- 通往 AI 之路:Python 机器学习入门-线性代数
一小路一
从0开始学习机器学习机器学习人工智能python后端开发语言线性代数
2.1线性代数(机器学习的核心)线性代数是机器学习的基础之一,许多核心算法都依赖矩阵运算。本章将介绍线性代数中的基本概念,包括标量、向量、矩阵、矩阵运算、特征值与特征向量,以及奇异值分解(SVD)。2.1.1标量、向量、矩阵1.标量(Scalar)标量是一个单独的数,例如:a=5在Python中:a=5#标量2.向量(Vector)向量是由多个数值组成的一维数组,例如:v=[2,3,5]Pytho
- 图像算法工程师的技术图谱和学习路径
执于代码
开发者职业加速服务算法学习
01.图像算法图像算法工程师的技术图谱和学习路径涵盖了多个技术领域,从基础知识到高级算法,涉及计算机视觉、深度学习、图像处理、数学和编程等多个方面。以下是图像算法工程师的技术图谱和学习路径的详细总结。1.基础数学与编程数学基础:线性代数:矩阵运算、特征值、特征向量、奇异值分解(SVD)等概率论与统计:概率分布、贝叶斯定理、最大似然估计(MLE)、假设检验等微积分:导数、梯度、最优化方法(梯度下降、
- MATLAB基础应用精讲-【数模应用】主成分(pca)分析(附python代码实现)
林聪木
matlab人工智能大数据
目录前言知识储备降维概述算法原理什么是PCAPCA降维过程PCA算法数学步骤选择主成分个数(即k的值)sklearn中参数的解释数学模型协方差协方差矩阵编辑编辑原理推导编辑编辑编辑编辑实际操作主成分分析的计算方法方法1.协方差+特征值分解方法2:奇异值分解对比不同方法计算效率物理意义算法步骤SPSSAU主成分(pca)分析说明1、信息浓缩2、权重计算3、综合得分【综合竞争力】疑难解惑成分得分后用于
- 【Math】奇异值分解(SVD)详解及 Python 实现
SimpleLearing
Math多模态理解python开发语言
1.什么是奇异值分解(SVD)奇异值分解(SingularValueDecomposition,简称SVD)是矩阵分解的一种方法,它将任意矩阵AAA分解为三个矩阵的乘积:A=UΣVTA=U\SigmaV^TA=UΣVT其中:AAA是m×nm\timesnm×n的矩阵。UUU是m×mm\timesmm×m的酉矩阵,包含AATAA^TAAT的特征向量。Σ\SigmaΣ是一个m×nm\timesnm×n
- 奇异值分解求线性方程组的最小二乘解
果壳中的robot
计算机视觉线性代数算法矩阵
线性方程组一般考虑两类:非齐次线性方程组:Ax=b齐次线性方程组:Ax=0A是m*n矩阵,x是n*1的向量,b是m*1的向量。此类问题可以很方便地采用SVD奇异值分解来求解。一.讨论基于线性代数的解析解关于线性方程组的解析解存在性的讨论在之前的博客中已经介绍,主要基于向量组的线性相关性理论。链接为:【线性代数】齐次与非齐次线性方程组有解的条件。主要结论为:对于齐次线性方程组Ax=0:Ax=0有非零
- 线代[8]|北大丘维声教授《怎样学习线性代数?》(红色字体为博主注释)
汉密士20240101
线性代数【精品】丘维声学习线性代数高等代数
文章目录说明一、线性代数的内容简介二、学习线性代数的用处三、线性代数的特点四、学习线性代数的方法五、更新时间记录说明文章中红色字体为博主敲录完丘教授这篇文章后所加,刷到这篇文章的读者在首次阅读应当跳过红色字体,先通读一读文章全文,一遍,两遍,甚至是三遍以上。该篇文章为大学工科专业线性代数课程脉络的梳理性质文章,仅仅到“二次型”为止与考研大纲相同,并未涉及“哈密顿—凯莱定理、奇异值分解(SVD)、广
- 简化版奇异值分解(SVD)方法详解
DuHz
数理统计学知识机器学习人工智能算法信息与通信信号处理
