DeepSeek快速入门DeepSeek进阶开发与应用深度学习人工智能
随着人工智能技术的迅猛发展,深度学习在医学领域的应用逐渐成为研究热点。医学影像分析作为医疗诊断的重要组成部分,正受益于深度学习技术的突破。DeepSeek系统是一种基于深度学习的医学影像分析平台,旨在通过高效、精准的算法辅助医生进行疾病诊断和治疗决策。本文将深入探讨DeepSeek系统的技术原理、实现方法及其在医学影像分析中的实际应用,并结合代码示例展示其核心功能。1.DeepSeek系统的技术架
- 深度解析ECharts.js:构建现代化数据可视化的利器
斯~内克
WebGLecharts信息可视化前端
引言:数据可视化的新时代挑战在数字化转型浪潮中,数据可视化已成为企业决策和用户体验的关键环节。面对海量数据的呈现需求,传统表格已无法满足用户对直观洞察的渴求。作为百度开源的JavaScript可视化库,ECharts.js凭借其强大的功能和灵活的扩展性,正在成为前端开发者的首选工具。本文将从核心技术解析、实践指南到性能优化,带您全面掌握这个可视化利器。一、ECharts核心技术架构剖析1.1分层渲
- 统计机器学习 (Statistical Machine Learning) 原理与代码实例讲解
AGI大模型与大数据研究院
DeepSeekR1&大数据AI人工智能计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
统计机器学习(StatisticalMachineLearning)原理与代码实例讲解1.背景介绍统计机器学习是现代人工智能和数据科学的核心领域之一。它结合了统计学和计算机科学的理论与方法,通过数据驱动的方式来构建预测模型和决策系统。统计机器学习不仅在学术研究中占据重要地位,还在工业界有广泛应用,如推荐系统、图像识别、自然语言处理等。2.核心概念与联系2.1统计学与机器学习的关系统计学关注数据的收
- 自动驾驶---打造自动驾驶系统之导航模块开发(三)
智能汽车人
从零打造自动驾驶算法仿真系统自动驾驶人工智能机器学习
各位读者朋友,大家好。本次打造的自动驾驶系统仿真系统,涉及感知,预测,规控等多个模块(以规控算法为主,包括Polynomial预测,MCTS决策算法,通行走廊Corridor构建,QP/CILQR轨迹生成求解器,LQR+PID的控制器等),同时也支持其它相关规控算法的扩展(部署&开发自身感兴趣的算法),非常便捷。笔者在该系列中开发的规控算法主要依据专栏《自动驾驶Planning决策规划》中的章节逐
- 从混乱到高效:企业如何利用CMDB优化资产管理与战略决策
运维
在数字化转型加速的今天,企业在面对海量且日益复杂的IT资产和系统配置时,往往会出现数据混乱、信息孤岛和决策盲区等问题。对于许多企业来说,如何从混乱中抽丝剥茧,实现有效管理和科学决策,已成为一个亟待解决的问题。配置管理数据库(CMDB)就是在这样的背景下应运而生的,它为企业搭建了一个统一、权威的资产和配置管理平台,帮助企业优化运营、降低风险、提高战略决策水平。如果您的企业拥有庞大而复杂的IT环境,需
- 量子计算+AI:未来AI Agent的计算范式
AI天才研究院
计算ChatGPTDeepSeekRL强化学习agentagi推理模型智能驾驶
