高等数学
1.导数定义:
导数和微分的概念
f ′ ( x 0 ) = lim Δ x → 0 , f ( x 0 + Δ x ) − f ( x 0 ) Δ x f'({{x}{0}})=\underset{\Delta x\to 0}{\mathop{\lim }},\frac{f({{x}{0}}+\Delta x)-f({{x}_{0}})}{\Delta x} f′(x0)=Δx→0lim,Δxf(x0+Δx)−f(x0) (1)
或者:
f ′ ( x 0 ) = lim x → x 0 , f ( x ) − f ( x 0 ) x − x 0 f'({{x}{0}})=\underset{x\to {{x}{0}}}{\mathop{\lim }},\frac{f(x)-f({{x}{0}})}{x-{{x}{0}}} f′(x0)=x→x0lim,x−x0f(x)−f(x0) (2)
2.左右导数导数的几何意义和物理意义
函数 f ( x ) f(x) f(x)在 x 0 x_0 x0处的左、右导数分别定义为:
左导数: f ′ − ( x 0 ) = lim Δ x → 0 − , f ( x 0 + Δ x ) − f ( x 0 ) Δ x = lim x → x 0 − , f ( x ) − f ( x 0 ) x − x 0 , ( x = x 0 + Δ x ) {{{f}'}{-}}({{x}{0}})=\underset{\Delta x\to {{0}^{-}}}{\mathop{\lim }},\frac{f({{x}{0}}+\Delta x)-f({{x}{0}})}{\Delta x}=\underset{x\to x_{0}^{-}}{\mathop{\lim }},\frac{f(x)-f({{x}{0}})}{x-{{x}{0}}},(x={{x}_{0}}+\Delta x) f′−(x0)=Δx→0−lim,Δxf(x0+Δx)−f(x0)=x→x0−lim,x−x0f(x)−f(x0),(x=x0+Δx)
右导数: f ′ + ( x 0 ) = lim Δ x → 0 + , f ( x 0 + Δ x ) − f ( x 0 ) Δ x = lim x → x 0 + , f ( x ) − f ( x 0 ) x − x 0 {{{f}'}{+}}({{x}{0}})=\underset{\Delta x\to {{0}^{+}}}{\mathop{\lim }},\frac{f({{x}{0}}+\Delta x)-f({{x}{0}})}{\Delta x}=\underset{x\to x_{0}^{+}}{\mathop{\lim }},\frac{f(x)-f({{x}{0}})}{x-{{x}{0}}} f′+(x0)=Δx→0+lim,Δxf(x0+Δx)−f(x0)=x→x0+lim,x−x0f(x)−f(x0)
3.函数的可导性与连续性之间的关系
Th1: 函数 f ( x ) f(x) f(x)在 x 0 x_0 x0处可微 ⇔ f ( x ) \Leftrightarrow f(x) ⇔f(x)在 x 0 x_0 x0处可导
Th2: 若函数在点 x 0 x_0 x0处可导,则 y = f ( x ) y=f(x) y=f(x)在点 x 0 x_0 x0处连续,反之则不成立。即函数连续不一定可导。
Th3: f ′ ( x 0 ) {f}'({{x}{0}}) f′(x0)存在 ⇔ f ′ − ( x 0 ) = f ′ + ( x 0 ) \Leftrightarrow {{{f}'}{-}}({{x}{0}})={{{f}'}{+}}({{x}_{0}}) ⇔f′−(x0)=f′+(x0)
4.平面曲线的切线和法线
切线方程 : y − y 0 = f ′ ( x 0 ) ( x − x 0 ) y-{{y}{0}}=f'({{x}{0}})(x-{{x}{0}}) y−y0=f′(x0)(x−x0) 法线方程: y − y 0 = − 1 f ′ ( x 0 ) ( x − x 0 ) , f ′ ( x 0 ) ≠ 0 y-{{y}{0}}=-\frac{1}{f'({{x}{0}})}(x-{{x}{0}}),f'({{x}_{0}})\ne 0 y−y0=−f′(x0)1(x−x0),f′(x0)=0
5.四则运算法则 设函数 u = u ( x ) , v = v ( x ) u=u(x),v=v(x) u=u(x),v=v(x)]在点 x x x可导则 (1) ( u ± v ) ′ = u ′ ± v ′ (u\pm v{)}'={u}'\pm {v}' (u±v)′=u′±v′ d ( u ± v ) = d u ± d v d(u\pm v)=du\pm dv d(u±v)=du±dv (2) ( u v ) ′ = u v ′ + v u ′ (uv{)}'=u{v}'+v{u}' (uv)′=uv′+vu′ d ( u v ) = u d v + v d u d(uv)=udv+vdu d(uv)=udv+vdu (3) ( u v ) ′ = v u ′ − u v ′ v 2 ( v ≠ 0 ) (\frac{u}{v}{)}'=\frac{v{u}'-u{v}'}{{{v}^{2}}}(v\ne 0) (vu)′=v2vu′−uv′(v=0) d ( u v ) = v d u − u d v v 2 d(\frac{u}{v})=\frac{vdu-udv}{{{v}^{2}}} d(vu)=v2vdu−udv
6.基本导数与微分表 (1) y = c y=c y=c(常数) y ′ = 0 {y}'=0 y′=0 d y = 0 dy=0 dy=0 (2) y = x α y={{x}^{\alpha }} y=xα($\alpha $为实数) y ′ = α x α − 1 {y}'=\alpha {{x}^{\alpha -1}} y′=αxα−1 d y = α x α − 1 d x dy=\alpha {{x}^{\alpha -1}}dx dy=αxα−1dx (3) y = a x y={{a}^{x}} y=ax y ′ = a x ln a {y}'={{a}^{x}}\ln a y′=axlna d y = a x ln a d x dy={{a}^{x}}\ln adx dy=axlnadx 特例: ( e x ) ′ = e x ({{{e}}^{x}}{)}'={{{e}}^{x}} (ex)′=ex d ( e x ) = e x d x d({{{e}}^{x}})={{{e}}^{x}}dx d(ex)=exdx
(4) y = log a x y={{\log }_{a}}x y=logax y ′ = 1 x ln a {y}'=\frac{1}{x\ln a} y′=xlna1
d y = 1 x ln a d x dy=\frac{1}{x\ln a}dx dy=xlna1dx 特例: y = ln x y=\ln x y=lnx ( ln x ) ′ = 1 x (\ln x{)}'=\frac{1}{x} (lnx)′=x1 d ( ln x ) = 1 x d x d(\ln x)=\frac{1}{x}dx d(lnx)=x1dx
(5) y = sin x y=\sin x y=sinx
y ′ = cos x {y}'=\cos x y′=cosx d ( sin x ) = cos x d x d(\sin x)=\cos xdx d(sinx)=cosxdx
(6) y = cos x y=\cos x y=cosx
y ′ = − sin x {y}'=-\sin x y′=−sinx d ( cos x ) = − sin x d x d(\cos x)=-\sin xdx d(cosx)=−sinxdx
(7) y = tan x y=\tan x y=tanx