简化版奇异值分解(SVD)方法详解奇异值分解(SVD)是一个强大的矩阵分解工具,广泛应用于数据降维、图像压缩、机器学习等领域。然而,对于大规模数据或高维矩阵,计算和存储的开销非常大,因此提出了多种简化版的SVD方法。这些简化版方法在保证解的精度的同时,能够显著减少计算量和内存占用。本文将详细介绍几种简化版SVD方法,包括经济型SVD、随机化SVD、增量SVD、分块SVD和偏最小二乘法(PLS),并
- AI基础 -- AI学习路径图
sz66cm
人工智能学习
人工智能从数学到大语言模型构建教程第一部分:AI基础与数学准备1.绪论:人工智能的过去、现在与未来人工智能的定义与发展简史从符号主义到统计学习、再到深度学习与大模型的变迁本书内容概览与学习路径指引2.线性代数与矩阵运算向量与矩阵的基本概念矩阵分解(特征值分解、奇异值分解)张量运算简介(为后续深度学习做准备)在机器学习和深度学习中的应用示例3.概率论与统计基础随机变量、分布与期望方差贝叶斯理论与最大
- 深度学习——线性代数
取个名字真难啊啊
深度学习深度学习线性代数
文章目录1.基本数学概念2.线性相关和生成子空间3.范式4.特殊类型的矩阵和向量5.特征分解6.奇异值分解1.基本数学概念标量(scalar):一个标量就是一个单独的数,它不同于线性代数中研究的其他大部分对象(通常是多个数的数组)。我们用斜体表示标量。标量通常被赋予小写的变量名称。当我们介绍标量时,会明确它们是哪种类型的数。比如,在定义实数标量时,我们可能会说“令s∈R表示一条线的斜率”;在定义自
- opencv2.4中SVD分解的几种调用方法
weixin_34342992
人工智能matlabc#
原帖地址:http://blog.sina.com.cn/s/blog_6109b5d00101ag7a.html在摄影测量和计算机视觉中,考虑最优解问题时,经常要用到SVD分解。奇异值分解(singularvaluedecomposition,SVD)是一种可靠地正交矩阵分解法,但它比QR分解法要花上近十倍的计算时间。在matlab中,[U,S,V]=svd(A),其中U和V代表二个相互正交矩阵
- AI需要的基础数学知识
大囚长
机器学习大模型人工智能
AI(人工智能)涉及多个数学领域,以下是主要的基础数学知识:1.线性代数矩阵与向量:用于表示数据和模型参数。矩阵乘法:用于神经网络的前向传播。特征值与特征向量:用于降维和主成分分析(PCA)。奇异值分解(SVD):用于数据压缩和降维。2.微积分导数与偏导数:用于优化算法(如梯度下降)。链式法则:用于反向传播算法。积分:在概率和统计中有应用。3.概率与统计概率分布:如高斯分布、伯努利分布等。贝叶斯定
- 【机器学习】必会降维算法之:奇异值分解(SVD)
Carl_奕然
机器学习算法人工智能
奇异值分解(SVD)1、引言2、奇异值分解(SVD)2.1定义2.2应用场景2.3核心原理2.4算法公式2.5代码示例3、总结1、引言一转眼,小屌丝:鱼哥,就要到每年最开心的节日了:六一儿童节。小鱼:你有啥想法?小屌丝:想法没有,玩的地方倒是想小鱼:拉倒吧,我可不去小屌丝:确定?小鱼:看情况。小屌丝:嘿嘿,难得过节日,我们也得放松一下小鱼:正有此意。2、奇异值分解(SVD)2.1定义奇异值分解(S
- 使用SVD将图像压缩四分之一(MATLAB)
superdont
matlab开发语言
SVD压缩前后数据量减少的原因在于,通过奇异值分解(SVD),我们将原始数据(如图像)转换成了一种更加紧凑的表示形式。这种转换依赖于数据内部的结构和相关性,以及数据中信息的不均匀分布。让我们简单分析一下这个过程为何能减少所需的数据量:数据的结构和相关性高度相关的数据:图像数据往往包含大量的空间相关性,即图像中相邻的像素点在颜色和亮度上通常非常接近。这种高度的相关性意味着原始图像可以通过更少的信息来