量子计算+AI:未来AIAgent的计算范式关键词:量子计算,人工智能,AIAgent,量子算法,量子机器学习,量子优化,量子数据处理摘要:量子计算和人工智能(AI)的结合正在改变AIAgent的计算范式。通过量子计算的超强算力和独特性质,AIAgent在数据处理、算法优化和决策能力方面展现出巨大潜力。本文将详细探讨量子计算与AI结合的核心概念、算法原理、系统架构,并通过实际案例展示量子AIAge
- 自建智能算力中心 vs 第三方算力租赁:AI企业的算力博弈与最优解
人工智能的爆发式增长正在重塑全球产业格局。从ChatGPT到DeepSeek,从自动驾驶到智能医疗,AI模型的训练和推理需求呈现指数级增长。在这场技术革命中,算力已成为企业竞争的“命脉”。然而,面对动辄数亿元的硬件投入和复杂的运维挑战,AI企业正面临一个关键抉择:自建智能算力中心,还是选择第三方算力租赁?本文将从成本、效率、风险及适用场景等维度展开深度分析,为企业提供决策参考。一、成本对比:重资产
- 数据库的基本概念
咖啡の猫
数据库
在当今数字化的世界中,数据已成为企业和组织最宝贵的资产之一。有效地管理和利用这些数据对于决策制定、服务优化和业务增长至关重要。数据库作为存储、管理及检索数据的核心工具,在现代信息系统中扮演着至关重要的角色。本文将介绍数据库的一些基本概念,包括其定义、类型、结构以及一些基本操作。一、什么是数据库?数据库(Database)是指按照一定的结构来组织、存储和管理数据的仓库。它允许用户方便地进行数据的添加
- Redis系列:深入理解缓存穿透、缓存击穿、缓存雪崩及其解决方案
菜就多练少说
Redis缓存redis数据库
在使用Redis作为缓存系统时,我们经常会遇到“缓存穿透”、“缓存击穿”和“缓存雪崩”等问题,这些问题一旦出现,会严重影响应用性能甚至造成服务不可用。因此,理解这些问题的产生原因和解决方案非常重要。本文将全面讲解缓存穿透、缓存击穿、缓存雪崩的具体概念、产生原因、以及对应的解决策略,帮助开发人员高效、安全地使用Redis。一、缓存穿透(CachePenetration)(一)什么是缓存穿透?缓存穿透
- 【day14】画流程图
鹿鸣悠悠
文旅行业知识学习流程图
绘制业务流程图是梳理和优化企业流程的重要工具,以下是零基础也能快速上手的指南,涵盖必备知识、绘制步骤和常见误区:一、画流程图前必须了解的3个核心概念流程图的本质不是“画图”,而是将复杂业务逻辑可视化的工具,核心在于逻辑清晰、角色明确。目标:让内外部人员快速理解流程中的关键环节、决策点、责任方。常见流程图类型类型适用场景示例工具符号基本流程图简单线性流程(如审批流程)矩形(步骤)、菱形(判断)跨职能
- 比特币牛市还在不在
web3区块链比特币
在加密货币的风云世界里,比特币的一举一动始终牵动着投资者们的神经。近期比特币的涨幅动作,再次引发了市场对于牛市是否仍在延续的激烈讨论。在深入探索比特币市场的过程中,获取全面且及时的资讯至关重要。您可以通过访问TechubNews,下载TechubNews,在这里,您不仅能够获取到关于比特币的深度分析文章,还能追踪到最新的Web3资讯,为您在加密货币投资领域的决策提供有力支持。回顾比特币的历史价格走
- ChatGPT + Vue3:如何打造 AI 智能助手?
