看注解逐行学习ChatGLM2-6B大模型,项目中的modeling_chatglm.py文件

模型代码地址

""" PyTorch ChatGLM model. 
ChatGLMModel模型结构 (假设输入X大小为 3x5)  转载自:https://blog.csdn.net/hjyai94/article/details/132504200
(embedding) Embedding (转置后 5x3x4096)
    word_embeddings: Embedding(65024, 4096)
(rotary_pos_emb) RotaryEmbedding()
(encoder) GLMTransformer
    (layers) ModuleList
    0-27: 28 x GLMBlock
        (input_layernorm) RMSNorm() (输入输出大小: 5x3x4096)
        (self_attention) SelfAttention
            (query_key_value) Linear(in_features=4096, out_features=4608, bias=True)
            (core_attention) CoreAttention(attention_dropout) Dropout(p=0.0, inplace=False))
            (dense) Linear(in_features=4096, out_features=4096, bias=False)
        (post_attention_layernorm) RMSNorm()
        (mlp) MLP
            (dense_h_to_4h) Linear(in_features=4096, out_features=27392, bias=False)
            (dense_4h_to_h) Linear(in_features=13696, out_features=4096, bias=False)
    (final_layernorm) RMSNorm()
(output_layer) Linear(in_features=4096, out_features=65024, bias=False) (输出大小: 3x5x65024)

"""
#导入基础库
import math
import copy
import warnings
import re
import sys
#导入pytorch相关库
import torch
import torch.utils.checkpoint
import torch.nn.functional as F
from torch import nn
from torch.nn import CrossEntropyLoss, LayerNorm
from torch.nn.utils import skip_init
from typing import Optional, Tuple, Union, List, Callable, Dict, Any
#导入transformer相关库
from transformers.modeling_outputs import (
    BaseModelOutputWithPast,
    CausalLMOutputWithPast,
)
from transformers.modeling_utils import PreTrainedModel
from transformers.utils import logging
from transformers.generation.logits_process import LogitsProcessor
from transformers.generation.utils import LogitsProcessorList, StoppingCriteriaList, GenerationConfig, ModelOutput
#导入同一目录下的configuration_chatglm.py的ChatGLMConfig类,这个类里面就是定义了模型结构参数,例如网络层数num_layers,词表大小vocab_size等参数
from .configuration_chatglm import ChatGLMConfig

# flags required to enable jit fusion kernels
#在非 macOS 系统上禁用性能分析模式和执行器,并允许在 CPU 和 GPU 上执行运算图融合。
if sys.platform != 'darwin':
    torch._C._jit_set_profiling_mode(False)
    torch._C._jit_set_profiling_executor(False)
    torch._C._jit_override_can_fuse_on_cpu(True)
    torch._C._jit_override_can_fuse_on_gpu(True)

#logging来自transformers.utils 模块
#__name__: 是一个内置的 Python 变量,表示当前模块的名称。如果当前模块是主程序,则 __name__ 的值为 '__main__'。如果在其它地方被导入,则为该模块的名称。
#logger 是一个用来记录(log)信息的对象。在配置了 logger 后,你可以通过它在代码的各个部分记录不同级别的消息(例如:debug, info, warning, error, critical)。
#例如可以logger.info("This is an info message")   logger.warning("This is a warning message")
logger = logging.get_logger(__name__)

#模型的地址
_CHECKPOINT_FOR_DOC = "THUDM/ChatGLM2-6B"

#模型配置参数文件的地址
_CONFIG_FOR_DOC = "ChatGLM6BConfig"
#预训练模型文件的地址
CHATGLM_6B_PRETRAINED_MODEL_ARCHIVE_LIST = [
    "THUDM/chatglm2-6b",
    # See all ChatGLM models at https://huggingface.co/models?filter=chatglm
]

#类的初始化方法
def default_init(cls, *args, **kwargs):
    return cls(*args, **kwargs)


class InvalidScoreLogitsProcessor(LogitsProcessor):
    def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
        if torch.isnan(scores).any() or torch.isinf(scores).any():
            scores.zero_()
            scores[..., 5] = 5e4
        return scores

#前缀编码器模型类
class PrefixEncoder(torch.nn.Module):
    """
    The torch.nn model to encode the prefix
    Input shape: (batch-size, prefix-length)
    Output shape: (batch-size, prefix-length, 2*layers*hidden)
    """

    def __init__(self, config: ChatGLMConfig):
        super().__init__()
        #默认为false
        self.prefix_projection = config.prefix_projection
        #是否自定义前缀编码器层,如果self.prefix_projection是True进入if
        if self.prefix_projection:
            # Use a two-layer MLP to encode the prefix
            #默认num_layers=28,kv_channels=128,multi_query_group_num=1,这些可以从同目录下的configuration_chatglm.py的ChatGLMConfig类看到
            kv_size = config.num_layers * config.kv_channels * config.multi_query_group_num * 2
            #默认pre_seq_len=None,pre_seq_len表示每次前缀序列的预定义长度,作为Embedding的输入节点数,kv_size表示Embedding的输出节点数
            self.embedding = torch.nn.Embedding(config.pre_seq_len, kv_size)
            #定义一个trans层,数据流为embedding层-->trans层-->decoding层,用于帮助特征转化一下再进入decoding层
            self.trans = torch.nn.Sequential(
                torch.nn.Linear(kv_size, config.hidden_size),
                torch.nn.Tanh(),
                torch.nn.Linear(config.hidden_size, kv_size)
            )
        else:
            #否则直接定义embedding
            self.embedding = torch.nn.Embedding(config.pre_seq_len,
                                                config.num_layers * config.kv_channels * config.multi_query_group_num * 2)

    def forward(self, prefix: torch.Tensor):
        #如果使用自定义层则数据流为prompt-->embedding层-->trans层-->decoding层
        if self.prefix_projection:
            prefix_tokens = self.embedding(prefix)
            past_key_values = self.trans(prefix_tokens)
        else:
            #如果不使用自定义层则数据流为prompt-->embedding层-->decoding层
            past_key_values = self.embedding(prefix)
        return past_key_values

#定义了一个方法来分tensor变量,方法为根据最好一层分,例如输入为[2,512,8]分解块数为4个则会生成4个[2,512,2]
def split_tensor_along_last_dim(
        tensor: torch.Tensor,
        num_partitions: int,
        contiguous_split_chunks: bool = False,
) -> List[torch.Tensor]:
    """Split a tensor along its last dimension.

    Arguments:
        tensor: input tensor.
        num_partitions: number of partitions to split the tensor
        contiguous_split_chunks: If True, make each chunk contiguous
                                 in memory.