- 【图像压缩】奇异值分解SVD灰色图像压缩(可设置压缩比)【含Matlab源码 4358期】
Matlab武动乾坤
Matlab图像处理(进阶版)matlab
✅博主简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,Matlab项目合作可私信。个人主页:海神之光代码获取方式:海神之光Matlab王者学习之路—代码获取方式⛳️座右铭:行百里者,半于九十。更多Matlab仿真内容点击Matlab图像处理(进阶版)路径规划(Matlab)神经网络预测与分类(Matlab)优化求解(Matlab)语音处理(Matlab)信号处理(Matlab)车间调度
- 【Python机器学习】NLP词频背后的含义——隐性语义分析
zhangbin_237
Python机器学习python机器学习自然语言处理人工智能开发语言
隐性语义分析基于最古老和最常用的降维技术——奇异值分解(SVD)。SVD将一个矩阵分解成3个方阵,其中一个是对角矩阵。SVD的一个应用是求逆矩阵。一个矩阵可以分解成3个最简单的方阵,然后对这些方阵求转置后再把它们相乘,就得到了原始矩阵的逆矩阵。它为我们提供了一个对大型复杂矩阵求逆的捷径。SVD适用于桁架结构的应力和应变分析等机械工程问题,它对电气工程中的电路分析也很有用,它甚至在数据科学中被用于基
- 深度学习100问7-向量降维的算法有那些
不断持续学习ing
深度学习机器学习人工智能
一、主成分分析(PCA)PCA就像你整理一堆考试成绩单。假如成绩单上有好多科目成绩,这就像一个高维向量。但有些科目成绩关系很紧密,比如数学好的同学一般物理也不错,化学也还行。那PCA就会找这些成绩单里最主要的特点,把关系近的科目合成几个新的“大科目”。这样就把原来很多科目的高维向量变成几个“大科目”的低维向量啦。二、奇异值分解(SVD)SVD呢,就好比你有一本很厚的书。书的每一页上的字可以看成一个
- 主成分分析(PCA)附Python实现
不染53
数学建模数学建模python算法
主成分分析矩阵分解特征值和特征向量特征值分解奇异值分解主成分分析(PCA)Python实现主成分分析方法(PrincipalComponentAnalysis,PCA)是一种常用的数据分析方法。PCA通过线性变换将原始数据变换为一组各维度线性无关的表示,将多个变量压缩为少数几个综合指标(称为主成分),是一种使用最广泛的数据降维算法。此外,由于主成分分析独特的性质,压缩之后的主成分之间线性无关,因此
- 第2章 线性代数
His Last Bow
#深度学习线性代数机器学习深度学习人工智能算法
目录1.标量、向量、矩阵和张量2.矩阵和向量相乘3.单位矩阵和逆矩阵4.线性相关和生成子空间5.范数6.特殊类型的矩阵和向量7.特征分解8.奇异值分解9.Moore-Penrose伪逆10.迹运算11.行列式1.标量、向量、矩阵和张量标量(scalar):数向量(vector):一列数x=[x1x2...xn]x=\begin{bmatrix}x_1\\x_2\\.\\.\\.\\x_n\end{
- 164基于matlab的奇异值分解、小波降噪、zoom细化
顶呱呱程序
matlab工程应用matlab开发语言zoom细化小波降噪奇异值分解
基于matlab的奇异值分解、小波降噪、zoom细化。程序已调通,可直接运行。164奇异值分解小波降噪zoom细化(xiaohongshu.com)
- 机器学习入门--奇异值分解原理与实践
Dr.Cup
机器学习入门机器学习人工智能