Js_x
chatgpt人工智能
引言人工智能(AI)正快速渗透到前端开发领域,越来越多的开发者希望将ChatGPT集成到自己的应用中,为用户提供智能对话、自动回复、辅助决策等功能。本文将介绍如何使用Vue3+OpenAIAPI搭建一个AI智能助手,让你的应用拥有强大的AI交互能力。1.项目准备1.1技术栈选择本项目将使用以下技术:Vue3-现代化的前端框架,响应式强,适合构建交互式应用。Vite-高效的Vue3项目构建工具,提升
- 理解深度学习1-简介
shangjg3
PyTorch深度学习实战深度学习人工智能
人工智能(AI)旨在打造模仿智能行为的系统。它覆盖了众多方法,涵盖了基于逻辑、搜索和概率推理的技术。机器学习是AI的一个分支,它通过对观测数据进行数学模型拟合来学习决策制定。这个领域近年来迅猛发展,现在几乎(虽不完全准确)与AI同义。深度神经网络是一类机器学习模型,将其应用到数据上的过程称为深度学习。目前,深度网络是最强大和最实用的机器学习模型之一,常见于日常生活中。我们常常用自然语言处理(Nat
- 人工智能与机器学习入门:基尼系数(Gini Index)和基于熵(Entropy)
基尼系数基于熵机器学习入门
在决策树应用一文中,在构建决策分类树应用决策算法时,介绍了基尼系数(GiniIndex)和基于熵(Entropy)两种算法。本文通过实例来更加深入的介绍一下这两个算法。仍然以简单的数据为例:id喜欢颜色是否有喉结身高性别1绿否165女2蓝是170男3粉否172女4绿是175男基尼系数分别对喜欢颜色是否有喉结求基尼系数如下:喜欢的颜色id喜欢颜色性别1绿女2蓝男3粉女4绿男对于姓别女分类而言,数据如
- 【财经速递】2025年美联储利率决议时间表
金融小师妹
大数据
内容来源:天誉国际美联储的利率决策由联邦公开市场委员会(FOMC)定期召开会议决定,每年共举行八次会议。这些会议不仅决定短期利率,还会在每个季度的最后一次会议上发布经济预测和点阵图,为市场提供未来货币政策的方向。美联储的利率决策直接影响商业银行的信贷成本,进而对全球经济产生深远影响。美联储的利率决议一直是金融市场的焦点事件,每次会议都可能引发市场的剧烈波动。特别是在黄金市场,美联储的货币政策动向往
- 如果我想成为一名大数据和算法工程师,我需要学会哪些技能,获取大厂的offer
红豆和绿豆
杂谈大数据算法
成为一名大数据和算法工程师并获取大厂Offer,需要掌握一系列核心技能,并具备丰富的项目经验与扎实的理论基础。以下是详细的技能要求和建议:---###**1.数学与理论基础**-**数学知识**:掌握线性代数、微积分、概率论和统计学,这些是设计和理解算法的基础。-**机器学习理论**:深入理解常见机器学习算法(如线性回归、逻辑回归、决策树、随机森林、SVM、K-means等),了解其原理、优缺点及
- Manus:全球首款通用AI Agent的技术解析与未来展望
努力改掉拖延症的小白
大模型人工智能语言模型
2025年3月6日,AI行业迎来了具有历史意义的一天——Monica.im正式发布全球首款通用型AI智能体产品Manus。这一突破不仅刷新了GAIA基准测试的SOTA记录,更以“数字代理人”的定位重新定义了人机交互的边界。从处理15份简历的高效筛选,到跨国购房的智能决策;从股票趋势的深度分析,到个性化旅行手册的自动生成,Manus展现出超越传统工具的“类人思维”能力,标志着AI从被动响应向主动执行
- 如何优化公司需求管理
需求管理
管理需求变更的关键在于明确流程、跨部门协同、数据驱动反馈。其中,明确流程要求在项目初期建立一套标准化的变更管理制度;跨部门协同确保各部门对需求变更有统一理解并共同参与决策;数据驱动反馈通过实时数据和用户反馈不断优化变更策略,从而保证产品始终紧跟市场需求。一、需求变更管理的重要性与基本理念需求变更管理是软件开发和产品创新过程中必不可少的组成部分。需求在项目启动时往往是初步、模糊且充满不确定性的,而随
- 如何优化公司需求管理
需求管理
管理需求变更的关键在于明确流程、跨部门协同、数据驱动反馈。其中,明确流程要求在项目初期建立一套标准化的变更管理制度;跨部门协同确保各部门对需求变更有统一理解并共同参与决策;数据驱动反馈通过实时数据和用户反馈不断优化变更策略,从而保证产品始终紧跟市场需求。一、需求变更管理的重要性与基本理念需求变更管理是软件开发和产品创新过程中必不可少的组成部分。需求在项目启动时往往是初步、模糊且充满不确定性的,而随
- 人工智能伦理与可持续发展
CarlowZJ
人工智能