    Returns:
        A list of Tensors
    """
    # Get the size and dimension.
    #假设tensor为[2,512,8],tensor.dim()会返回3,因此last_dim=2
    last_dim = tensor.dim() - 1
    #tensor.size()会返回一个元组(2,512,8),因此tensor.size()[last_dim]=8
    #因此num_partitions为4的话,last_dim_size为2,注意//为向下取整
    last_dim_size = tensor.size()[last_dim] // num_partitions
    # Split.
    #根据最后一维度划分,得到4个[2,512,2],如果多的话最后一个可能为[2,512,1]
    tensor_list = torch.split(tensor, last_dim_size, dim=last_dim)
    # Note: torch.split does not create contiguous tensors by default.
    #如果需要得到内存连续的张量
    if contiguous_split_chunks:
        return tuple(chunk.contiguous() for chunk in tensor_list)

    return tensor_list

#位置编码层,采用了RoPE位置编码方式,采用了PaLM的实现方式
class RotaryEmbedding(nn.Module):
    def __init__(self, dim, original_impl=False, device=None, dtype=None):
        super().__init__()
        #先计算好θ
        inv_freq = 1.0 / (10000 ** (torch.arange(0, dim, 2, device=device).to(dtype=dtype) / dim))
        self.register_buffer("inv_freq", inv_freq)
        self.dim = dim
        self.original_impl = original_impl

    def forward_impl(
            self, seq_len: int, n_elem: int, dtype: torch.dtype, device: torch.device, base: int = 10000
    ):
        """Enhanced Transformer with Rotary Position Embedding.

        Derived from: https://github.com/labmlai/annotated_deep_learning_paper_implementations/blob/master/labml_nn/
        transformers/rope/__init__.py. MIT License:
        https://github.com/labmlai/annotated_deep_learning_paper_implementations/blob/master/license.
        """
        # $\Theta = {\theta_i = 10000^{\frac{2(i-1)}{d}}, i \in [1, 2, ..., \frac{d}{2}]}$
        theta = 1.0 / (base ** (torch.arange(0, n_elem, 2, dtype=dtype, device=device) / n_elem))

        # Create position indexes `[0, 1, ..., seq_len - 1]`
        seq_idx = torch.arange(seq_len, dtype=dtype, device=device)

        # Calculate the product of position index and $\theta_i$
        idx_theta = torch.outer(seq_idx, theta).float()

        cache = torch.stack([torch.cos(idx_theta), torch.sin(idx_theta)], dim=-1)

        # this is to mimic the behaviour of complex32, else we will get different results
        if dtype in (torch.float16, torch.bfloat16, torch.int8):
            cache = cache.bfloat16() if dtype == torch.bfloat16 else cache.half()
        return cache

    def forward(self, max_seq_len, offset=0):
        return self.forward_impl(
            max_seq_len, self.dim, dtype=self.inv_freq.dtype, device=self.inv_freq.device
        )

#把下面的函数注释成了pytorch库函数,其中jit是代表"just-in-time"(即时)编译。jit模块是PyTorch的一个子模块,提供了用于将Python代码转换为高效、优化的机器码的工具。
@torch.jit.script
def apply_rotary_pos_emb(x: torch.Tensor, rope_cache: torch.Tensor) -> torch.Tensor:
    # x: [sq, b, np, hn]
    sq, b, np, hn = x.size(0), x.size(1), x.size(2), x.size(3)
    rot_dim = rope_cache.shape[-2] * 2
    x, x_pass = x[..., :rot_dim], x[..., rot_dim:]
    # truncate to support variable sizes
    rope_cache = rope_cache[:sq]
    xshaped = x.reshape(sq, -1, np, rot_dim // 2, 2)
    rope_cache = rope_cache.view(sq, -1, 1, xshaped.size(3), 2)
    x_out2 = torch.stack(
        [
            xshaped[..., 0] * rope_cache[..., 0] - xshaped[..., 1] * rope_cache[..., 1],
            xshaped[..., 1] * rope_cache[..., 0] + xshaped[..., 0] * rope_cache[..., 1],
        ],
        -1,
    )
    x_out2 = x_out2.flatten(3)
    return torch.cat((x_out2, x_pass), dim=-1)

#RMSNorm 类继承自 torch.nn.Module,它是创建 PyTorch 模块的基类。
#定义了一个自定义的 PyTorch 模块 RMSNorm,它通过计算均方根归一化输入张量并应用可训练的权重,来实现一种特定的归一化操作。
class RMSNorm(torch.nn.Module):
    def __init__(self, normalized_shape, eps=1e-5, device=None, dtype=None, **kwargs):
        super().__init__()
        #通过 torch.nn.Parameter 创建了一个可训练的权重张量 self.weight,其形状由 normalized_shape 指定,并将其存储为模块的属性。
        self.weight = torch.nn.Parameter(torch.empty(normalized_shape, device=device, dtype=dtype))
        self.eps = eps#用于设置一个小的常数以防止除以零错误

    def forward(self, hidden_states: torch.Tensor):
        input_dtype = hidden_states.dtype#用于保存输入张量的数据类型,以便最后返回时将输出转换回相同的数据类型。
        variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True)#首先,通过 hidden_states.to(torch.float32) 将输入张量转换为 torch.float32 数据类型,然后计算其平方(.pow(2)),再在最后一个维度上求平均值(.mean(-1, keepdim=True))。这样得到的 variance 张量表示输入张量在最后一个维度上的方差。
        hidden_states = hidden_states * torch.rsqrt(variance + self.eps)#接下来,将输入张量 hidden_states 乘以 torch.rsqrt(variance + self.eps),其中 torch.rsqrt 是计算倒数的平方根的函数。这样做是为了对输入张量进行归一化,使其具有单位标准差。
        #hidden_states 乘以权重张量 self.weight,并将结果转换回输入张量的数据类型 input_dtype。
        return (self.weight * hidden_states).to(input_dtype)

#自注意力层核心
class CoreAttention(torch.nn.Module):
    def __init__(self, config: ChatGLMConfig, layer_number):
        super(CoreAttention, self).__init__()
        #默认apply_query_key_layer_scaling为True,使用Q,K层的维度
        self.apply_query_key_layer_scaling = config.apply_query_key_layer_scaling
        #默认attention_softmax_in_fp32为True,softmax保留32位
        self.attention_softmax_in_fp32 = config.attention_softmax_in_fp32
        if self.apply_query_key_layer_scaling:
            self.attention_softmax_in_fp32 = True
        self.layer_number = max(1, layer_number)
        #默认kv的维度kv_channels=128,多头数量num_attention_heads=32
        projection_size = config.kv_channels * config.num_attention_heads

        # Per attention head and per partition values.
        #进入前维度
        self.hidden_size_per_partition = projection_size
        每个attention head的维度
        self.hidden_size_per_attention_head = projection_size // config.num_attention_heads
        #多头数量num_attention_heads=32
        self.num_attention_heads_per_partition = config.num_attention_heads
        #下面计算了注意力机制公式里K*V除以的根号dk
        coeff = None
        self.norm_factor = math.sqrt(self.hidden_size_per_attention_head)
        if self.apply_query_key_layer_scaling:
            coeff = self.layer_number
            self.norm_factor *= coeff
        self.coeff = coeff
        #默认attention_dropout=0
        self.attention_dropout = torch.nn.Dropout(config.attention_dropout)