y ′ = 1 cos 2 x = sec 2 x {y}'=\frac{1}{{{\cos }^{2}}x}={{\sec }^{2}}x y′=cos2x1=sec2x d ( tan x ) = sec 2 x d x d(\tan x)={{\sec }^{2}}xdx d(tanx)=sec2xdx (8) y = cot x y=\cot x y=cotx y ′ = − 1 sin 2 x = − csc 2 x {y}'=-\frac{1}{{{\sin }^{2}}x}=-{{\csc }^{2}}x y′=−sin2x1=−csc2x d ( cot x ) = − csc 2 x d x d(\cot x)=-{{\csc }^{2}}xdx d(cotx)=−csc2xdx (9) y = sec x y=\sec x y=secx y ′ = sec x tan x {y}'=\sec x\tan x y′=secxtanx
d ( sec x ) = sec x tan x d x d(\sec x)=\sec x\tan xdx d(secx)=secxtanxdx (10) y = csc x y=\csc x y=cscx y ′ = − csc x cot x {y}'=-\csc x\cot x y′=−cscxcotx
d ( csc x ) = − csc x cot x d x d(\csc x)=-\csc x\cot xdx d(cscx)=−cscxcotxdx (11) y = arcsin x y=\arcsin x y=arcsinx
y ′ = 1 1 − x 2 {y}'=\frac{1}{\sqrt{1-{{x}^{2}}}} y′=1−x21
d ( arcsin x ) = 1 1 − x 2 d x d(\arcsin x)=\frac{1}{\sqrt{1-{{x}^{2}}}}dx d(arcsinx)=1−x21dx (12) y = arccos x y=\arccos x y=arccosx
y ′ = − 1 1 − x 2 {y}'=-\frac{1}{\sqrt{1-{{x}^{2}}}} y′=−1−x21 d ( arccos x ) = − 1 1 − x 2 d x d(\arccos x)=-\frac{1}{\sqrt{1-{{x}^{2}}}}dx d(arccosx)=−1−x21dx
(13) y = arctan x y=\arctan x y=arctanx
y ′ = 1 1 + x 2 {y}'=\frac{1}{1+{{x}^{2}}} y′=1+x21 d ( arctan x ) = 1 1 + x 2 d x d(\arctan x)=\frac{1}{1+{{x}^{2}}}dx d(arctanx)=1+x21dx
(14) y = arc cot x y=\operatorname{arc}\cot x y=arccotx
y ′ = − 1 1 + x 2 {y}'=-\frac{1}{1+{{x}^{2}}} y′=−1+x21
d ( arc cot x ) = − 1 1 + x 2 d x d(\operatorname{arc}\cot x)=-\frac{1}{1+{{x}^{2}}}dx d(arccotx)=−1+x21dx (15) y = s h x y=shx y=shx
y ′ = c h x {y}'=chx y′=chx d ( s h x ) = c h x d x d(shx)=chxdx d(shx)=chxdx
(16) y = c h x y=chx y=chx
y ′ = s h x {y}'=shx y′=shx d ( c h x ) = s h x d x d(chx)=shxdx d(chx)=shxdx
7.复合函数,反函数,隐函数以及参数方程所确定的函数的微分法
(1) 反函数的运算法则: 设 y = f ( x ) y=f(x) y=f(x)在点 x x x的某邻域内单调连续,在点 x x x处可导且 f ′ ( x ) ≠ 0 {f}'(x)\ne 0 f′(x)=0,则其反函数在点 x x x所对应的 y y y处可导,并且有 d y d x = 1 d x d y \frac{dy}{dx}=\frac{1}{\frac{dx}{dy}} dxdy=dydx1 (2) 复合函数的运算法则:若 μ = φ ( x ) \mu =\varphi (x) μ=φ(x)在点 x x x可导,而 y = f ( μ ) y=f(\mu ) y=f(μ)在对应点$\mu ( ( (\mu =\varphi (x) ) 可 导 , 则 复 合 函 数 )可导,则复合函数 )可导,则复合函数y=f(\varphi (x)) 在 点 在点 在点x 可 导 , 且 可导,且 可导,且{y}’={f}’(\mu )\cdot {\varphi }’(x)$ (3) 隐函数导数 d y d x \frac{dy}{dx} dxdy的求法一般有三种方法: 1)方程两边对 x x x求导,要记住 y y y是 x x x的函数,则 y y y的函数是 x x x的复合函数.例如 1 y \frac{1}{y} y1, y 2 {{y}^{2}} y2, l n y ln y lny, e y {{{e}}^{y}} ey等均是 x x x的复合函数. 对 x x x求导应按复合函数连锁法则做. 2)公式法.由 F ( x , y ) = 0 F(x,y)=0 F(x,y)=0知 d y d x = − F ′ x ( x , y ) F ′ y ( x , y ) \frac{dy}{dx}=-\frac{{{{{F}'}}{x}}(x,y)}{{{{{F}'}}{y}}(x,y)} dxdy=−F′y(x,y)F′x(x,y),其中, F ′ x ( x , y ) {{{F}'}{x}}(x,y) F′x(x,y), F ′ y ( x , y ) {{{F}'}{y}}(x,y) F′y(x,y)分别表示 F ( x , y ) F(x,y) F(x,y)对 x x x和 y y y的偏导数 3)利用微分形式不变性
8.常用高阶导数公式
(1) ( a x ) , ( n ) = a x ln n a ( a > 0 ) ( e x ) , ( n ) = e , x ({{a}^{x}}){{,}^{(n)}}={{a}^{x}}{{\ln }^{n}}a\quad (a>{0})\quad \quad ({{{e}}^{x}}){{,}^{(n)}}={e}{{,}^{x}} (ax),(n)=axlnna(a>0)(ex),(n)=e,x (2) ( sin k x ) , ( n ) = k n sin ( k x + n ⋅ π 2 ) (\sin kx{)}{{,}^{(n)}}={{k}^{n}}\sin (kx+n\cdot \frac{\pi }{{2}}) (sinkx),(n)=knsin(kx+n⋅2π) (3) ( cos k x ) , ( n ) = k n cos ( k x + n ⋅ π 2 ) (\cos kx{)}{{,}^{(n)}}={{k}^{n}}\cos (kx+n\cdot \frac{\pi }{{2}}) (coskx),(n)=kncos(kx+n⋅2π) (4) ( x m ) , ( n ) = m ( m − 1 ) ⋯ ( m − n + 1 ) x m − n ({{x}^{m}}){{,}^{(n)}}=m(m-1)\cdots (m-n+1){{x}^{m-n}} (xm),(n)=m(m−1)⋯(m−n+1)xm−n (5) ( ln x ) , ( n ) = ( − 1 ) ( n − 1 ) ( n − 1 ) ! x n (\ln x){{,}^{(n)}}={{(-{1})}^{(n-{1})}}\frac{(n-{1})!}{{{x}^{n}}} (lnx),(n)=(−1)(n−1)xn(n−1)! (6)莱布尼兹公式:若 u ( x ) , , v ( x ) u(x),,v(x) u(x),,v(x)均 n n n阶可导,则 ( u v ) ( n ) = ∑ i = 0 n c n i u ( i ) v ( n − i ) {{(uv)}^{(n)}}=\sum\limits_{i={0}}^{n}{c_{n}^{i}{{u}^{(i)}}{{v}^{(n-i)}}} (uv)(n)=i=0∑ncniu(i)v(n−i),其中 u ( 0 ) = u {{u}^{({0})}}=u u(0)=u, v ( 0 ) = v {{v}^{({0})}}=v v(0)=v