前言人工智能(AI)技术正在深刻地改变我们的生活和工作方式。从自动驾驶汽车到智能医疗系统,从个性化推荐到自动化决策,AI的应用无处不在。然而,随着技术的快速发展,其伦理和社会影响也引发了广泛的关注。人工智能伦理不仅涉及技术本身的公平性、透明性和安全性,还涉及到更广泛的社会、经济和环境影响。本文将探讨人工智能伦理的核心问题,并从可持续发展的角度提出应对策略。一、人工智能伦理的核心问题1.1数据隐私与
- 组织效能突围战:从人效洼地到行业标杆(上)
人工智能
摘要组织在人力效能方面常面临多重困境:管理层缺乏科学管理方法和数据化决策支持,目标设定与资源配置不合理,引发资源错配与浪费;激励机制与员工需求错位,职业发展通道不清晰导致工作动力衰减;跨部门协作存在信息孤岛和流程壁垒,组织架构僵化难以快速响应市场变化……从而导致组织成本高企、人才流失加剧、市场反应迟缓、竞争力衰退等一系列问题。那么,如何提升组织人效,人效提升到底可以带来哪些改变?本文将通过六大模块
- 【人工智能】【Python】在Scikit-Learn中使用决策树算法(ID3和CART)
SmallBambooCode
机器学习人工智能python算法scikit-learn决策树机器学习ai
importnumpyasnpimportmatplotlib.pyplotaspltfromsklearn.datasetsimportload_irisfromsklearn.model_selectionimporttrain_test_splitfromsklearn.treeimportDecisionTreeClassifier,plot_tree#加载数据集iris=load_iri
- 【sklearn 03】逻辑回归、决策树、支持向量机
@金色海岸
sklearn逻辑回归决策树
逻辑回归、决策树、支持向量机-逻辑回归logisticsregression(逻辑回归)算法是经典的分类算法,基本思想是构造一个概率的拟合函数。决策树决策树的基本思想是根据样例去推断其背后的树形知识表征支持向量机支持向量机SVM(supportvectormachine)的基本思想是寻找最大的间隔的分割超平面。离分割超平面最近的这些样本点称为支持向量机
- 【数学建模】一致矩阵的应用及其在层次分析法(AHP)中的性质
烟锁池塘柳0
数学建模数学建模
一致矩阵在层次分析法(AHP)中的应用与性质在层次分析法(AHP)中,一致矩阵是判断矩阵的一种理想状态,它反映了决策者判断的完全合理性和一致性,也就是为了避免决策者认为“A比B重要,B比C重要,但是C又比A重要”的矛盾。本文将详细介绍一致矩阵的定义、性质及其在AHP中的重要意义。关于层次分析法(AHP)的介绍,可以参考:【数学建模】层次分析法(AHP)详解及其应用。一、一致矩阵的定义定义:设A=[
- OSPO Summit 2025 正式定档!议题征集同步开启
开源
历经二十余年的发展,OSPO已然成为企业数字化转型的战略枢纽、产学研协同创新的关键桥梁、公共领域开放生态建设的核心引擎。作为这一进程的重要见证者和推动者,OSPOSummit也将在2025年6月12日迎来它的第三次进化。会议信息时间:2025年6月12日地点:北京议题征集,期待你的声音现在,我们面向全球开源社区决策者、企业技术管理者、学术机构研究者及一线开发者,发起议题征集!诚邀您分享OSPO如何
- html页面js获取参数值
0624chenhong
html
1.js获取参数值js
function GetQueryString(name)
{
var reg = new RegExp("(^|&)"+ name +"=([^&]*)(&|$)");
var r = windo
- MongoDB 在多线程高并发下的问题
BigCat2013
mongodbDB高并发重复数据
最近项目用到 MongoDB , 主要是一些读取数据及改状态位的操作. 因为是结合了最近流行的 Storm进行大数据的分析处理,并将分析结果插入Vertica数据库,所以在多线程高并发的情境下, 会发现 Vertica 数据库中有部分重复的数据. 这到底是什么原因导致的呢?笔者开始也是一筹莫 展,重复去看 MongoDB 的 API , 终于有了新发现 :
com.mongodb.DB 这个类有
- c++ 用类模版实现链表(c++语言程序设计第四版示例代码)
CrazyMizzz
数据结构C++
#include<iostream>
#include<cassert>
using namespace std;
template<class T>
class Node
{
private:
Node<T> * next;