奇异值分解奇异值分解(SingularValueDecomposition,SVD)是一种矩阵分解技术,可以将一个矩阵分解为三个部分的乘积。在SVD中,原始矩阵被分解为左奇异向量矩阵、奇异值矩阵和右奇异向量矩阵的乘积。奇异值分解数学原理奇异值分解是一种矩阵分解技术,可以将一个矩阵分解为三个部分的乘积。在SVD中,原始矩阵被分解为左奇异向量矩阵、奇异值矩阵和右奇异向量矩阵的乘积。具体来说,对于一个m
- SVD奇异值分解
jjm2002
机器学习人工智能
一、奇异值奇异值(SingularValues)是线性代数中矩阵的重要性质之一,与奇异值分解(SVD)密切相关。让我们来更详细地了解一下奇异值的概念:定义:对于一个矩阵(A),它的奇异值是矩阵(A)的奇异值分解()中对角矩阵()的对角线元素的非负实数平方根。换句话说,如果(A)是一个大小为()的矩阵,那么它有()个奇异值。几何解释:奇异值可以被视为矩阵在变换过程中每个方向的缩放因子。在奇异值分解中
- 数据处理方法—— 7 种数据降维操作 !!
JOYCE_Leo16
Python数据降维python数据处理
文章目录数据降维1.主成分分析(PCA)2.线性判别分析(LDA)3.t-分布随机邻域嵌入(t-SNE)4.局部线性嵌入(LLE)5.多维缩放(MDS)6.奇异值分解(SVD)7.自动编码器(Autoencoders)总结数据降维数据降维是一种将高维数据转换为低纬数据的技术,同时尽量保留原始数据的重要信息。这对于处理大规模数据集非常有用,因为它有助于减少计算资源的需要,并提高算法的效率。以下是一些
- 每天一个数据分析题(一百五十六)
紫色沙
数据分析题库数据分析数据挖掘
在数据建模过程中,对于变量的筛选与维度归约,以下哪项描述是正确的?A.主成分分析适用于可解释性较强的预测模型,因为它减少了变量间的相关性。B.变量聚类旨在通过保留所有变量来减少信息损失,适合于所有类型的数据模型。C.因子分析通常不适用于预测类模型,因为它更侧重于变量的可解释性而非预测准确性。D.奇异值分解专门用于方阵数据的维度归约,不适用于非方阵情况。题目来源于CDA模拟题库点击此处获取答案
- Matlab图像处理——基于小波变换的数字图像水印嵌入和提取算法(GUI界面)
MatpyMaster
图像处理付费专栏算法人工智能计算机视觉
1.摘要数字图像水印技术在信息安全领域中扮演着至关重要的角色,本文结合离散小波变换、Arnold置乱变换和奇异值分解,实现了对数字图像水印的高效嵌入和提取。结果表明:该算法能够准确实现水印的嵌入和提取功能;嵌入的水印具有良好的隐身性,人眼不能感觉出水印嵌入带来的变化;算法具有较强的鲁棒性,经过椒盐噪声、高斯噪声、JPEG压缩、高斯平滑和裁剪操作等污染及攻击后,都能较好地恢复水印信息。2.研究方法算
- Moore-Penrose 伪逆与 Hadamard 乘积
ALGORITHM LOL
python
1.1Moore-Penrose伪逆Moore-Penrose伪逆Moore-Penrose伪逆是一种矩阵的广义逆,通常用于处理矩阵不可逆或奇异的情况。给定一个矩阵A,其Moore-Penrose伪逆通常表示为A⁺。计算方法计算Moore-Penrose伪逆的一种常见方法是使用奇异值分解(SingularValueDecomposition,SVD)。假设A是一个大小为m×n的矩阵,其SVD为A=
- LSA 主题模型
dreampai
1、原理通过对大量的文本集进行统计分析,从中提取出词语的上下文使用含义。技术上通过SVD分解等处理,消除了同义词、多义词的影响,提高了后续处理的精度。分析文档集合,建立词汇-文本矩阵。对词汇-文本矩阵进行奇异值分解。对SVD分解后的矩阵进行降维使用降维后的矩阵构建潜在语义空间image.png第一个小矩阵X是对词进行分类的一个结果,它的每一行表示一个词,每一列表示一个语义相近的词类,这一行中每个非