9.微分中值定理,泰勒公式
Th1:(费马定理)
若函数 f ( x ) f(x) f(x)满足条件: (1)函数 f ( x ) f(x) f(x)在 x 0 {{x}{0}} x0的某邻域内有定义,并且在此邻域内恒有 f ( x ) ≤ f ( x 0 ) f(x)\le f({{x}{0}}) f(x)≤f(x0)或 f ( x ) ≥ f ( x 0 ) f(x)\ge f({{x}_{0}}) f(x)≥f(x0),
(2) f ( x ) f(x) f(x)在 x 0 {{x}{0}} x0处可导,则有 f ′ ( x 0 ) = 0 {f}'({{x}{0}})=0 f′(x0)=0
Th2:(罗尔定理)
设函数 f ( x ) f(x) f(x)满足条件: (1)在闭区间 [ a , b ] [a,b] [a,b]上连续;
(2)在 ( a , b ) (a,b) (a,b)内可导;
(3) f ( a ) = f ( b ) f(a)=f(b) f(a)=f(b);
则在 ( a , b ) (a,b) (a,b)内一存在个$\xi $,使 f ′ ( ξ ) = 0 {f}'(\xi )=0 f′(ξ)=0 Th3: (拉格朗日中值定理)
设函数 f ( x ) f(x) f(x)满足条件: (1)在 [ a , b ] [a,b] [a,b]上连续;
(2)在 ( a , b ) (a,b) (a,b)内可导;
则在 ( a , b ) (a,b) (a,b)内一存在个$\xi $,使 f ( b ) − f ( a ) b − a = f ′ ( ξ ) \frac{f(b)-f(a)}{b-a}={f}'(\xi ) b−af(b)−f(a)=f′(ξ)
Th4: (柯西中值定理)
设函数 f ( x ) f(x) f(x), g ( x ) g(x) g(x)满足条件: (1) 在 [ a , b ] [a,b] [a,b]上连续;
(2) 在 ( a , b ) (a,b) (a,b)内可导且 f ′ ( x ) {f}'(x) f′(x), g ′ ( x ) {g}'(x) g′(x)均存在,且 g ′ ( x ) ≠ 0 {g}'(x)\ne 0 g′(x)=0
则在 ( a , b ) (a,b) (a,b)内存在一个$\xi $,使 f ( b ) − f ( a ) g ( b ) − g ( a ) = f ′ ( ξ ) g ′ ( ξ ) \frac{f(b)-f(a)}{g(b)-g(a)}=\frac{{f}'(\xi )}{{g}'(\xi )} g(b)−g(a)f(b)−f(a)=g′(ξ)f′(ξ)
10.洛必达法则 法则Ⅰ ( 0 0 \frac{0}{0} 00型) 设函数 f ( x ) , g ( x ) f\left( x \right),g\left( x \right) f(x),g(x)满足条件: lim x → x 0 , f ( x ) = 0 , lim x → x 0 , g ( x ) = 0 \underset{x\to {{x}{0}}}{\mathop{\lim }},f\left( x \right)=0,\underset{x\to {{x}{0}}}{\mathop{\lim }},g\left( x \right)=0 x→x0lim,f(x)=0,x→x0lim,g(x)=0;
f ( x ) , g ( x ) f\left( x \right),g\left( x \right) f(x),g(x)在 x 0 {{x}{0}} x0的邻域内可导,(在 x 0 {{x}{0}} x0处可除外)且 g ′ ( x ) ≠ 0 {g}'\left( x \right)\ne 0 g′(x)=0;
lim x → x 0 , f ′ ( x ) g ′ ( x ) \underset{x\to {{x}_{0}}}{\mathop{\lim }},\frac{{f}'\left( x \right)}{{g}'\left( x \right)} x→x0lim,g′(x)f′(x)存在(或$\infty $)。
则: lim x → x 0 , f ( x ) g ( x ) = lim x → x 0 , f ′ ( x ) g ′ ( x ) \underset{x\to {{x}{0}}}{\mathop{\lim }},\frac{f\left( x \right)}{g\left( x \right)}=\underset{x\to {{x}{0}}}{\mathop{\lim }},\frac{{f}'\left( x \right)}{{g}'\left( x \right)} x→x0lim,g(x)f(x)=x→x0lim,g′(x)f′(x)。 法则 I ′ {{I}'} I′ ( 0 0 \frac{0}{0} 00型)设函数 f ( x ) , g ( x ) f\left( x \right),g\left( x \right) f(x),g(x)满足条件: lim x → ∞ , f ( x ) = 0 , lim x → ∞ , g ( x ) = 0 \underset{x\to \infty }{\mathop{\lim }},f\left( x \right)=0,\underset{x\to \infty }{\mathop{\lim }},g\left( x \right)=0 x→∞lim,f(x)=0,x→∞lim,g(x)=0;
存在一个 X > 0 X>0 X>0,当 ∣ x ∣ > X \left| x \right|>X ∣x∣>X时, f ( x ) , g ( x ) f\left( x \right),g\left( x \right) f(x),g(x)可导,且 g ′ ( x ) ≠ 0 {g}'\left( x \right)\ne 0 g′(x)=0; lim x → x 0 , f ′ ( x ) g ′ ( x ) \underset{x\to {{x}_{0}}}{\mathop{\lim }},\frac{{f}'\left( x \right)}{{g}'\left( x \right)} x→x0lim,g′(x)f′(x)存在(或$\infty $)。