    def forward(self, query_layer, key_layer, value_layer, attention_mask):
        pytorch_major_version = int(torch.__version__.split('.')[0])
        if pytorch_major_version >= 2:
            #for k in [query_layer, key_layer, value_layer]: 这个循环会遍历query_layer, key_layer, 和value_layer这三个张量。
            #k.permute(1, 2, 0, 3): permute是一个PyTorch的方法,用于改变张量的轴的顺序。假设原张量的维度顺序是(0, 1, 2, 3)(假设张量有四个维度),permute(1, 2, 0, 3)将会把这个顺序改变为(1, 2, 0, 3)。
            #具体来说,原来在位置0的维度(通常是batch_size)现在移动到了位置2,位置1和2的维度向前移动了一个位置,而位置3的维度保持不变。
            query_layer, key_layer, value_layer = [k.permute(1, 2, 0, 3) for k in [query_layer, key_layer, value_layer]]
            if attention_mask is None and query_layer.shape[2] == key_layer.shape[2]:
                context_layer = torch.nn.functional.scaled_dot_product_attention(query_layer, key_layer, value_layer,
                                                                                 is_causal=True)
            else:
                if attention_mask is not None:
                    #将attention_mask中0,1呼唤
                    attention_mask = ~attention_mask
                #实现softmax(QK^T/sqrt(dk))*V
                context_layer = torch.nn.functional.scaled_dot_product_attention(query_layer, key_layer, value_layer,
                                                                                 attention_mask)
            #换维度
            context_layer = context_layer.permute(2, 0, 1, 3)

            new_context_layer_shape = context_layer.size()[:-2] + (self.hidden_size_per_partition,)
            #重新转化维度
            context_layer = context_layer.reshape(*new_context_layer_shape)
        else:
            # Raw attention scores

            # [b, np, sq, sk]
            output_size = (query_layer.size(1), query_layer.size(2), query_layer.size(0), key_layer.size(0))

            # [sq, b, np, hn] -> [sq, b * np, hn]
            query_layer = query_layer.view(output_size[2], output_size[0] * output_size[1], -1)
            # [sk, b, np, hn] -> [sk, b * np, hn]
            key_layer = key_layer.view(output_size[3], output_size[0] * output_size[1], -1)

            # preallocting input tensor: [b * np, sq, sk]
            matmul_input_buffer = torch.empty(
                output_size[0] * output_size[1], output_size[2], output_size[3], dtype=query_layer.dtype,
                device=query_layer.device
            )

            # Raw attention scores. [b * np, sq, sk]
            matmul_result = torch.baddbmm(
                matmul_input_buffer,
                query_layer.transpose(0, 1),  # [b * np, sq, hn]
                key_layer.transpose(0, 1).transpose(1, 2),  # [b * np, hn, sk]
                beta=0.0,
                alpha=(1.0 / self.norm_factor),
            )

            # change view to [b, np, sq, sk]
            attention_scores = matmul_result.view(*output_size)

            # ===========================
            # Attention probs and dropout
            # ===========================

            # attention scores and attention mask [b, np, sq, sk]
            if self.attention_softmax_in_fp32:
                attention_scores = attention_scores.float()
            if self.coeff is not None:
                attention_scores = attention_scores * self.coeff
            if attention_mask is None and attention_scores.shape[2] == attention_scores.shape[3]:
                attention_mask = torch.ones(output_size[0], 1, output_size[2], output_size[3],
                                            device=attention_scores.device, dtype=torch.bool)
                attention_mask.tril_()
                attention_mask = ~attention_mask
            if attention_mask is not None:
                attention_scores = attention_scores.masked_fill(attention_mask, float("-inf"))
            attention_probs = F.softmax(attention_scores, dim=-1)
            attention_probs = attention_probs.type_as(value_layer)

            # This is actually dropping out entire tokens to attend to, which might
            # seem a bit unusual, but is taken from the original Transformer paper.
            attention_probs = self.attention_dropout(attention_probs)
            # =========================
            # Context layer. [sq, b, hp]
            # =========================

            # value_layer -> context layer.
            # [sk, b, np, hn] --> [b, np, sq, hn]

            # context layer shape: [b, np, sq, hn]
            output_size = (value_layer.size(1), value_layer.size(2), query_layer.size(0), value_layer.size(3))
            # change view [sk, b * np, hn]
            value_layer = value_layer.view(value_layer.size(0), output_size[0] * output_size[1], -1)
            # change view [b * np, sq, sk]
            attention_probs = attention_probs.view(output_size[0] * output_size[1], output_size[2], -1)
            # matmul: [b * np, sq, hn]
            context_layer = torch.bmm(attention_probs, value_layer.transpose(0, 1))
            # change view [b, np, sq, hn]
            context_layer = context_layer.view(*output_size)
            # [b, np, sq, hn] --> [sq, b, np, hn]
            context_layer = context_layer.permute(2, 0, 1, 3).contiguous()
            # [sq, b, np, hn] --> [sq, b, hp]
            new_context_layer_shape = context_layer.size()[:-2] + (self.hidden_size_per_partition,)
            context_layer = context_layer.view(*new_context_layer_shape)

        return context_layer


class SelfAttention(torch.nn.Module):
    """Parallel self-attention layer abstract class.

    Self-attention layer takes input with size [s, b, h]
    and returns output of the same size.
    """

    def __init__(self, config: ChatGLMConfig, layer_number, device=None):
        super(SelfAttention, self).__init__()
        self.layer_number = max(1, layer_number)
        
        self.projection_size = config.kv_channels * config.num_attention_heads

        # Per attention head and per partition values.
        self.hidden_size_per_attention_head = self.projection_size // config.num_attention_heads
        self.num_attention_heads_per_partition = config.num_attention_heads

        self.multi_query_attention = config.multi_query_attention
        self.qkv_hidden_size = 3 * self.projection_size
        if self.multi_query_attention:
            #默认multi_query_group_num=1
            self.num_multi_query_groups_per_partition = config.multi_query_group_num
            self.qkv_hidden_size = (
                    self.projection_size + 2 * self.hidden_size_per_attention_head * config.multi_query_group_num
            )
        self.query_key_value = nn.Linear(config.hidden_size, self.qkv_hidden_size,
                                         bias=config.add_bias_linear or config.add_qkv_bias,
                                         device=device, **_config_to_kwargs(config)
                                         )

        self.core_attention = CoreAttention(config, self.layer_number)

        # Output.
        self.dense = nn.Linear(self.projection_size, config.hidden_size, bias=config.add_bias_linear,
                               device=device, **_config_to_kwargs(config)
                               )

    def _allocate_memory(self, inference_max_sequence_len, batch_size, device=None, dtype=None):
        if self.multi_query_attention:
            num_attention_heads = self.num_multi_query_groups_per_partition
        else:
            num_attention_heads = self.num_attention_heads_per_partition
        return torch.empty(
            inference_max_sequence_len,
            batch_size,
            num_attention_heads,
            self.hidden_size_per_attention_head,
            dtype=dtype,
            device=device,
        )

    def forward(
            self, hidden_states, attention_mask, rotary_pos_emb, kv_cache=None, use_cache=True
    ):
        # hidden_states: [sq, b, h]

        # =================================================
        # Pre-allocate memory for key-values for inference.
        # =================================================
        # =====================
        # Query, Key, and Value
        # =====================