- 【MATLAB】 SSA奇异谱分析信号分解算法
Lwcah
MATLAB信号分解算法matlab算法开发语言
有意向获取代码,请转文末观看代码获取方式~1基本定义SSA奇异谱分析(SingularSpectrumAnalysis)是一种处理非线性时间序列数据的方法,可以对时间序列进行分析和预测。它基于构造在时间序列上的特定矩阵的奇异值分解(SVD),可以从一个时间序列中分解出趋势、振荡分量和噪声。具体流程如下:根据原始时间序列构建轨迹矩阵XXX。对矩阵X进行奇异值分解:X=∑i=1rσiUiViTX=\s
- 【数学和算法】SVD奇异值分解原理、以及在PCA中的运用
Mister Zhu
数学和算法数学
详细的介绍请参考这篇博客:SVD奇异值分解SVD奇异值分解是用来对矩阵进行分解,并不是专门用来求解特征值和特征向量。而求解特征值和求解特征向量,可以选择使用SVD算法进行矩阵分解后,再用矩阵分解后的结果得到特征值和特征向量。我们先回顾一下SVD:PCA降维需要求解协方差矩阵的特征值和特征向量,而求解协方差矩阵1m∗X∗XT\color{blue}\frac{1}{m}*X*X^Tm1∗X∗XT的特
- MIT_线性代数笔记:第 29 讲 奇异值分解
浊酒南街
MIT_线性代数笔记线性代数笔记
目录如何实现用矩阵数学语言描述这一过程举例本讲介绍奇异值分解(Singularvaluedecomposition),简称SVD。这是矩阵最终也是最好的分解,任意矩阵可分解为A=UΣVTA=UΣV^TA=UΣVT,分解结果为正交矩阵U,对角阵Σ和正交矩阵V。如果矩阵A是正定矩阵,它的奇异值分解就是A=QΛQTA=QΛQ^TA=QΛQT,一个正交矩阵Q就可以满足分解,而不需要两个。而对于可对角化的矩
- MATLAB环境下基于多分辨奇异值分解和改进完备集成经验模态分解的大地电磁数据降噪方法
哥廷根数学学派
小波分析信号处理图像处理matlab算法开发语言
大地电磁测深法(MT)诞生于20世纪50年代,是一种以天然交变电磁场为场源,通过测量地表相互正交的电场和磁场,获得地下电性结构信息的地球物理方法。与有源的电磁勘探方法相比,天然大地电磁场频带范围宽且本身信号极其微弱,野外观测到的大地电磁信号不可避免地会受到各种噪声的污染。尤其是在矿集区,随处可见的高压电网、广播电台、通讯电缆、信号发射塔、各种金属管网以及用于矿山开采的大功率直流电机车等严重影响了实
- log4j对象改变日志级别
3213213333332132
javalog4jlevellog4j对象名称日志级别
log4j对象改变日志级别可批量的改变所有级别,或是根据条件改变日志级别。
log4j配置文件:
log4j.rootLogger=ERROR,FILE,CONSOLE,EXECPTION
#log4j.appender.FILE=org.apache.log4j.RollingFileAppender
log4j.appender.FILE=org.apache.l
- elk+redis 搭建nginx日志分析平台
ronin47
elasticsearchkibanalogstash
elk+redis 搭建nginx日志分析平台
logstash,elasticsearch,kibana 怎么进行nginx的日志分析呢?首先,架构方面,nginx是有日志文件的,它的每个请求的状态等都有日志文件进行记录。其次,需要有个队 列,redis的l
- Yii2设置时区
dcj3sjt126com
PHPtimezoneyii2