则: lim x → x 0 , f ( x ) g ( x ) = lim x → x 0 , f ′ ( x ) g ′ ( x ) \underset{x\to {{x}{0}}}{\mathop{\lim }},\frac{f\left( x \right)}{g\left( x \right)}=\underset{x\to {{x}{0}}}{\mathop{\lim }},\frac{{f}'\left( x \right)}{{g}'\left( x \right)} x→x0lim,g(x)f(x)=x→x0lim,g′(x)f′(x) 法则Ⅱ( ∞ ∞ \frac{\infty }{\infty } ∞∞型) 设函数 f ( x ) , g ( x ) f\left( x \right),g\left( x \right) f(x),g(x)满足条件: $\underset{x\to {{x}{0}}}{\mathop{\lim }},f\left( x \right)=\infty ,\underset{x\to {{x}{0}}}{\mathop{\lim }},g\left( x \right)=\infty $; f ( x ) , g ( x ) f\left( x \right),g\left( x \right) f(x),g(x)在 x 0 {{x}{0}} x0 的邻域内可导(在 x 0 {{x}{0}} x0处可除外)且 g ′ ( x ) ≠ 0 {g}'\left( x \right)\ne 0 g′(x)=0; lim x → x 0 , f ′ ( x ) g ′ ( x ) \underset{x\to {{x}{0}}}{\mathop{\lim }},\frac{{f}'\left( x \right)}{{g}'\left( x \right)} x→x0lim,g′(x)f′(x)存在(或$\infty $)。则 lim x → x 0 , f ( x ) g ( x ) = lim x → x 0 , f ′ ( x ) g ′ ( x ) . \underset{x\to {{x}{0}}}{\mathop{\lim }},\frac{f\left( x \right)}{g\left( x \right)}=\underset{x\to {{x}_{0}}}{\mathop{\lim }},\frac{{f}'\left( x \right)}{{g}'\left( x \right)}. x→x0lim,g(x)f(x)=x→x0lim,g′(x)f′(x).同理法则 I I ′ {I{I}'} II′( ∞ ∞ \frac{\infty }{\infty } ∞∞型)仿法则 I ′ {{I}'} I′可写出。
11.泰勒公式
设函数 f ( x ) f(x) f(x)在点 x 0 {{x}{0}} x0处的某邻域内具有 n + 1 n+1 n+1阶导数,则对该邻域内异于 x 0 {{x}{0}} x0的任意点 x x x,在 x 0 {{x}{0}} x0与 x x x之间至少存在 一个$\xi $,使得: $f(x)=f({{x}{0}})+{f}’({{x}{0}})(x-{{x}{0}})+\frac{1}{2!}{f}’’({{x}{0}}){{(x-{{x}{0}})}^{2}}+\cdots $ + f ( n ) ( x 0 ) n ! ( x − x 0 ) n + R n ( x ) +\frac{{{f}^{(n)}}({{x}{0}})}{n!}{{(x-{{x}{0}})}^{n}}+{{R}{n}}(x) +n!f(n)(x0)(x−x0)n+Rn(x) 其中 R n ( x ) = f ( n + 1 ) ( ξ ) ( n + 1 ) ! ( x − x 0 ) n + 1 {{R}{n}}(x)=\frac{{{f}^{(n+1)}}(\xi )}{(n+1)!}{{(x-{{x}{0}})}^{n+1}} Rn(x)=(n+1)!f(n+1)(ξ)(x−x0)n+1称为 f ( x ) f(x) f(x)在点 x 0 {{x}{0}} x0处的 n n n阶泰勒余项。
令 x 0 = 0 {{x}{0}}=0 x0=0,则 n n n阶泰勒公式 f ( x ) = f ( 0 ) + f ′ ( 0 ) x + 1 2 ! f ′ ′ ( 0 ) x 2 + ⋯ + f ( n ) ( 0 ) n ! x n + R n ( x ) f(x)=f(0)+{f}'(0)x+\frac{1}{2!}{f}''(0){{x}^{2}}+\cdots +\frac{{{f}^{(n)}}(0)}{n!}{{x}^{n}}+{{R}{n}}(x) f(x)=f(0)+f′(0)x+2!1f′′(0)x2+⋯+n!f(n)(0)xn+Rn(x)……(1) 其中 R n ( x ) = f ( n + 1 ) ( ξ ) ( n + 1 ) ! x n + 1 {{R}_{n}}(x)=\frac{{{f}^{(n+1)}}(\xi )}{(n+1)!}{{x}^{n+1}} Rn(x)=(n+1)!f(n+1)(ξ)xn+1,$\xi 在 0 与 在0与 在0与x$之间.(1)式称为麦克劳林公式
常用五种函数在 x 0 = 0 {{x}_{0}}=0 x0=0处的泰勒公式
(1) e x = 1 + x + 1 2 ! x 2 + ⋯ + 1 n ! x n + x n + 1 ( n + 1 ) ! e ξ {{{e}}^{x}}=1+x+\frac{1}{2!}{{x}^{2}}+\cdots +\frac{1}{n!}{{x}^{n}}+\frac{{{x}^{n+1}}}{(n+1)!}{{e}^{\xi }} ex=1+x+2!1x2+⋯+n!1xn+(n+1)!xn+1eξ
或 = 1 + x + 1 2 ! x 2 + ⋯ + 1 n ! x n + o ( x n ) =1+x+\frac{1}{2!}{{x}^{2}}+\cdots +\frac{1}{n!}{{x}^{n}}+o({{x}^{n}}) =1+x+2!1x2+⋯+n!1xn+o(xn)
(2) sin x = x − 1 3 ! x 3 + ⋯ + x n n ! sin n π 2 + x n + 1 ( n + 1 ) ! sin ( ξ + n + 1 2 π ) \sin x=x-\frac{1}{3!}{{x}^{3}}+\cdots +\frac{{{x}^{n}}}{n!}\sin \frac{n\pi }{2}+\frac{{{x}^{n+1}}}{(n+1)!}\sin (\xi +\frac{n+1}{2}\pi ) sinx=x−3!1x3+⋯+n!xnsin2nπ+(n+1)!xn+1sin(ξ+2n+1π)
或 = x − 1 3 ! x 3 + ⋯ + x n n ! sin n π 2 + o ( x n ) =x-\frac{1}{3!}{{x}^{3}}+\cdots +\frac{{{x}^{n}}}{n!}\sin \frac{n\pi }{2}+o({{x}^{n}}) =x−3!1x3+⋯+n!xnsin2nπ+o(xn)
(3) cos x = 1 − 1 2 ! x 2 + ⋯ + x n n ! cos n π 2 + x n + 1 ( n + 1 ) ! cos ( ξ + n + 1 2 π ) \cos x=1-\frac{1}{2!}{{x}^{2}}+\cdots +\frac{{{x}^{n}}}{n!}\cos \frac{n\pi }{2}+\frac{{{x}^{n+1}}}{(n+1)!}\cos (\xi +\frac{n+1}{2}\pi ) cosx=1−2!1x2+⋯+n!xncos2nπ+(n+1)!xn+1cos(ξ+2n+1π)
或 = 1 − 1 2 ! x 2 + ⋯ + x n n ! cos n π 2 + o ( x n ) =1-\frac{1}{2!}{{x}^{2}}+\cdots +\frac{{{x}^{n}}}{n!}\cos \frac{n\pi }{2}+o({{x}^{n}}) =1−2!1x2+⋯+n!xncos2nπ+o(xn)
(4) ln ( 1 + x ) = x − 1 2 x 2 + 1 3 x 3 − ⋯ + ( − 1 ) n − 1 x n n + ( − 1 ) n x n + 1 ( n + 1 ) ( 1 + ξ ) n + 1 \ln (1+x)=x-\frac{1}{2}{{x}^{2}}+\frac{1}{3}{{x}^{3}}-\cdots +{{(-1)}^{n-1}}\frac{{{x}^{n}}}{n}+\frac{{{(-1)}^{n}}{{x}^{n+1}}}{(n+1){{(1+\xi )}^{n+1}}} ln(1+x)=x−21x2+31x3−⋯+(−1)n−1nxn+(n+1)(1+ξ)n+1(−1)nxn+1
或 = x − 1 2 x 2 + 1 3 x 3 − ⋯ + ( − 1 ) n − 1 x n n + o ( x n ) =x-\frac{1}{2}{{x}^{2}}+\frac{1}{3}{{x}^{3}}-\cdots +{{(-1)}^{n-1}}\frac{{{x}^{n}}}{n}+o({{x}^{n}}) =x−21x2+31x3−⋯+(−1)n−1nxn+o(xn)