        # Attention heads [sq, b, h] --> [sq, b, (np * 3 * hn)]
        mixed_x_layer = self.query_key_value(hidden_states)

        if self.multi_query_attention:
            (query_layer, key_layer, value_layer) = mixed_x_layer.split(
                [
                    self.num_attention_heads_per_partition * self.hidden_size_per_attention_head,
                    self.num_multi_query_groups_per_partition * self.hidden_size_per_attention_head,
                    self.num_multi_query_groups_per_partition * self.hidden_size_per_attention_head,
                ],
                dim=-1,
            )
            query_layer = query_layer.view(
                query_layer.size()[:-1] + (self.num_attention_heads_per_partition, self.hidden_size_per_attention_head)
            )
            key_layer = key_layer.view(
                key_layer.size()[:-1] + (self.num_multi_query_groups_per_partition, self.hidden_size_per_attention_head)
            )
            value_layer = value_layer.view(
                value_layer.size()[:-1]
                + (self.num_multi_query_groups_per_partition, self.hidden_size_per_attention_head)
            )
        else:
            new_tensor_shape = mixed_x_layer.size()[:-1] + \
                               (self.num_attention_heads_per_partition,
                                3 * self.hidden_size_per_attention_head)
            mixed_x_layer = mixed_x_layer.view(*new_tensor_shape)

            # [sq, b, np, 3 * hn] --> 3 [sq, b, np, hn]
            (query_layer, key_layer, value_layer) = split_tensor_along_last_dim(mixed_x_layer, 3)

        # apply relative positional encoding (rotary embedding)
        if rotary_pos_emb is not None:
            query_layer = apply_rotary_pos_emb(query_layer, rotary_pos_emb)
            key_layer = apply_rotary_pos_emb(key_layer, rotary_pos_emb)

        # adjust key and value for inference
        if kv_cache is not None:
            cache_k, cache_v = kv_cache
            key_layer = torch.cat((cache_k, key_layer), dim=0)
            value_layer = torch.cat((cache_v, value_layer), dim=0)
        if use_cache:
            kv_cache = (key_layer, value_layer)
        else:
            kv_cache = None

        if self.multi_query_attention:
            key_layer = key_layer.unsqueeze(-2)
            key_layer = key_layer.expand(
                -1, -1, -1, self.num_attention_heads_per_partition // self.num_multi_query_groups_per_partition, -1
            )
            key_layer = key_layer.contiguous().view(
                key_layer.size()[:2] + (self.num_attention_heads_per_partition, self.hidden_size_per_attention_head)
            )
            value_layer = value_layer.unsqueeze(-2)
            value_layer = value_layer.expand(
                -1, -1, -1, self.num_attention_heads_per_partition // self.num_multi_query_groups_per_partition, -1
            )
            value_layer = value_layer.contiguous().view(
                value_layer.size()[:2] + (self.num_attention_heads_per_partition, self.hidden_size_per_attention_head)
            )

        # ==================================
        # core attention computation
        # ==================================

        context_layer = self.core_attention(query_layer, key_layer, value_layer, attention_mask)

        # =================
        # Output. [sq, b, h]
        # =================

        output = self.dense(context_layer)

        return output, kv_cache


def _config_to_kwargs(args):
    common_kwargs = {
        "dtype": args.torch_dtype,
    }
    return common_kwargs

#atttention后的MLP层
class MLP(torch.nn.Module):
    """MLP.

    MLP will take the input with h hidden state, project it to 4*h
    hidden dimension, perform nonlinear transformation, and project the
    state back into h hidden dimension.
    """

    def __init__(self, config: ChatGLMConfig, device=None):
        super(MLP, self).__init__()

        self.add_bias = config.add_bias_linear

        # Project to 4h. If using swiglu double the output width, see https://arxiv.org/pdf/2002.05202.pdf
        self.dense_h_to_4h = nn.Linear(
            config.hidden_size,
            config.ffn_hidden_size * 2,
            bias=self.add_bias,
            device=device,
            **_config_to_kwargs(config)
        )

        def swiglu(x):
            x = torch.chunk(x, 2, dim=-1)
            return F.silu(x[0]) * x[1]

        self.activation_func = swiglu

        # Project back to h.
        self.dense_4h_to_h = nn.Linear(
            config.ffn_hidden_size,
            config.hidden_size,
            bias=self.add_bias,
            device=device,
            **_config_to_kwargs(config)
        )

    def forward(self, hidden_states):
        # [s, b, 4hp]
        intermediate_parallel = self.dense_h_to_4h(hidden_states)
        intermediate_parallel = self.activation_func(intermediate_parallel)
        # [s, b, h]
        output = self.dense_4h_to_h(intermediate_parallel)
        return output

#28层指的就是28个GLMBlock,每个里面包含(RMSNorm,SelfAttention(Linear,CoreAttention,Linear),RMSNorm,MLP),最后一层的最后再加个RMSNorm
class GLMBlock(torch.nn.Module):
    """A single transformer layer.

    Transformer layer takes input with size [s, b, h] and returns an
    output of the same size.
    """

    def __init__(self, config: ChatGLMConfig, layer_number, device=None):
        super(GLMBlock, self).__init__()
        self.layer_number = layer_number

        self.apply_residual_connection_post_layernorm = config.apply_residual_connection_post_layernorm

        self.fp32_residual_connection = config.fp32_residual_connection

        LayerNormFunc = RMSNorm if config.rmsnorm else LayerNorm
        # Layernorm on the input data.
        self.input_layernorm = LayerNormFunc(config.hidden_size, eps=config.layernorm_epsilon, device=device,
                                             dtype=config.torch_dtype)

        # Self attention.
        self.self_attention = SelfAttention(config, layer_number, device=device)
        self.hidden_dropout = config.hidden_dropout

        # Layernorm on the attention output
        self.post_attention_layernorm = LayerNormFunc(config.hidden_size, eps=config.layernorm_epsilon, device=device,
                                                      dtype=config.torch_dtype)

        # MLP
        self.mlp = MLP(config, device=device)

    def forward(
            self, hidden_states, attention_mask, rotary_pos_emb, kv_cache=None, use_cache=True,
    ):
        # hidden_states: [s, b, h]

        # Layer norm at the beginning of the transformer layer.
        layernorm_output = self.input_layernorm(hidden_states)
        # Self attention.
        attention_output, kv_cache = self.self_attention(
            layernorm_output,
            attention_mask,
            rotary_pos_emb,
            kv_cache=kv_cache,
            use_cache=use_cache
        )

        # Residual connection.
        if self.apply_residual_connection_post_layernorm:
            residual = layernorm_output
        else:
            residual = hidden_states

        layernorm_input = torch.nn.functional.dropout(attention_output, p=self.hidden_dropout, training=self.training)
        layernorm_input = residual + layernorm_input

        # Layer norm post the self attention.
        layernorm_output = self.post_attention_layernorm(layernorm_input)

        # MLP.
        mlp_output = self.mlp(layernorm_output)

        # Second residual connection.
        if self.apply_residual_connection_post_layernorm:
            residual = layernorm_output
        else:
            residual = layernorm_input

        output = torch.nn.functional.dropout(mlp_output, p=self.hidden_dropout, training=self.training)
        output = residual + output

        return output, kv_cache

#28个GLMBlock块组成的Transformer网络
class GLMTransformer(torch.nn.Module):
    """Transformer class."""

