6-12 二叉搜索树的操作集

本题要求实现给定二叉搜索树的5种常用操作。

其中BinTree结构定义如下:

typedef struct TNode *Position;
typedef Position BinTree;
struct TNode{
    ElementType Data;
    BinTree Left;
    BinTree Right;
};
  • 函数InsertX插入二叉搜索树BST并返回结果树的根结点指针;
  • 函数DeleteX从二叉搜索树BST中删除,并返回结果树的根结点指针;如果X不在树中,则打印一行Not Found并返回原树的根结点指针;
  • 函数Find在二叉搜索树BST中找到X,返回该结点的指针;如果找不到则返回空指针;
  • 函数FindMin返回二叉搜索树BST中最小元结点的指针;
  • 函数FindMax返回二叉搜索树BST中最大元结点的指针。

裁判测试程序样例:

#include 
#include 

typedef int ElementType;
typedef struct TNode *Position;
typedef Position BinTree;
struct TNode{
    ElementType Data;
    BinTree Left;
    BinTree Right;
};

void PreorderTraversal( BinTree BT ); /* 先序遍历,由裁判实现,细节不表 */
void InorderTraversal( BinTree BT );  /* 中序遍历,由裁判实现,细节不表 */

BinTree Insert( BinTree BST, ElementType X );
BinTree Delete( BinTree BST, ElementType X );
Position Find( BinTree BST, ElementType X );
Position FindMin( BinTree BST );
Position FindMax( BinTree BST );

int main()
{
    BinTree BST, MinP, MaxP, Tmp;
    ElementType X;
    int N, i;

    BST = NULL;
    scanf("%d", &N);
    for ( i=0; iData);
            if (Tmp==MinP) printf("%d is the smallest key\n", Tmp->Data);
            if (Tmp==MaxP) printf("%d is the largest key\n", Tmp->Data);
        }
    }
    scanf("%d", &N);
    for( i=0; i

输入样例:

10
5 8 6 2 4 1 0 10 9 7
5
6 3 10 0 5
5
5 7 0 10 3

输出样例: 

Preorder: 5 2 1 0 4 8 6 7 10 9
6 is found
3 is not found
10 is found
10 is the largest key
0 is found
0 is the smallest key
5 is found
Not Found
Inorder: 1 2 4 6 8 9

思路:

五个接口函数:

BinTree Insert( BinTree BST, ElementType X );
BinTree Delete( BinTree BST, ElementType X );
Position Find( BinTree BST, ElementType X );
Position FindMin( BinTree BST );
Position FindMax( BinTree BST );

这几个函数的实现都是在二叉树查找的基础上进行的,所以先实现Find,同样的思想可以实现FindMin,FindMax,Insert函数,Delete函数比较复杂,因为删除一个节点会影响其所有的子节点,这里需要分析一下:

  • 叶节点:没有子节点,直接删除就可以;
  • 只有一个子节点:将子节点链接到原来节点的位置;(第一种情况可以看作第二种情况处理,相当于把原节点置空)
  • 有两个节点:调用 FindMin 找到后继节点,用后继节点的值代替当前值,最后删除后继节点并更新右子树;

代码:

Position Find( BinTree BST, ElementType X){
    if(BST == NULL) return NULL;
    if(X < BST->Data) return Find(BST->Left,X);
    else if(X > BST->Data) return Find(BST->Right,X);
    else return BST;
}
 
Position FindMin( BinTree BST ){
    if(BST == NULL) return NULL;
    if(BST->Left == NULL) return BST;
    return FindMin(BST->Left); 
}
 
Position FindMax( BinTree BST ){
    if(BST == NULL) return NULL;
    if(BST->Right == NULL) return BST;
    return FindMax(BST->Right);
}
 
BinTree Insert( BinTree BST, ElementType X){
    if(BST == NULL){
        BST = (BinTree)malloc(sizeof(struct TNode));
        BST->Left = BST->Right = NULL;
        BST->Data = X;
    } 
    if(X < BST->Data) BST->Left = Insert(BST->Left,X);
    else if(X > BST->Data) BST->Right = Insert(BST->Right,X);
    else BST->Data = X;
    return BST;
}

BinTree Delete( BinTree BST, ElementType X ){
    if(BST == NULL) printf("Not Found\n");
    else if(X < BST->Data) BST->Left = Delete(BST->Left,X);
    else if(X > BST->Data) BST->Right = Delete(BST->Right,X);
    else{
    	if(BST->Right == NULL) return BST->Left;
    	if(BST->Left == NULL) return BST->Right;
    	Position P = FindMin(BST->Right);
    	BST->Data = P->Data;
    	BST->Right = Delete(BST->Right,P->Data);
    	free(P);
    }
    return BST;
}

 

你可能感兴趣的:(数据结构,二叉搜索树)