时区这东西,在开发的时候,你说重要吧,也还好,毕竟没它也能正常运行,你说不重要吧,那就纠结了。特别是linux系统,都TMD差上几小时,你能不痛苦吗?win还好一点。有一些常规方法,是大家目前都在采用的1、php.ini中的设置,这个就不谈了,2、程序中公用文件里设置,date_default_timezone_set一下时区3、或者。。。自己写时间处理函数,在遇到时间的时候,用这个函数处理(比较
- js实现前台动态添加文本框,后台获取文本框内容
171815164
文本框
<%@ page language="java" import="java.util.*" pageEncoding="UTF-8"%>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://w
- 持续集成工具
g21121
持续集成
持续集成是什么?我们为什么需要持续集成?持续集成带来的好处是什么?什么样的项目需要持续集成?... 持续集成(Continuous integration ,简称CI),所谓集成可以理解为将互相依赖的工程或模块合并成一个能单独运行
- 数据结构哈希表(hash)总结
永夜-极光
数据结构
1.什么是hash
来源于百度百科:
Hash,一般翻译做“散列”,也有直接音译为“哈希”的,就是把任意长度的输入,通过散列算法,变换成固定长度的输出,该输出就是散列值。这种转换是一种压缩映射,也就是,散列值的空间通常远小于输入的空间,不同的输入可能会散列成相同的输出,所以不可能从散列值来唯一的确定输入值。简单的说就是一种将任意长度的消息压缩到某一固定长度的消息摘要的函数。
- 乱七八糟
程序员是怎么炼成的
eclipse中的jvm字节码查看插件地址:
http://andrei.gmxhome.de/eclipse/
安装该地址的outline 插件 后重启,打开window下的view下的bytecode视图
http://andrei.gmxhome.de/eclipse/
jvm博客:
http://yunshen0909.iteye.com/blog/2
- 职场人伤害了“上司” 怎样弥补
aijuans
职场
由于工作中的失误,或者平时不注意自己的言行“伤害”、“得罪”了自己的上司,怎么办呢?
在职业生涯中这种问题尽量不要发生。下面提供了一些解决问题的建议:
一、利用一些轻松的场合表示对他的尊重
即使是开明的上司也很注重自己的权威,都希望得到下属的尊重,所以当你与上司冲突后,最好让不愉快成为过去,你不妨在一些轻松的场合,比如会餐、联谊活动等,向上司问个好,敬下酒,表示你对对方的尊重,
- 深入浅出url编码
antonyup_2006
应用服务器浏览器servletweblogicIE
出处:http://blog.csdn.net/yzhz 杨争
http://blog.csdn.net/yzhz/archive/2007/07/03/1676796.aspx
一、问题:
编码问题是JAVA初学者在web开发过程中经常会遇到问题,网上也有大量相关的
- 建表后创建表的约束关系和增加表的字段
百合不是茶
标的约束关系增加表的字段
下面所有的操作都是在表建立后操作的,主要目的就是熟悉sql的约束,约束语句的万能公式
1,增加字段(student表中增加 姓名字段)
alter table 增加字段的表名 add 增加的字段名 增加字段的数据类型
alter table student add name varchar2(10);
&nb
- Uploadify 3.2 参数属性、事件、方法函数详解
bijian1013
JavaScriptuploadify
一.属性
属性名称
默认值
说明
auto
true