    def __init__(self, config: ChatGLMConfig, device=None):
        super(GLMTransformer, self).__init__()
        #默认false
        self.fp32_residual_connection = config.fp32_residual_connection
        #默认True
        self.post_layer_norm = config.post_layer_norm

        # Number of layers.默认28
        self.num_layers = config.num_layers

        # Transformer layers.
        def build_layer(layer_number):
            return GLMBlock(config, layer_number, device=device)

        self.layers = torch.nn.ModuleList([build_layer(i + 1) for i in range(self.num_layers)])

        if self.post_layer_norm:
            #默认rmsnorm为True
            LayerNormFunc = RMSNorm if config.rmsnorm else LayerNorm
            # Final layer norm before output.
            self.final_layernorm = LayerNormFunc(config.hidden_size, eps=config.layernorm_epsilon, device=device,
                                                 dtype=config.torch_dtype)
        #减少GPU内存消耗
        self.gradient_checkpointing = False

    def _get_layer(self, layer_number):
        return self.layers[layer_number]

    #Optional 是Python的typing模块提供的一个类型提示,用于表示某个参数可以是特定的类型或None。
    #例如,Optional[int] 表示该值可以是int类型或None
    def forward(
            self, hidden_states, attention_mask, rotary_pos_emb, kv_caches=None,
            use_cache: Optional[bool] = True,
            output_hidden_states: Optional[bool] = False,
    ):
        if not kv_caches:
            kv_caches = [None for _ in range(self.num_layers)]
        presents = () if use_cache else None
        if self.gradient_checkpointing and self.training:
            if use_cache:
                logger.warning_once(
                    "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
                )
                use_cache = False

        all_self_attentions = None
        all_hidden_states = () if output_hidden_states else None
        for index in range(self.num_layers):
            #默认false
            if output_hidden_states:
                all_hidden_states = all_hidden_states + (hidden_states,)

            layer = self._get_layer(index)
            if self.gradient_checkpointing and self.training:
                layer_ret = torch.utils.checkpoint.checkpoint(
                    layer,
                    hidden_states,
                    attention_mask,
                    rotary_pos_emb,
                    kv_caches[index],
                    use_cache
                )
            else:
                layer_ret = layer(
                    hidden_states,
                    attention_mask,
                    rotary_pos_emb,
                    kv_cache=kv_caches[index],
                    use_cache=use_cache
                )
            hidden_states, kv_cache = layer_ret
            if use_cache:
                presents = presents + (kv_cache,)

        if output_hidden_states:
            all_hidden_states = all_hidden_states + (hidden_states,)

        # Final layer norm. 默认True
        if self.post_layer_norm:
            hidden_states = self.final_layernorm(hidden_states)

        return hidden_states, presents, all_hidden_states, all_self_attentions

#用于预训练的模型类
class ChatGLMPreTrainedModel(PreTrainedModel):
    """
    An abstract class to handle weights initialization and
    a simple interface for downloading and loading pretrained models.
    """

    is_parallelizable = False
    supports_gradient_checkpointing = True
    config_class = ChatGLMConfig
    base_model_prefix = "transformer"
    _no_split_modules = ["GLMBlock"]

    def _init_weights(self, module: nn.Module):
        """Initialize the weights."""
        return

    def get_masks(self, input_ids, past_key_values, padding_mask=None):
        batch_size, seq_length = input_ids.shape
        full_attention_mask = torch.ones(batch_size, seq_length, seq_length, device=input_ids.device)
        full_attention_mask.tril_()
        past_length = 0
        if past_key_values:
            past_length = past_key_values[0][0].shape[0]
        if past_length:
            full_attention_mask = torch.cat((torch.ones(batch_size, seq_length, past_length,
                                                        device=input_ids.device), full_attention_mask), dim=-1)
        if padding_mask is not None:
            full_attention_mask = full_attention_mask * padding_mask.unsqueeze(1)
        if not past_length and padding_mask is not None:
            full_attention_mask -= padding_mask.unsqueeze(-1) - 1
        full_attention_mask = (full_attention_mask < 0.5).bool()
        full_attention_mask.unsqueeze_(1)
        return full_attention_mask

    def get_position_ids(self, input_ids, device):
        batch_size, seq_length = input_ids.shape
        position_ids = torch.arange(seq_length, dtype=torch.long, device=device).unsqueeze(0).repeat(batch_size, 1)
        return position_ids

    def _set_gradient_checkpointing(self, module, value=False):
        if isinstance(module, GLMTransformer):
            module.gradient_checkpointing = value

#Embedding层
class Embedding(torch.nn.Module):
    """Language model embeddings."""

    def __init__(self, config: ChatGLMConfig, device=None):
        super(Embedding, self).__init__()

        self.hidden_size = config.hidden_size
        # Word embeddings (parallel).
        self.word_embeddings = nn.Embedding(
            config.padded_vocab_size,
            self.hidden_size,
            dtype=config.torch_dtype,
            device=device
        )
        self.fp32_residual_connection = config.fp32_residual_connection

    def forward(self, input_ids):
        # Embeddings.
        words_embeddings = self.word_embeddings(input_ids)
        embeddings = words_embeddings
        # Data format change to avoid explicit tranposes : [b s h] --> [s b h].
        embeddings = embeddings.transpose(0, 1).contiguous()
        # If the input flag for fp32 residual connection is set, convert for float.
        if self.fp32_residual_connection:
            embeddings = embeddings.float()
        return embeddings

#继承预训练模型类
class ChatGLMModel(ChatGLMPreTrainedModel):
    def __init__(self, config: ChatGLMConfig, device=None, empty_init=True):
        super().__init__(config)
        #是否先不初始化参数empty_init
        if empty_init:
            #skip_init是torch.nn.utils下的一个库
            init_method = skip_init
        else:
            init_method = default_init
        init_kwargs = {}
        if device is not None:
            init_kwargs["device"] = device
        #定义输入的embedding层
        self.embedding = init_method(Embedding, config, **init_kwargs)
        self.num_layers = config.num_layers
        self.multi_query_group_num = config.multi_query_group_num
        self.kv_channels = config.kv_channels

        #定义输入的Rotary位置编码embedding层
        # Rotary positional embeddings
        self.seq_length = config.seq_length
        rotary_dim = (
            config.hidden_size // config.num_attention_heads if config.kv_channels is None else config.kv_channels
        )

        self.rotary_pos_emb = RotaryEmbedding(rotary_dim // 2, original_impl=config.original_rope, device=device,
                                              dtype=config.torch_dtype)
        #定义主体模块GLMTransformer层
        self.encoder = init_method(GLMTransformer, config, **init_kwargs)
        #定义输出层output_layer
        self.output_layer = init_method(nn.Linear, config.hidden_size, config.padded_vocab_size, bias=False,
                                        dtype=config.torch_dtype, **init_kwargs)
        self.pre_seq_len = config.pre_seq_len
        #默认false
        self.prefix_projection = config.prefix_projection
        #如果前缀长度不为空,说明有前缀,则定义prefix_encoder
        if self.pre_seq_len is not None:
            for param in self.parameters():
                param.requires_grad = False
            #使用torch.arange函数生成一个从0开始,到self.pre_seq_len - 1结束的整数序列的tensor
            #.long(): 这个方法用于将上述生成的tensor转换为长整型(int64)
            #即生成一个从0到self.pre_seq_len - 1的等差整数序列的long类型tensor
            self.prefix_tokens = torch.arange(self.pre_seq_len).long()
            self.prefix_encoder = PrefixEncoder(config)
            self.dropout = torch.nn.Dropout(0.1)