public:
T data;
- 最近情况
麦田的设计者
感慨考试生活
在五月黄梅天的岁月里,一年两次的软考又要开始了。到目前为止,我已经考了多达三次的软考,最后的结果就是通过了初级考试(程序员)。人啊,就是不满足,考了初级就希望考中级,于是,这学期我就报考了中级,明天就要考试。感觉机会不大,期待奇迹发生吧。这个学期忙于练车,写项目,反正最后是一团糟。后天还要考试科目二。这个星期真的是很艰难的一周,希望能快点度过。
- linux系统中用pkill踢出在线登录用户
被触发
linux
由于linux服务器允许多用户登录,公司很多人知道密码,工作造成一定的障碍所以需要有时踢出指定的用户
1/#who 查出当前有那些终端登录(用 w 命令更详细)
# who
root pts/0 2010-10-28 09:36 (192
- 仿QQ聊天第二版
肆无忌惮_
qq
在第一版之上的改进内容:
第一版链接:
http://479001499.iteye.com/admin/blogs/2100893
用map存起来号码对应的聊天窗口对象,解决私聊的时候所有消息发到一个窗口的问题.
增加ViewInfo类,这个是信息预览的窗口,如果是自己的信息,则可以进行编辑.
信息修改后上传至服务器再告诉所有用户,自己的窗口
- java读取配置文件
知了ing
1,java读取.properties配置文件
InputStream in;
try {
in = test.class.getClassLoader().getResourceAsStream("config/ipnetOracle.properties");//配置文件的路径
Properties p = new Properties()
- __attribute__ 你知多少?
矮蛋蛋
C++gcc
原文地址:
http://www.cnblogs.com/astwish/p/3460618.html
GNU C 的一大特色就是__attribute__ 机制。__attribute__ 可以设置函数属性(Function Attribute )、变量属性(Variable Attribute )和类型属性(Type Attribute )。
__attribute__ 书写特征是:
- jsoup使用笔记
alleni123
java爬虫JSoup
<dependency>
<groupId>org.jsoup</groupId>
<artifactId>jsoup</artifactId>
<version>1.7.3</version>
</dependency>
2014/08/28
今天遇到这种形式,
- JAVA中的集合 Collectio 和Map的简单使用及方法
百合不是茶
listmapset
List ,set ,map的使用方法和区别
java容器类类库的用途是保存对象,并将其分为两个概念:
Collection集合:一个独立的序列,这些序列都服从一条或多条规则;List必须按顺序保存元素 ,set不能重复元素;Queue按照排队规则来确定对象产生的顺序(通常与他们被插入的
- 杀LINUX的JOB进程
bijian1013
linuxunix
今天发现数据库一个JOB一直在执行,都执行了好几个小时还在执行,所以想办法给删除掉
系统环境:
ORACLE 10G
Linux操作系统
操作步骤如下:
第一步.查询出来那个job在运行,找个对应的SID字段
select * from dba_jobs_running--找到job对应的sid
&n
- Spring AOP详解
bijian1013
javaspringAOP
最近项目中遇到了以下几点需求,仔细思考之后,觉得采用AOP来解决。一方面是为了以更加灵活的方式来解决问题,另一方面是借此机会深入学习Spring AOP相关的内容。例如,以下需求不用AOP肯定也能解决,至于是否牵强附会,仁者见仁智者见智。
1.对部分函数的调用进行日志记录,用于观察特定问题在运行过程中的函数调用
- [Gson六]Gson类型适配器(TypeAdapter)
bit1129
Adapter
TypeAdapter的使用动机
Gson在序列化和反序列化时,默认情况下,是按照POJO类的字段属性名和JSON串键进行一一映射匹配,然后把JSON串的键对应的值转换成POJO相同字段对应的值,反之亦然,在这个过程中有一个JSON串Key对应的Value和对象之间如何转换(序列化/反序列化)的问题。
以Date为例,在序列化和反序列化时,Gson默认使用java.