(5) ( 1 + x ) m = 1 + m x + m ( m − 1 ) 2 ! x 2 + ⋯ + m ( m − 1 ) ⋯ ( m − n + 1 ) n ! x n {{(1+x)}^{m}}=1+mx+\frac{m(m-1)}{2!}{{x}^{2}}+\cdots +\frac{m(m-1)\cdots (m-n+1)}{n!}{{x}^{n}} (1+x)m=1+mx+2!m(m−1)x2+⋯+n!m(m−1)⋯(m−n+1)xn + m ( m − 1 ) ⋯ ( m − n + 1 ) ( n + 1 ) ! x n + 1 ( 1 + ξ ) m − n − 1 +\frac{m(m-1)\cdots (m-n+1)}{(n+1)!}{{x}^{n+1}}{{(1+\xi )}^{m-n-1}} +(n+1)!m(m−1)⋯(m−n+1)xn+1(1+ξ)m−n−1
或 ${{(1+x)}{m}}=1+mx+\frac{m(m-1)}{2!}{{x}{2}}+\cdots $ + m ( m − 1 ) ⋯ ( m − n + 1 ) n ! x n + o ( x n ) +\frac{m(m-1)\cdots (m-n+1)}{n!}{{x}^{n}}+o({{x}^{n}}) +n!m(m−1)⋯(m−n+1)xn+o(xn)
12.函数单调性的判断 Th1: 设函数 f ( x ) f(x) f(x)在 ( a , b ) (a,b) (a,b)区间内可导,如果对 ∀ x ∈ ( a , b ) \forall x\in (a,b) ∀x∈(a,b),都有 f , ′ ( x ) > 0 f,'(x)>0 f,′(x)>0(或 f , ′ ( x ) < 0 f,'(x)<0 f,′(x)<0),则函数 f ( x ) f(x) f(x)在 ( a , b ) (a,b) (a,b)内是单调增加的(或单调减少)
Th2: (取极值的必要条件)设函数 f ( x ) f(x) f(x)在 x 0 {{x}{0}} x0处可导,且在 x 0 {{x}{0}} x0处取极值,则 f , ′ ( x 0 ) = 0 f,'({{x}_{0}})=0 f,′(x0)=0。
Th3: (取极值的第一充分条件)设函数 f ( x ) f(x) f(x)在 x 0 {{x}{0}} x0的某一邻域内可微,且 f , ′ ( x 0 ) = 0 f,'({{x}{0}})=0 f,′(x0)=0(或 f ( x ) f(x) f(x)在 x 0 {{x}{0}} x0处连续,但 f , ′ ( x 0 ) f,'({{x}{0}}) f,′(x0)不存在。) (1)若当 x x x经过 x 0 {{x}{0}} x0时, f , ′ ( x ) f,'(x) f,′(x)由“+”变“-”,则 f ( x 0 ) f({{x}{0}}) f(x0)为极大值; (2)若当 x x x经过 x 0 {{x}{0}} x0时, f , ′ ( x ) f,'(x) f,′(x)由“-”变“+”,则 f ( x 0 ) f({{x}{0}}) f(x0)为极小值; (3)若 f , ′ ( x ) f,'(x) f,′(x)经过 x = x 0 x={{x}{0}} x=x0的两侧不变号,则 f ( x 0 ) f({{x}{0}}) f(x0)不是极值。
Th4: (取极值的第二充分条件)设 f ( x ) f(x) f(x)在点 x 0 {{x}{0}} x0处有 f ′ ′ ( x ) ≠ 0 f''(x)\ne 0 f′′(x)=0,且 f , ′ ( x 0 ) = 0 f,'({{x}{0}})=0 f,′(x0)=0,则 当 f ′ , ′ ( x 0 ) < 0 f','({{x}{0}})<0 f′,′(x0)<0时, f ( x 0 ) f({{x}{0}}) f(x0)为极大值; 当 f ′ , ′ ( x 0 ) > 0 f','({{x}{0}})>0 f′,′(x0)>0时, f ( x 0 ) f({{x}{0}}) f(x0)为极小值。 注:如果 f ′ , ′ ( x 0 ) < 0 f','({{x}_{0}})<0 f′,′(x0)<0,此方法失效。
13.渐近线的求法 (1)水平渐近线 若 lim x → + ∞ , f ( x ) = b \underset{x\to +\infty }{\mathop{\lim }},f(x)=b x→+∞lim,f(x)=b,或 lim x → − ∞ , f ( x ) = b \underset{x\to -\infty }{\mathop{\lim }},f(x)=b x→−∞lim,f(x)=b,则
y = b y=b y=b称为函数 y = f ( x ) y=f(x) y=f(x)的水平渐近线。
(2)铅直渐近线 若$\underset{x\to x_{0}^{-}}{\mathop{\lim }},f(x)=\infty , 或 ,或 ,或\underset{x\to x_{0}^{+}}{\mathop{\lim }},f(x)=\infty $,则
x = x 0 x={{x}_{0}} x=x0称为 y = f ( x ) y=f(x) y=f(x)的铅直渐近线。
(3)斜渐近线 若 a = lim x → ∞ , f ( x ) x , b = lim x → ∞ , [ f ( x ) − a x ] a=\underset{x\to \infty }{\mathop{\lim }},\frac{f(x)}{x},\quad b=\underset{x\to \infty }{\mathop{\lim }},[f(x)-ax] a=x→∞lim,xf(x),b=x→∞lim,[f(x)−ax],则 y = a x + b y=ax+b y=ax+b称为 y = f ( x ) y=f(x) y=f(x)的斜渐近线。
14.函数凹凸性的判断 Th1: (凹凸性的判别定理)若在I上 f ′ ′ ( x ) < 0 f''(x)<0 f′′(x)<0(或 f ′ ′ ( x ) > 0 f''(x)>0 f′′(x)>0),则 f ( x ) f(x) f(x)在I上是凸的(或凹的)。
Th2: (拐点的判别定理1)若在 x 0 {{x}{0}} x0处 f ′ ′ ( x ) = 0 f''(x)=0 f′′(x)=0,(或 f ′ ′ ( x ) f''(x) f′′(x)不存在),当 x x x变动经过 x 0 {{x}{0}} x0时, f ′ ′ ( x ) f''(x) f′′(x)变号,则 ( x 0 , f ( x 0 ) ) ({{x}{0}},f({{x}{0}})) (x0,f(x0))为拐点。
Th3: (拐点的判别定理2)设 f ( x ) f(x) f(x)在 x 0 {{x}{0}} x0点的某邻域内有三阶导数,且 f ′ ′ ( x ) = 0 f''(x)=0 f′′(x)=0, f ′ ′ ′ ( x ) ≠ 0 f'''(x)\ne 0 f′′′(x)=0,则 ( x 0 , f ( x 0 ) ) ({{x}{0}},f({{x}_{0}})) (x0,f(x0))为拐点。
15.弧微分
d S = 1 + y ′ 2 d x dS=\sqrt{1+y{{'}^{2}}}dx dS=1+y′2dx
16.曲率