    def get_input_embeddings(self):
        #self.embedding.word_embeddings是一个定义好的nn.Embedding()层
        return self.embedding.word_embeddings

    def get_prompt(self, batch_size, device, dtype=torch.half):

        prefix_tokens = self.prefix_tokens.unsqueeze(0).expand(batch_size, -1).to(device)

        past_key_values = self.prefix_encoder(prefix_tokens).type(dtype)

        past_key_values = past_key_values.view(
            batch_size,
            self.pre_seq_len,
            self.num_layers * 2,
            self.multi_query_group_num,
            self.kv_channels
        )
        # seq_len, b, nh, hidden_size
        past_key_values = self.dropout(past_key_values)
        past_key_values = past_key_values.permute([2, 1, 0, 3, 4]).split(2)
        return past_key_values

    def forward(
            self,
            input_ids,
            position_ids: Optional[torch.Tensor] = None,
            attention_mask: Optional[torch.BoolTensor] = None,
            full_attention_mask: Optional[torch.BoolTensor] = None,
            past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None,
            inputs_embeds: Optional[torch.Tensor] = None,
            use_cache: Optional[bool] = None,
            output_hidden_states: Optional[bool] = None,
            return_dict: Optional[bool] = None,
    ):
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        use_cache = use_cache if use_cache is not None else self.config.use_cache
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict
        #获取批次大小batch_size和输入长度seq_length
        batch_size, seq_length = input_ids.shape

        #inputs_embeds为self.embedding层
        if inputs_embeds is None:
            inputs_embeds = self.embedding(input_ids)
        #有前缀长度
        if self.pre_seq_len is not None:
            if past_key_values is None:
                #past_key_values获得前缀的prompt
                past_key_values = self.get_prompt(batch_size=batch_size, device=input_ids.device,
                                                  dtype=inputs_embeds.dtype)
            if attention_mask is not None:
                attention_mask = torch.cat([attention_mask.new_ones((batch_size, self.pre_seq_len)),
                                            attention_mask], dim=-1)

        if full_attention_mask is None:
            if (attention_mask is not None and not attention_mask.all()) or (past_key_values and seq_length != 1):
                full_attention_mask = self.get_masks(input_ids, past_key_values, padding_mask=attention_mask)

        # Rotary positional embeddings
        rotary_pos_emb = self.rotary_pos_emb(self.seq_length)
        if position_ids is not None:
            rotary_pos_emb = rotary_pos_emb[position_ids]
        else:
            rotary_pos_emb = rotary_pos_emb[None, :seq_length]
        rotary_pos_emb = rotary_pos_emb.transpose(0, 1).contiguous()

        # Run encoder.
        #主体模块GLMTransformer层
        hidden_states, presents, all_hidden_states, all_self_attentions = self.encoder(
            inputs_embeds, full_attention_mask, rotary_pos_emb=rotary_pos_emb,
            kv_caches=past_key_values, use_cache=use_cache, output_hidden_states=output_hidden_states
        )
        
        #
        if not return_dict:
            return tuple(v for v in [hidden_states, presents, all_hidden_states, all_self_attentions] if v is not None)

        return BaseModelOutputWithPast(
            last_hidden_state=hidden_states,
            past_key_values=presents,
            hidden_states=all_hidden_states,
            attentions=all_self_attentions,
        )
    #用于量化方法
    def quantize(self, weight_bit_width: int):
        from .quantization import quantize
        quantize(self.encoder, weight_bit_width)
        return self

#用于条件生成chatglm2的类
class ChatGLMForConditionalGeneration(ChatGLMPreTrainedModel):
    def __init__(self, config: ChatGLMConfig, empty_init=True, device=None):
        super().__init__(config)

        self.max_sequence_length = config.max_length
        self.transformer = ChatGLMModel(config, empty_init=empty_init, device=device)
        self.config = config
        self.quantized = False

        if self.config.quantization_bit:
            self.quantize(self.config.quantization_bit, empty_init=True)

    def _update_model_kwargs_for_generation(
            self,
            outputs: ModelOutput,
            model_kwargs: Dict[str, Any],
            is_encoder_decoder: bool = False,
            standardize_cache_format: bool = False,
    ) -> Dict[str, Any]:
        # update past_key_values
        model_kwargs["past_key_values"] = self._extract_past_from_model_output(
            outputs, standardize_cache_format=standardize_cache_format
        )

        # update attention mask
        if "attention_mask" in model_kwargs:
            attention_mask = model_kwargs["attention_mask"]
            model_kwargs["attention_mask"] = torch.cat(
                [attention_mask, attention_mask.new_ones((attention_mask.shape[0], 1))], dim=-1
            )

        # update position ids
        if "position_ids" in model_kwargs:
            position_ids = model_kwargs["position_ids"]
            new_position_id = position_ids[..., -1:].clone()
            new_position_id += 1
            model_kwargs["position_ids"] = torch.cat(
                [position_ids, new_position_id], dim=-1
            )

        model_kwargs["is_first_forward"] = False
        return model_kwargs

    def prepare_inputs_for_generation(
            self,
            input_ids: torch.LongTensor,
            past_key_values: Optional[torch.Tensor] = None,
            attention_mask: Optional[torch.Tensor] = None,
            position_ids: Optional[torch.Tensor] = None,
            is_first_forward: bool = True,
            **kwargs
    ) -> dict:
        # only last token for input_ids if past is not None
        if position_ids is None:
            position_ids = self.get_position_ids(input_ids, device=input_ids.device)
        if not is_first_forward:
            position_ids = position_ids[..., -1:]
            input_ids = input_ids[:, -1:]
        return {
            "input_ids": input_ids,
            "past_key_values": past_key_values,
            "position_ids": position_ids,
            "attention_mask": attention_mask,
            "return_last_logit": True
        }

    def forward(
            self,
            input_ids: Optional[torch.Tensor] = None,
            position_ids: Optional[torch.Tensor] = None,
            attention_mask: Optional[torch.Tensor] = None,
            past_key_values: Optional[Tuple[torch.FloatTensor]] = None,
            inputs_embeds: Optional[torch.Tensor] = None,
            labels: Optional[torch.Tensor] = None,
            use_cache: Optional[bool] = None,
            output_attentions: Optional[bool] = None,
            output_hidden_states: Optional[bool] = None,
            return_dict: Optional[bool] = None,
            return_last_logit: Optional[bool] = False,
    ):
        use_cache = use_cache if use_cache is not None else self.config.use_cache
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict
        
