一阶多智能体的平均一致性Leader-follower结构

模型

一阶多智能体的运动学方程可以描述为
x ˙ i ( t ) = u i ( t ) , i ∈ { 1 , 2 , 3 , … , N } \dot x_i(t) = u_i(t),i\in\{1,2,3,\dots,N\} x˙i(t)=ui(t),i{1,2,3,,N}
其中 x i ( t ) x_i(t) xi(t)为状态, u i ( t ) u_i(t) ui(t)为控制量,最终期望的结果为
lim ⁡ t → T ∣ x i ( t ) − x j ( t ) ∣ = 0 \lim_{t\to T} |x_i(t) - x_j(t)| = 0 tTlimxi(t)xj(t)=0

∣ x i ( t ) − x j ( t ) ∣ = 0 , ∀ t ≥ T |x_i(t)-x_j(t)| = 0, \forall t \ge T xi(t)xj(t)=0,tT

其中上式中第一个等式表示在时间趋近于 T T T的时候,智能体的状态趋于一致。第二个等式表示在时间超过 T T T的时候智能体的时间已经保持一致。

算法

在上一篇文章中我们构建了一个分布式的协同一致性算法,在本节中,我们构建一个leader-follower结构的协同一致性算法。其中leader的状态是leader算法设计的,设leader的编号为1,设leader的控制量为
u 1 ( t ) = u 1 u_1(t) = u_1 u1(t)=u1
follower的控制量可以设计为(这里设计了一个最简单的纯p控制):
u i ( t ) = − k ∑ j = 1 N a i j ( x i ( t ) − x j ( t ) ) u_i(t) = - k\sum_{j=1}^{N}a_{ij}(x_i(t) - x_j(t)) ui(t)=kj=1Naij(xi(t)xj(t))
在leader-follower结构中有一个假设,leader到每一个follower都是可达的,即leader的信息可以被广播在follower中。

仿真

设置智能体的初始状态为
x = [ 1 2 3 − 3 ] x = \begin{bmatrix} 1& 2& 3& -3 \end{bmatrix} x=[1233]
智能体的连接为

智能体1 --- 智能体2
  |    \      |
  |      \    | 
智能体4 --- 智能体3

那么拉普拉斯矩阵为
L = [ 3 − 1 − 1 − 1 − 1 2 − 1 0 − 1 − 1 3 − 1 − 1 0 − 1 2 ] L = \begin{bmatrix} 3 & -1 & -1 & -1\\ -1 & 2 & -1 & 0\\ -1 & -1 & 3 & -1\\ -1 & 0 & -1 & 2\\ \end{bmatrix} L= 3111121011311012
leader的控制量为 u 1 = − x 1 u_1 = - x_1 u1=x1

仿真代码为(matlab)

clc;clear;close all;

x = [1 2 3 -3];
u = [];
A = [0 1 1 1;
     1 0 1 0;
     1 1 0 1;
     1 0 1 0;];
B = [3 0 0 0;
     0 2 0 0;
     0 0 3 0;
     0 0 0 2;];
L = B - A;
dt = 0.001;
k = 2;
k_1 = 3;

for i = 1:4000
	% follower 控制量
    u1 = - k.* (x(end,:) * L);
    % leader控制量
    u1(1) = - k_1 .* x(end,1);
    % 状态更新
    x1 = x(end,:) + u1 * dt;

    u = [u;u1];
    x = [x;x1];
end

画出控制量的曲线以及状态量曲线

Fig1 = figure(1);
plot(0.001:0.001:4.001,x,'LineWidth', 1.5);
xlabel('t');
ylabel('x');
legend('agent1','agent2','agent3','agent4');
print(Fig1,'x','-dpng','-r600')

Fig2 = figure(2);
plot(0.001:0.001:4.000,u,'LineWidth', 1.5);
xlabel('t');
ylabel('u');
legend('agent1','agent2','agent3','agent4');
print(Fig2,'u','-dpng','-r600')

状态变量的随时间变化图为
一阶多智能体的平均一致性Leader-follower结构_第1张图片

控制量随时间变化图为
一阶多智能体的平均一致性Leader-follower结构_第2张图片

可以看到,最终四个智能体的状态全部归于一致。

你可能感兴趣的:(控制理论,多智能体,leader-follower)