曲线 y = f ( x ) y=f(x) y=f(x)在点 ( x , y ) (x,y) (x,y)处的曲率 k = ∣ y ′ ′ ∣ ( 1 + y ′ 2 ) 3 2 k=\frac{\left| y'' \right|}{{{(1+y{{'}^{2}})}^{\tfrac{3}{2}}}} k=(1+y′2)23∣y′′∣。 对于参数方程KaTeX parse error: No such environment: align at position 14: \left{ \begin{̲a̲l̲i̲g̲n̲}̲ & x=\varphi (t… k = ∣ φ ′ ( t ) ψ ′ ′ ( t ) − φ ′ ′ ( t ) ψ ′ ( t ) ∣ [ φ ′ 2 ( t ) + ψ ′ 2 ( t ) ] 3 2 k=\frac{\left| \varphi '(t)\psi ''(t)-\varphi ''(t)\psi '(t) \right|}{{{[\varphi {{'}^{2}}(t)+\psi {{'}^{2}}(t)]}^{\tfrac{3}{2}}}} k=[φ′2(t)+ψ′2(t)]23∣φ′(t)ψ′′(t)−φ′′(t)ψ′(t)∣。
17.曲率半径
曲线在点 M M M处的曲率 k ( k ≠ 0 ) k(k\ne 0) k(k=0)与曲线在点 M M M处的曲率半径$\rho 有 如 下 关 系 : 有如下关系: 有如下关系:\rho =\frac{1}{k}$。
线性代数
行列式
1.行列式按行(列)展开定理
(1) 设 A = ( a i j ) n × n A = ( a_{{ij}} ){n \times n} A=(aij)n×n,则: a i 1 A j 1 + a i 2 A j 2 + ⋯ + a i n A j n = { ∣ A ∣ , i = j 0 , i ≠ j a{i1}A_{j1} +a_{i2}A_{j2} + \cdots + a_{{in}}A_{{jn}} = \begin{cases}|A|,i=j\ 0,i \neq j\end{cases} ai1Aj1+ai2Aj2+⋯+ainAjn={∣A∣,i=j 0,i=j
或 a 1 i A 1 j + a 2 i A 2 j + ⋯ + a n i A n j = { ∣ A ∣ , i = j 0 , i ≠ j a_{1i}A_{1j} + a_{2i}A_{2j} + \cdots + a_{{ni}}A_{{nj}} = \begin{cases}|A|,i=j\ 0,i \neq j\end{cases} a1iA1j+a2iA2j+⋯+aniAnj={∣A∣,i=j 0,i=j即 A A = A A = ∣ A ∣ E , AA^{} = A^{}A = \left| A \right|E, AA=AA=∣A∣E,其中: A ∗ = ( A 11 A 12 … A 1 n A 21 A 22 … A 2 n … … … … A n 1 A n 2 … A n n ) = ( A j i ) = ( A i j ) T A^{*} = \begin{pmatrix} A_{11} & A_{12} & \ldots & A_{1n} \ A_{21} & A_{22} & \ldots & A_{2n} \ \ldots & \ldots & \ldots & \ldots \ A_{n1} & A_{n2} & \ldots & A_{{nn}} \ \end{pmatrix} = (A_{{ji}}) = {(A_{{ij}})}^{T} A∗=(A11A12…A1n A21A22…A2n ………… An1An2…Ann )=(Aji)=(Aij)T
D n = ∣ 1 1 … 1 x 1 x 2 … x n … … … … x 1 n − 1 x 2 n − 1 … x n n − 1 ∣ = ∏ 1 ≤ j < i ≤ n , ( x i − x j ) D_{n} = \begin{vmatrix} 1 & 1 & \ldots & 1 \ x_{1} & x_{2} & \ldots & x_{n} \ \ldots & \ldots & \ldots & \ldots \ x_{1}^{n - 1} & x_{2}^{n - 1} & \ldots & x_{n}^{n - 1} \ \end{vmatrix} = \prod_{1 \leq j < i \leq n}^{},(x_{i} - x_{j}) Dn=∣∣11…1 x1x2…xn ………… x1n−1x2n−1…xnn−1 ∣∣=∏1≤j<i≤n,(xi−xj)
(2) 设 A , B A,B A,B为 n n n阶方阵,则 ∣ A B ∣ = ∣ A ∣ ∣ B ∣ = ∣ B ∣ ∣ A ∣ = ∣ B A ∣ \left| {AB} \right| = \left| A \right|\left| B \right| = \left| B \right|\left| A \right| = \left| {BA} \right| ∣AB∣=∣A∣∣B∣=∣B∣∣A∣=∣BA∣,但 ∣ A ± B ∣ = ∣ A ∣ ± ∣ B ∣ \left| A \pm B \right| = \left| A \right| \pm \left| B \right| ∣A±B∣=∣A∣±∣B∣不一定成立。
(3) ∣ k A ∣ = k n ∣ A ∣ \left| {kA} \right| = k^{n}\left| A \right| ∣kA∣=kn∣A∣, A A A为 n n n阶方阵。
(4) 设 A A A为 n n n阶方阵, ∣ A T ∣ = ∣ A ∣ ; ∣ A − 1 ∣ = ∣ A ∣ − 1 |A^{T}| = |A|;|A^{- 1}| = |A|^{- 1} ∣AT∣=∣A∣;∣A−1∣=∣A∣−1(若 A A A可逆), ∣ A ∗ ∣ = ∣ A ∣ n − 1 |A^{*}| = |A|^{n - 1} ∣A∗∣=∣A∣n−1
n ≥ 2 n \geq 2 n≥2
(5) ∣ A O O B ∣ = ∣ A C O B ∣ = ∣ A O C B ∣ = ∣ A ∣ ∣ B ∣ \left| \begin{matrix} & {A\quad O} \ & {O\quad B} \ \end{matrix} \right| = \left| \begin{matrix} & {A\quad C} \ & {O\quad B} \ \end{matrix} \right| = \left| \begin{matrix} & {A\quad O} \ & {C\quad B} \ \end{matrix} \right| =| A||B| ∣∣AO OB ∣∣=∣∣AC OB ∣∣=∣∣AO CB ∣∣=∣A∣∣B∣ , A , B A,B A,B为方阵,但 ∣ O A m × m B n × n O ∣ = ( − 1 ) m n ∣ A ∣ ∣ B ∣ \left| \begin{matrix} {O} & A_{m \times m} \ B_{n \times n} & { O} \ \end{matrix} \right| = ({- 1)}^{{mn}}|A||B| ∣∣OAm×m Bn×nO ∣∣=(−1)mn∣A∣∣B∣ 。
(6) 范德蒙行列式 D n = ∣ 1 1 … 1 x 1 x 2 … x n … … … … x 1 n − 1 x 2 n 1 … x n n − 1 ∣ = ∏ 1 ≤ j < i ≤ n , ( x i − x j ) D_{n} = \begin{vmatrix} 1 & 1 & \ldots & 1 \ x_{1} & x_{2} & \ldots & x_{n} \ \ldots & \ldots & \ldots & \ldots \ x_{1}^{n - 1} & x_{2}^{n 1} & \ldots & x_{n}^{n - 1} \ \end{vmatrix} = \prod_{1 \leq j < i \leq n}^{},(x_{i} - x_{j}) Dn=∣∣11…1 x1x2…xn ………… x1n−1x2n1…xnn−1 ∣∣=∏1≤j<i≤n,(xi−xj)