        '''
            self.transformer(...)获得chatGLMModel模型forward输出BaseModelOutputWithPast,通常包含:
            last_hidden_state: 最后一层的隐藏状态。
            past_key_values (或者叫 past): 用于注意力机制的key和value对。
            "Past"在这里指的是在Transformer模型中用于注意力机制的key和value对。
            hidden_states 是模型所有层的隐藏状态输出的列表
            attentions 是模型所有层的注意力权重的列表。这些权重显示了每个输入token对其他tokens的注意力分布
            在一些应用中,例如文本生成,保存这些“过去”的值是很有用的,因为这样可以避免重新计算整个输入序列,从而实现效率更高的逐个词的解码。
            BaseModelOutputWithPast(
                last_hidden_state=hidden_states,
                past_key_values=presents,
                hidden_states=all_hidden_states,
                attentions=all_self_attentions,
            )
        '''
        transformer_outputs = self.transformer(
            input_ids=input_ids,
            position_ids=position_ids,
            attention_mask=attention_mask,
            past_key_values=past_key_values,
            inputs_embeds=inputs_embeds,
            use_cache=use_cache,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )
        #提出输出的隐藏层状态
        hidden_states = transformer_outputs[0]
        if return_last_logit:
            hidden_states = hidden_states[-1:]
        #获得每个词的概率
        lm_logits = self.transformer.output_layer(hidden_states)
        #transpose(0, 1)交换维度0和维度1
        lm_logits = lm_logits.transpose(0, 1).contiguous()


        loss = None
        #训练时有label,下面会计算loss值
        if labels is not None:
            lm_logits = lm_logits.to(torch.float32)

            # Shift so that tokens < n predict n
            shift_logits = lm_logits[..., :-1, :].contiguous()
            shift_labels = labels[..., 1:].contiguous()
            # Flatten the tokens
            loss_fct = CrossEntropyLoss(ignore_index=-100)
            #view(-1, shift_logits.size(-1))会自动计算维度,假设shift_logits为(10, 20, 50),那么shift_logits的总元素数量是 10 * 20 * 50 = 10000
            #则shift_logits.view(-1, shift_logits.size(-1))会得到(10,1000)的一个tensor
            loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))

            lm_logits = lm_logits.to(hidden_states.dtype)
            loss = loss.to(hidden_states.dtype)

        if not return_dict:
            output = (lm_logits,) + transformer_outputs[1:]
            return ((loss,) + output) if loss is not None else output
        '''
            CausalLMOutputWithPast输出包含的内容通常是:
            loss: 如果提供了标签,则计算并返回损失值。
            logits: 对应每个token的预测分数。
            past_key_values: 与上面描述的类似,这是用于注意力机制的key和value对。
            hidden_states: 可选的,模型的所有隐藏层的输出。
            attentions: 可选的,注意力权重。
        '''
        return CausalLMOutputWithPast(
            loss=loss,
            logits=lm_logits,
            past_key_values=transformer_outputs.past_key_values,
            hidden_states=transformer_outputs.hidden_states,
            attentions=transformer_outputs.attentions,
        )
    #staticmethod用于修饰类中的方法,使其可以在不创建类实例的情况下调用方法
    @staticmethod
    def _reorder_cache(
            past: Tuple[Tuple[torch.Tensor, torch.Tensor], ...], beam_idx: torch.LongTensor
    ) -> Tuple[Tuple[torch.Tensor, torch.Tensor], ...]:
        """
        This function is used to re-order the `past_key_values` cache if [`~PreTrainedModel.beam_search`] or
        [`~PreTrainedModel.beam_sample`] is called. This is required to match `past_key_values` with the correct
        beam_idx at every generation step.

        Output shares the same memory storage as `past`.
        """
        return tuple(
            (
                layer_past[0].index_select(1, beam_idx.to(layer_past[0].device)),
                layer_past[1].index_select(1, beam_idx.to(layer_past[1].device)),
            )
            for layer_past in past
        )

    #处理response字符串
    def process_response(self, response):
        response = response.strip()
        response = response.replace("[[训练时间]]", "2023年")
        return response


    def build_inputs(self, tokenizer, query: str, history: List[Tuple[str, str]] = None):
        #将历史和当前的对话内容转化成prompt
        prompt = tokenizer.build_prompt(query, history=history)
        #返回PyTorch tensor
        inputs = tokenizer([prompt], return_tensors="pt")
        inputs = inputs.to(self.device)
        return inputs

    def build_stream_inputs(self, tokenizer, query: str, history: List[Tuple[str, str]] = None):
        if history:
            prompt = "\n\n[Round {}]\n\n问:{}\n\n答:".format(len(history) + 1, query)
            input_ids = tokenizer.encode(prompt, add_special_tokens=False)
            input_ids = input_ids[1:]
            inputs = tokenizer.batch_encode_plus([(input_ids, None)], return_tensors="pt", add_special_tokens=False)
        else:
            prompt = "[Round {}]\n\n问:{}\n\n答:".format(len(history) + 1, query)
            inputs = tokenizer([prompt], return_tensors="pt")
        inputs = inputs.to(self.device)
        return inputs

    #@torch.inference_mode() 是PyTorch的一个上下文管理器,当使用它作为装饰器时,它确保包装的函数内的所有代码都在推理模式下运行
    @torch.inference_mode()
    def chat(self, tokenizer, query: str, history: List[Tuple[str, str]] = None, max_length: int = 8192, num_beams=1,
             do_sample=True, top_p=0.8, temperature=0.8, logits_processor=None, **kwargs):
        if history is None:
            history = []
        if logits_processor is None:
            '''
            当生成文本时,模型为每个可能的token输出一个logit(即原始未归一化的预测值)。
            LogitsProcessorList是一种工具list,它包含了一系列的处理器,这些处理器可以修改这些logits。
            通过修改logits,可以影响模型的输出。
            例如,可以使用一个LogitsProcessor来实现温度调整、最小/最大长度限制、特定token的惩罚/奖励等。
            例如,可以对模型计算出的logits进行进一步处理,例如对“复读机现象”相应的概率进行惩罚,以避免模型生成结果不断重复。
            '''
            logits_processor = LogitsProcessorList()
        #添加一个处理,用于处理无效的概率输出,即输出预测字符的概率可能会很低,需要处理一下
        logits_processor.append(InvalidScoreLogitsProcessor())
        #num_beams是beam search的参数,这里默认为1,top_p是预设概率阈值,概率小于topp的得分置为0
        gen_kwargs = {"max_length": max_length, "num_beams": num_beams, "do_sample": do_sample, "top_p": top_p,
                      "temperature": temperature, "logits_processor": logits_processor, **kwargs}
        inputs = self.build_inputs(tokenizer, query, history=history)

        #生成id输出,self.generate是PreTrainedModel的方法,可以控制max_length,temperature,top_p等
        #控制temperature、top_k、top_p等参数的原理在beam search中,可以参考博客https://blog.csdn.net/weixin_44826203/article/details/130708623
        #beam search会对score整体除以temperature做缩放控制模型的状态,只取top_k的概率对应的词汇,其余的概率置为-inf
        outputs = self.generate(**inputs, **gen_kwargs)
        outputs = outputs.tolist()[0][len(inputs["input_ids"][0]):]
        #解码成字符
        response = tokenizer.decode(outputs)
        response = self.process_response(response)
        history = history + [(query, response)]
        #返回当前轮回答和历史记录
        return response, history