- 【spark八十七】给定Driver Program, 如何判断哪些代码在Driver运行,哪些代码在Worker上执行
bit1129
driver
Driver Program是用户编写的提交给Spark集群执行的application,它包含两部分
作为驱动: Driver与Master、Worker协作完成application进程的启动、DAG划分、计算任务封装、计算任务分发到各个计算节点(Worker)、计算资源的分配等。
计算逻辑本身,当计算任务在Worker执行时,执行计算逻辑完成application的计算任务
- nginx 经验总结
ronin47
nginx 总结
深感nginx的强大,只学了皮毛,把学下的记录。
获取Header 信息,一般是以$http_XX(XX是小写)
获取body,通过接口,再展开,根据K取V
获取uri,以$arg_XX
&n
- 轩辕互动-1.求三个整数中第二大的数2.整型数组的平衡点
bylijinnan
数组
import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;
public class ExoWeb {
public static void main(String[] args) {
ExoWeb ew=new ExoWeb();
System.out.pri
- Netty源码学习-Java-NIO-Reactor
bylijinnan
java多线程netty
Netty里面采用了NIO-based Reactor Pattern
了解这个模式对学习Netty非常有帮助
参考以下两篇文章:
http://jeewanthad.blogspot.com/2013/02/reactor-pattern-explained-part-1.html
http://gee.cs.oswego.edu/dl/cpjslides/nio.pdf
- AOP通俗理解
cngolon
springAOP
1.我所知道的aop 初看aop,上来就是一大堆术语,而且还有个拉风的名字,面向切面编程,都说是OOP的一种有益补充等等。一下子让你不知所措,心想着:怪不得很多人都和 我说aop多难多难。当我看进去以后,我才发现:它就是一些java基础上的朴实无华的应用,包括ioc,包括许许多多这样的名词,都是万变不离其宗而 已。 2.为什么用aop&nb
- cursor variable 实例
ctrain
variable
create or replace procedure proc_test01
as
type emp_row is record(
empno emp.empno%type,
ename emp.ename%type,
job emp.job%type,
mgr emp.mgr%type,
hiberdate emp.hiredate%type,
sal emp.sal%t
- shell报bash: service: command not found解决方法
daizj
linuxshellservicejps
今天在执行一个脚本时,本来是想在脚本中启动hdfs和hive等程序,可以在执行到service hive-server start等启动服务的命令时会报错,最终解决方法记录一下:
脚本报错如下:
./olap_quick_intall.sh: line 57: service: command not found
./olap_quick_intall.sh: line 59
- 40个迹象表明你还是PHP菜鸟
dcj3sjt126com
设计模式PHP正则表达式oop
你是PHP菜鸟,如果你:1. 不会利用如phpDoc 这样的工具来恰当地注释你的代码2. 对优秀的集成开发环境如Zend Studio 或Eclipse PDT 视而不见3. 从未用过任何形式的版本控制系统,如Subclipse4. 不采用某种编码与命名标准 ,以及通用约定,不能在项目开发周期里贯彻落实5. 不使用统一开发方式6. 不转换(或)也不验证某些输入或SQL查询串(译注:参考PHP相关函
- Android逐帧动画的实现
dcj3sjt126com
android
一、代码实现:
private ImageView iv;
private AnimationDrawable ad;
@Override
protected void onCreate(Bundle savedInstanceState)
{
super.onCreate(savedInstanceState);
setContentView(R.layout
- java远程调用linux的命令或者脚本
eksliang
linuxganymed-ssh2
转载请出自出处:
http://eksliang.iteye.com/blog/2105862
Java通过SSH2协议执行远程Shell脚本(ganymed-ssh2-build210.jar)
使用步骤如下:
1.导包
官网下载:
http://www.ganymed.ethz.ch/ssh2/
ma
- adb端口被占用问题
gqdy365
adb
最近重新安装的电脑,配置了新环境,老是出现:
adb server is out of date. killing...