设置为true当选择文件后就直接上传了,为false需要点击上传按钮才上传。
buttonClass
”
按钮样式
buttonCursor
‘hand’
鼠标指针悬停在按钮上的样子
buttonImage
null
浏览按钮的图片的路
- 精通Oracle10编程SQL(16)使用LOB对象
bijian1013
oracle数据库plsql
/*
*使用LOB对象
*/
--LOB(Large Object)是专门用于处理大对象的一种数据类型,其所存放的数据长度可以达到4G字节
--CLOB/NCLOB用于存储大批量字符数据,BLOB用于存储大批量二进制数据,而BFILE则存储着指向OS文件的指针
/*
*综合实例
*/
--建立表空间
--#指定区尺寸为128k,如不指定,区尺寸默认为64k
CR
- 【Resin一】Resin服务器部署web应用
bit1129
resin
工作中,在Resin服务器上部署web应用,通常有如下三种方式:
配置多个web-app
配置多个http id
为每个应用配置一个propeties、xml以及sh脚本文件
配置多个web-app
在resin.xml中,可以为一个host配置多个web-app
<cluster id="app&q
- red5简介及基础知识
白糖_
基础
简介
Red5的主要功能和Macromedia公司的FMS类似,提供基于Flash的流媒体服务的一款基于Java的开源流媒体服务器。它由Java语言编写,使用RTMP作为流媒体传输协议,这与FMS完全兼容。它具有流化FLV、MP3文件,实时录制客户端流为FLV文件,共享对象,实时视频播放、Remoting等功能。用Red5替换FMS后,客户端不用更改可正
- angular.fromJson
boyitech
AngularJSAngularJS 官方APIAngularJS API
angular.fromJson 描述: 把Json字符串转为对象 使用方法: angular.fromJson(json); 参数详解: Param Type Details json
string
JSON 字符串 返回值: 对象, 数组, 字符串 或者是一个数字 示例:
<!DOCTYPE HTML>
<h
- java-颠倒一个句子中的词的顺序。比如: I am a student颠倒后变成:student a am I
bylijinnan
java
public class ReverseWords {
/**
* 题目:颠倒一个句子中的词的顺序。比如: I am a student颠倒后变成:student a am I.词以空格分隔。
* 要求:
* 1.实现速度最快,移动最少
* 2.不能使用String的方法如split,indexOf等等。
* 解答:两次翻转。
*/
publ
- web实时通讯
Chen.H
Web浏览器socket脚本
关于web实时通讯,做一些监控软件。
由web服务器组件从消息服务器订阅实时数据,并建立消息服务器到所述web服务器之间的连接,web浏览器利用从所述web服务器下载到web页面的客户端代理与web服务器组件之间的socket连接,建立web浏览器与web服务器之间的持久连接;利用所述客户端代理与web浏览器页面之间的信息交互实现页面本地更新,建立一条从消息服务器到web浏览器页面之间的消息通路
- [基因与生物]远古生物的基因可以嫁接到现代生物基因组中吗?
comsci
生物
大家仅仅把我说的事情当作一个IT行业的笑话来听吧..没有其它更多的意思
如果我们把大自然看成是一位伟大的程序员,专门为地球上的生态系统编制基因代码,并创造出各种不同的生物来,那么6500万年前的程序员开发的代码,是否兼容现代派的程序员的代码和架构呢?