设 A A A是 n n n阶方阵, λ i ( i = 1 , 2 ⋯ , n ) \lambda_{i}(i = 1,2\cdots,n) λi(i=1,2⋯,n)是 A A A的 n n n个特征值,则 ∣ A ∣ = ∏ i = 1 n λ i |A| = \prod_{i = 1}^{n}\lambda_{i} ∣A∣=∏i=1nλi
矩阵
矩阵: m × n m \times n m×n个数 a i j a_{{ij}} aij排成 m m m行 n n n列的表格 [ a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋯ ⋯ ⋯ ⋯ ⋯ a m 1 a m 2 ⋯ a m n ] \begin{bmatrix} a_{11}\quad a_{12}\quad\cdots\quad a_{1n} \ a_{21}\quad a_{22}\quad\cdots\quad a_{2n} \ \quad\cdots\cdots\cdots\cdots\cdots \ a_{m1}\quad a_{m2}\quad\cdots\quad a_{{mn}} \ \end{bmatrix} [a11a12⋯a1n a21a22⋯a2n ⋯⋯⋯⋯⋯ am1am2⋯amn ] 称为矩阵,简记为 A A A,或者 ( a i j ) m × n \left( a_{{ij}} \right)_{m \times n} (aij)m×n 。若 m = n m = n m=n,则称 A A A是 n n n阶矩阵或 n n n阶方阵。
矩阵的线性运算
1.矩阵的加法
设 A = ( a i j ) , B = ( b i j ) A = (a_{{ij}}),B = (b_{{ij}}) A=(aij),B=(bij)是两个 m × n m \times n m×n矩阵,则 m × n m \times n m×n 矩阵 C = c i j ) = a i j + b i j C = c_{{ij}}) = a_{{ij}} + b_{{ij}} C=cij)=aij+bij称为矩阵 A A A与 B B B的和,记为 A + B = C A + B = C A+B=C 。
2.矩阵的数乘
设 A = ( a i j ) A = (a_{{ij}}) A=(aij)是 m × n m \times n m×n矩阵, k k k是一个常数,则 m × n m \times n m×n矩阵 ( k a i j ) (ka_{{ij}}) (kaij)称为数 k k k与矩阵 A A A的数乘,记为 k A {kA} kA。
3.矩阵的乘法
设 A = ( a i j ) A = (a_{{ij}}) A=(aij)是 m × n m \times n m×n矩阵, B = ( b i j ) B = (b_{{ij}}) B=(bij)是 n × s n \times s n×s矩阵,那么 m × s m \times s m×s矩阵 C = ( c i j ) C = (c_{{ij}}) C=(cij),其中 c i j = a i 1 b 1 j + a i 2 b 2 j + ⋯ + a i n b n j = ∑ k = 1 n a i k b k j c_{{ij}} = a_{i1}b_{1j} + a_{i2}b_{2j} + \cdots + a_{{in}}b_{{nj}} = \sum_{k =1}^{n}{a_{{ik}}b_{{kj}}} cij=ai1b1j+ai2b2j+⋯+ainbnj=∑k=1naikbkj称为 A B {AB} AB的乘积,记为 C = A B C = AB C=AB 。
(1) ( A T ) T = A , ( A B ) T = B T A T , ( k A ) T = k A T , ( A ± B ) T = A T ± B T {(A^{T})}^{T} = A,{(AB)}^{T} = B^{T}A^{T},{(kA)}^{T} = kA^{T},{(A \pm B)}^{T} = A^{T} \pm B^{T} (AT)T=A,(AB)T=BTAT,(kA)T=kAT,(A±B)T=AT±BT
(2) ( A − 1 ) − 1 = A , ( A B ) − 1 = B − 1 A − 1 , ( k A ) − 1 = 1 k A − 1 , \left( A^{- 1} \right)^{- 1} = A,\left( {AB} \right)^{- 1} = B^{- 1}A^{- 1},\left( {kA} \right)^{- 1} = \frac{1}{k}A^{- 1}, (A−1)−1=A,(AB)−1=B−1A−1,(kA)−1=k1A−1,
但 ( A ± B ) − 1 = A − 1 ± B − 1 {(A \pm B)}^{- 1} = A^{- 1} \pm B^{- 1} (A±B)−1=A−1±B−1不一定成立。
(3) ( A ) = ∣ A ∣ n − 2 A ( n ≥ 3 ) \left( A^{} \right)^{} = |A|^{n - 2}\ A\ \ (n \geq 3) (A)=∣A∣n−2 A (n≥3), ( A B ) = B A , \left({AB} \right)^{} = B^{}A^{}, (AB)=BA, ( k A ) = k n − 1 A ∗ ( n ≥ 2 ) \left( {kA} \right)^{} = k^{n -1}A^{*}{\ \ }\left( n \geq 2 \right) (kA)=kn−1A∗ (n≥2)
但 ( A ± B ) = A ± B ∗ \left( A \pm B \right)^{} = A^{} \pm B^{*} (A±B)=A±B∗不一定成立。
(4) ( A − 1 ) T = ( A T ) − 1 , ( A − 1 ) = ( A A ) − 1 , ( A ) T = ( A T ) {(A^{- 1})}^{T} = {(A^{T})}^{- 1},\ \left( A^{- 1} \right)^{} ={(AA^{})}^{- 1},{(A^{})}^{T} = \left( A^{T} \right)^{} (A−1)T=(AT)−1, (A−1)=(AA)−1,(A)T=(AT)
5.有关 A ∗ \mathbf{A}^{\mathbf{*}} A∗的结论
(1) A A = A A = ∣ A ∣ E AA^{} = A^{}A = |A|E AA=AA=∣A∣E
(2) ∣ A ∣ = ∣ A ∣ n − 1 ( n ≥ 2 ) , ( k A ) = k n − 1 A , ( A ) ∗ = ∣ A ∣ n − 2 A ( n ≥ 3 ) |A^{}| = |A|^{n - 1}\ (n \geq 2),\ \ \ \ {(kA)}^{} = k^{n -1}A^{},{{\ \ }\left( A^{} \right)}^{*} = |A|^{n - 2}A(n \geq 3) ∣A∣=∣A∣n−1 (n≥2), (kA)=kn−1A, (A)∗=∣A∣n−2A(n≥3)
(3) 若 A A A可逆,则 A = ∣ A ∣ A − 1 , ( A ) ∗ = 1 ∣ A ∣ A A^{} = |A|A^{- 1},{(A^{})}^{*} = \frac{1}{|A|}A A=∣A∣A−1,(A)∗=∣A∣1A
(4) 若 A A A为 n n n阶方阵,则:
r ( A ∗ ) = { n , r ( A ) = n 1 , r ( A ) = n − 1 0 , r ( A ) < n − 1 r(A^*)=\begin{cases}n,\quad r(A)=n\ 1,\quad r(A)=n-1\ 0,\quad r(A)
6.有关 A − 1 \mathbf{A}^{\mathbf{- 1}} A−1的结论
A A A可逆 ⇔ A B = E ; ⇔ ∣ A ∣ ≠ 0 ; ⇔ r ( A ) = n ; \Leftrightarrow AB = E; \Leftrightarrow |A| \neq 0; \Leftrightarrow r(A) = n; ⇔AB=E;⇔∣A∣=0;⇔r(A)=n;