ADB server didn't ACK
* failed to start daemon *
百度了一下,说是端口被占用,我开个eclipse,然后打开cmd,就提示这个,很烦人。
一个比较彻底的解决办法就是修改
- ASP.NET使用FileUpload上传文件
hvt
.netC#hovertreeasp.netwebform
前台代码:
<asp:FileUpload ID="fuKeleyi" runat="server" />
<asp:Button ID="BtnUp" runat="server" onclick="BtnUp_Click" Text="上 传" />
- 代码之谜(四)- 浮点数(从惊讶到思考)
justjavac
浮点数精度代码之谜IEEE
在『代码之谜』系列的前几篇文章中,很多次出现了浮点数。 浮点数在很多编程语言中被称为简单数据类型,其实,浮点数比起那些复杂数据类型(比如字符串)来说, 一点都不简单。
单单是说明 IEEE浮点数 就可以写一本书了,我将用几篇博文来简单的说说我所理解的浮点数,算是抛砖引玉吧。 一次面试
记得多年前我招聘 Java 程序员时的一次关于浮点数、二分法、编码的面试, 多年以后,他已经称为了一名很出色的
- 数据结构随记_1
lx.asymmetric
数据结构笔记
第一章
1.数据结构包括数据的
逻辑结构、数据的物理/存储结构和数据的逻辑关系这三个方面的内容。 2.数据的存储结构可用四种基本的存储方法表示,它们分别是
顺序存储、链式存储 、索引存储 和 散列存储。 3.数据运算最常用的有五种,分别是
查找/检索、排序、插入、删除、修改。 4.算法主要有以下五个特性:
输入、输出、可行性、确定性和有穷性。 5.算法分析的
- linux的会话和进程组
网络接口
linux
会话: 一个或多个进程组。起于用户登录,终止于用户退出。此期间所有进程都属于这个会话期。会话首进程:调用setsid创建会话的进程1.规定组长进程不能调用setsid,因为调用setsid后,调用进程会成为新的进程组的组长进程.如何保证? 先调用fork,然后终止父进程,此时由于子进程的进程组ID为父进程的进程组ID,而子进程的ID是重新分配的,所以保证子进程不会是进程组长,从而子进程可以调用se
- 二维数组 元素的连续求解
1140566087
二维数组ACM
import java.util.HashMap;
public class Title {
public static void main(String[] args){
f();
}
// 二位数组的应用
//12、二维数组中,哪一行或哪一列的连续存放的0的个数最多,是几个0。注意,是“连续”。
public static void f(){
- 也谈什么时候Java比C++快
windshome
javaC++
刚打开iteye就看到这个标题“Java什么时候比C++快”,觉得很好笑。
你要比,就比同等水平的基础上的相比,笨蛋写得C代码和C++代码,去和高手写的Java代码比效率,有什么意义呢?
我是写密码算法的,深刻知道算法C和C++实现和Java实现之间的效率差,甚至也比对过C代码和汇编代码的效率差,计算机是个死的东西,再怎么优化,Java也就是和C