- oracle 外部表
daizj
oracle外部表external tables
oracle外部表是只允许只读访问,不能进行DML操作,不能创建索引,可以对外部表进行的查询,连接,排序,创建视图和创建同义词操作。
you can select, join, or sort external table data. You can also create views and synonyms for external tables. Ho
- aop相关的概念及配置
daysinsun
AOP
切面(Aspect):
通常在目标方法执行前后需要执行的方法(如事务、日志、权限),这些方法我们封装到一个类里面,这个类就叫切面。
连接点(joinpoint)
spring里面的连接点指需要切入的方法,通常这个joinpoint可以作为一个参数传入到切面的方法里面(非常有用的一个东西)。
通知(Advice)
通知就是切面里面方法的具体实现,分为前置、后置、最终、异常环
- 初一上学期难记忆单词背诵第二课
dcj3sjt126com
englishword
middle 中间的,中级的
well 喔,那么;好吧
phone 电话,电话机
policeman 警察
ask 问
take 拿到;带到
address 地址
glad 高兴的,乐意的
why 为什么
China 中国
family 家庭
grandmother (外)祖母
grandfather (外)祖父
wife 妻子
husband 丈夫
da
- Linux日志分析常用命令
dcj3sjt126com
linuxlog
1.查看文件内容
cat
-n 显示行号 2.分页显示
more
Enter 显示下一行
空格 显示下一页
F 显示下一屏
B 显示上一屏
less
/get 查询"get"字符串并高亮显示 3.显示文件尾
tail
-f 不退出持续显示
-n 显示文件最后n行 4.显示头文件
head
-n 显示文件开始n行 5.内容排序
sort
-n 按照
- JSONP 原理分析
fantasy2005
JavaScriptjsonpjsonp 跨域
转自 http://www.nowamagic.net/librarys/veda/detail/224
JavaScript是一种在Web开发中经常使用的前端动态脚本技术。在JavaScript中,有一个很重要的安全性限制,被称为“Same-Origin Policy”(同源策略)。这一策略对于JavaScript代码能够访问的页面内容做了很重要的限制,即JavaScript只能访问与包含它的
- 使用connect by进行级联查询
234390216
oracle查询父子Connect by级联
使用connect by进行级联查询
connect by可以用于级联查询,常用于对具有树状结构的记录查询某一节点的所有子孙节点或所有祖辈节点。
来看一个示例,现假设我们拥有一个菜单表t_menu,其中只有三个字段:
- 一个不错的能将HTML表格导出为excel,pdf等的jquery插件
jackyrong
jquery插件
发现一个老外写的不错的jquery插件,可以实现将HTML
表格导出为excel,pdf等格式,
地址在:
https://github.com/kayalshri/
下面看个例子,实现导出表格到excel,pdf
<html>
<head>
<title>Export html table to excel an
- UI设计中我们为什么需要设计动效
lampcy
UIUI设计
关于Unity3D中的Shader的知识
首先先解释下Unity3D的Shader,Unity里面的Shaders是使用一种叫ShaderLab的语言编写的,它同微软的FX文件或者NVIDIA的CgFX有些类似。传统意义上的vertex shader和pixel shader还是使用标准的Cg/HLSL 编程语言编写的。因此Unity文档里面的Shader,都是指用ShaderLab编写的代码,
- 如何禁止页面缓存
nannan408
htmljspcache
禁止页面使用缓存~
------------------------------------------------
jsp:页面no cache:
response.setHeader("Pragma","No-cache");
response.setHeader("Cache-Control","no-cach
- 以代码的方式管理quartz定时任务的暂停、重启、删除、添加等
Everyday都不同
定时任务管理spring-quartz
【前言】在项目的管理功能中,对定时任务的管理有时会很常见。因为我们不能指望只在配置文件中配置好定时任务就行了,因为如果要控制定时任务的 “暂停” 呢?暂停之后又要在某个时间点 “重启” 该定时任务呢?或者说直接 “删除” 该定时任务呢?要改变某定时任务的触发时间呢? “添加” 一个定时任务对于系统的使用者而言,是不太现实的,因为一个定时任务的处理逻辑他是不
- EXT实例
tntxia
ext
(1) 增加一个按钮
JSP:
<%@ page language="java" import="java.util.*" pageEncoding="UTF-8"%>
<%
String path = request.getContextPath();
Stri
- 数学学习在计算机研究领域的作用和重要性
xjnine
Math
最近一直有师弟师妹和朋友问我数学和研究的关系,研一要去学什么数学课。毕竟在清华,衡量一个研究生最重要的指标之一就是paper,而没有数学,是肯定上不了世界顶级的期刊和会议的,这在计算机学界尤其重要!你会发现,不论哪个领域有价值的东西,都一定离不开数学!在这样一个信息时代,当google已经让世界没有秘密的时候,一种卓越的数学思维,绝对可以成为你的核心竞争力. 无奈本人实在见地