    #实现流式的一次一次对话,通过记录past_key_values,实现高效问答
    @torch.inference_mode()
    def stream_chat(self, tokenizer, query: str, history: List[Tuple[str, str]] = None, past_key_values=None,
                    max_length: int = 8192, do_sample=True, top_p=0.8, temperature=0.8, logits_processor=None,
                    return_past_key_values=False, **kwargs):
        if history is None:
            history = []
        if logits_processor is None:
            logits_processor = LogitsProcessorList()
        logits_processor.append(InvalidScoreLogitsProcessor())
        gen_kwargs = {"max_length": max_length, "do_sample": do_sample, "top_p": top_p,
                      "temperature": temperature, "logits_processor": logits_processor, **kwargs}
        if past_key_values is None and not return_past_key_values:
            inputs = self.build_inputs(tokenizer, query, history=history)
        else:
            #上面定义了build_stream_inputs,是一个问答的形式构建的inputs
            inputs = self.build_stream_inputs(tokenizer, query, history=history)
        
        if past_key_values is not None:
            past_length = past_key_values[0][0].shape[0]
            if self.transformer.pre_seq_len is not None:
                past_length -= self.transformer.pre_seq_len
            #加上之前的长度
            inputs.position_ids += past_length
            #获得新attention_mask
            attention_mask = inputs.attention_mask
            attention_mask = torch.cat((attention_mask.new_ones(1, past_length), attention_mask), dim=1)
            inputs['attention_mask'] = attention_mask

        for outputs in self.stream_generate(**inputs, past_key_values=past_key_values,
                                            return_past_key_values=return_past_key_values, **gen_kwargs):
            if return_past_key_values:
                outputs, past_key_values = outputs
            outputs = outputs.tolist()[0][len(inputs["input_ids"][0]):]
            response = tokenizer.decode(outputs)
            if response and response[-1] != "�":
                response = self.process_response(response)
                new_history = history + [(query, response)]
                if return_past_key_values:
                    #yield: 当一个函数包含yield关键字,它将不再是一个常规函数,而是一个生成器函数。这种函数在调用时不会执行,而是返回一个生成器对象。
                    yield response, new_history, past_key_values
                else:
                    yield response, new_history

    @torch.inference_mode()
    def stream_generate(
            self,
            input_ids,
            generation_config: Optional[GenerationConfig] = None,
            logits_processor: Optional[LogitsProcessorList] = None,
            stopping_criteria: Optional[StoppingCriteriaList] = None,
            prefix_allowed_tokens_fn: Optional[Callable[[int, torch.Tensor], List[int]]] = None,
            return_past_key_values=False,
            **kwargs,
    ):
        batch_size, input_ids_seq_length = input_ids.shape[0], input_ids.shape[-1]

        if generation_config is None:
            generation_config = self.generation_config
        generation_config = copy.deepcopy(generation_config)
        model_kwargs = generation_config.update(**kwargs)
        bos_token_id, eos_token_id = generation_config.bos_token_id, generation_config.eos_token_id

        if isinstance(eos_token_id, int):
            eos_token_id = [eos_token_id]

        has_default_max_length = kwargs.get("max_length") is None and generation_config.max_length is not None
        if has_default_max_length and generation_config.max_new_tokens is None:
            warnings.warn(
                f"Using `max_length`'s default ({generation_config.max_length}) to control the generation length. "
                "This behaviour is deprecated and will be removed from the config in v5 of Transformers -- we"
                " recommend using `max_new_tokens` to control the maximum length of the generation.",
                UserWarning,
            )
        elif generation_config.max_new_tokens is not None:
            generation_config.max_length = generation_config.max_new_tokens + input_ids_seq_length
            if not has_default_max_length:
                logger.warn(
                    f"Both `max_new_tokens` (={generation_config.max_new_tokens}) and `max_length`(="
                    f"{generation_config.max_length}) seem to have been set. `max_new_tokens` will take precedence. "
                    "Please refer to the documentation for more information. "
                    "(https://huggingface.co/docs/transformers/main/en/main_classes/text_generation)",
                    UserWarning,
                )

        if input_ids_seq_length >= generation_config.max_length:
            input_ids_string = "decoder_input_ids" if self.config.is_encoder_decoder else "input_ids"
            logger.warning(
                f"Input length of {input_ids_string} is {input_ids_seq_length}, but `max_length` is set to"
                f" {generation_config.max_length}. This can lead to unexpected behavior. You should consider"
                " increasing `max_new_tokens`."
            )

        # 2. Set generation parameters if not already defined
        logits_processor = logits_processor if logits_processor is not None else LogitsProcessorList()
        #对生成过程做停止控制的工具,例如达到一定长度时强行停止,达到一定生成时间时停止等
        stopping_criteria = stopping_criteria if stopping_criteria is not None else StoppingCriteriaList()

        logits_processor = self._get_logits_processor(
            generation_config=generation_config,
            input_ids_seq_length=input_ids_seq_length,
            encoder_input_ids=input_ids,
            prefix_allowed_tokens_fn=prefix_allowed_tokens_fn,
            logits_processor=logits_processor,
        )

        stopping_criteria = self._get_stopping_criteria(
            generation_config=generation_config, stopping_criteria=stopping_criteria
        )
        logits_warper = self._get_logits_warper(generation_config)

        unfinished_sequences = input_ids.new(input_ids.shape[0]).fill_(1)
        scores = None
        while True:
            model_inputs = self.prepare_inputs_for_generation(input_ids, **model_kwargs)
            # forward pass to get next token
            outputs = self(
                **model_inputs,
                return_dict=True,
                output_attentions=False,
                output_hidden_states=False,
            )

            next_token_logits = outputs.logits[:, -1, :]

            # pre-process distribution
            next_token_scores = logits_processor(input_ids, next_token_logits)
            next_token_scores = logits_warper(input_ids, next_token_scores)

            # sample
            probs = nn.functional.softmax(next_token_scores, dim=-1)
            if generation_config.do_sample:
                next_tokens = torch.multinomial(probs, num_samples=1).squeeze(1)
            else:
                next_tokens = torch.argmax(probs, dim=-1)

            # update generated ids, model inputs, and length for next step
            input_ids = torch.cat([input_ids, next_tokens[:, None]], dim=-1)
            model_kwargs = self._update_model_kwargs_for_generation(
                outputs, model_kwargs, is_encoder_decoder=self.config.is_encoder_decoder
            )
            unfinished_sequences = unfinished_sequences.mul((sum(next_tokens != i for i in eos_token_id)).long())
            if return_past_key_values:
                yield input_ids, outputs.past_key_values
            else:
                yield input_ids
            # stop when each sentence is finished, or if we exceed the maximum length
            if unfinished_sequences.max() == 0 or stopping_criteria(input_ids, scores):
                break
    #用于量化方法
    def quantize(self, bits: int, empty_init=False, device=None, **kwargs):
        if bits == 0:
            return

        from .quantization import quantize

        if self.quantized:
            logger.info("Already quantized.")
            return self

        self.quantized = True

        self.config.quantization_bit = bits

        self.transformer.encoder = quantize(self.transformer.encoder, bits, empty_init=empty_init, device=device,
                                            **kwargs)
        return self

你可能感兴趣的:(AGI,学习笔记,agi,人工智能)