⇔ A \Leftrightarrow A ⇔A可以表示为初等矩阵的乘积; ⇔ A ; ⇔ A x = 0 \Leftrightarrow A;\Leftrightarrow Ax = 0 ⇔A;⇔Ax=0。
7.有关矩阵秩的结论
(1) 秩 r ( A ) r(A) r(A)=行秩=列秩;
(2) r ( A m × n ) ≤ min ( m , n ) ; r(A_{m \times n}) \leq \min(m,n); r(Am×n)≤min(m,n);
(3) A ≠ 0 ⇒ r ( A ) ≥ 1 A \neq 0 \Rightarrow r(A) \geq 1 A=0⇒r(A)≥1;
(4) r ( A ± B ) ≤ r ( A ) + r ( B ) ; r(A \pm B) \leq r(A) + r(B); r(A±B)≤r(A)+r(B);
(5) 初等变换不改变矩阵的秩
(6) r ( A ) + r ( B ) − n ≤ r ( A B ) ≤ min ( r ( A ) , r ( B ) ) , r(A) + r(B) - n \leq r(AB) \leq \min(r(A),r(B)), r(A)+r(B)−n≤r(AB)≤min(r(A),r(B)),特别若 A B = O AB = O AB=O 则: r ( A ) + r ( B ) ≤ n r(A) + r(B) \leq n r(A)+r(B)≤n
(7) 若 A − 1 A^{- 1} A−1存在 ⇒ r ( A B ) = r ( B ) ; \Rightarrow r(AB) = r(B); ⇒r(AB)=r(B); 若 B − 1 B^{- 1} B−1存在 ⇒ r ( A B ) = r ( A ) ; \Rightarrow r(AB) = r(A); ⇒r(AB)=r(A);
若 r ( A m × n ) = n ⇒ r ( A B ) = r ( B ) ; r(A_{m \times n}) = n \Rightarrow r(AB) = r(B); r(Am×n)=n⇒r(AB)=r(B); 若 r ( A m × s ) = n ⇒ r ( A B ) = r ( A ) r(A_{m \times s}) = n\Rightarrow r(AB) = r\left( A \right) r(Am×s)=n⇒r(AB)=r(A)。
(8) r ( A m × s ) = n ⇔ A x = 0 r(A_{m \times s}) = n \Leftrightarrow Ax = 0 r(Am×s)=n⇔Ax=0只有零解
8.分块求逆公式
( A O O B ) − 1 = ( A − 1 O O B − 1 ) \begin{pmatrix} A & O \ O & B \ \end{pmatrix}^{- 1} = \begin{pmatrix} A^{-1} & O \ O & B^{- 1} \ \end{pmatrix} (AO OB )−1=(A−1O OB−1 ); KaTeX parse error: Expected & or \\ or \cr or \end at end of input: …\ \end{pmatrix};
KaTeX parse error: Expected & or \\ or \cr or \end at end of input: … \\end{pmatrix}; ( O A B O ) − 1 = ( O B − 1 A − 1 O ) \begin{pmatrix} O & A \ B & O \ \end{pmatrix}^{- 1} =\begin{pmatrix} O & B^{- 1} \ A^{- 1} & O \ \end{pmatrix} (OA BO )−1=(OB−1 A−1O )
这里 A A A, B B B均为可逆方阵。
向量
1.有关向量组的线性表示
(1) α 1 , α 2 , ⋯ , α s \alpha_{1},\alpha_{2},\cdots,\alpha_{s} α1,α2,⋯,αs线性相关 ⇔ \Leftrightarrow ⇔至少有一个向量可以用其余向量线性表示。
(2) α 1 , α 2 , ⋯ , α s \alpha_{1},\alpha_{2},\cdots,\alpha_{s} α1,α2,⋯,αs线性无关, α 1 , α 2 , ⋯ , α s \alpha_{1},\alpha_{2},\cdots,\alpha_{s} α1,α2,⋯,αs, β \beta β线性相关 ⇔ β \Leftrightarrow \beta ⇔β可以由 α 1 , α 2 , ⋯ , α s \alpha_{1},\alpha_{2},\cdots,\alpha_{s} α1,α2,⋯,αs唯一线性表示。
(3) β \beta β可以由 α 1 , α 2 , ⋯ , α s \alpha_{1},\alpha_{2},\cdots,\alpha_{s} α1,α2,⋯,αs线性表示 ⇔ r ( α 1 , α 2 , ⋯ , α s ) = r ( α 1 , α 2 , ⋯ , α s , β ) \Leftrightarrow r(\alpha_{1},\alpha_{2},\cdots,\alpha_{s}) =r(\alpha_{1},\alpha_{2},\cdots,\alpha_{s},\beta) ⇔r(α1,α2,⋯,αs)=r(α1,α2,⋯,αs,β) 。
2.有关向量组的线性相关性
(1)部分相关,整体相关;整体无关,部分无关.
(2) ① n n n个 n n n维向量 α 1 , α 2 ⋯ α n \alpha_{1},\alpha_{2}\cdots\alpha_{n} α1,α2⋯αn线性无关 ⇔ ∣ [ α 1 α 2 ⋯ α n ] ∣ ≠ 0 \Leftrightarrow \left|\left\lbrack \alpha_{1}\alpha_{2}\cdots\alpha_{n} \right\rbrack \right| \neq0 ⇔∣[α1α2⋯αn]∣=0, n n n个 n n n维向量 α 1 , α 2 ⋯ α n \alpha_{1},\alpha_{2}\cdots\alpha_{n} α1,α2⋯αn线性相关 ⇔ ∣ [ α 1 , α 2 , ⋯ , α n ] ∣ = 0 \Leftrightarrow |\lbrack\alpha_{1},\alpha_{2},\cdots,\alpha_{n}\rbrack| = 0 ⇔∣[α1,α2,⋯,αn]∣=0 。
② n + 1 n + 1 n+1个 n n n维向量线性相关。
③ 若 α 1 , α 2 ⋯ α S \alpha_{1},\alpha_{2}\cdots\alpha_{S} α1,α2⋯αS线性无关,则添加分量后仍线性无关;或一组向量线性相关,去掉某些分量后仍线性相关。
3.有关向量组的线性表示
(1) α 1 , α 2 , ⋯ , α s \alpha_{1},\alpha_{2},\cdots,\alpha_{s} α1,α2,⋯,αs线性相关 ⇔ \Leftrightarrow ⇔至少有一个向量可以用其余向量线性表示。
(2) α 1 , α 2 , ⋯ , α s \alpha_{1},\alpha_{2},\cdots,\alpha_{s} α1,α2,⋯,αs线性无关, α 1 , α 2 , ⋯ , α s \alpha_{1},\alpha_{2},\cdots,\alpha_{s} α1,α2,⋯,αs, β \beta β线性相关 ⇔ β \Leftrightarrow\beta ⇔β 可以由 α 1 , α 2 , ⋯ , α s \alpha_{1},\alpha_{2},\cdots,\alpha_{s} α1,α2,⋯,αs唯一线性表示。
(3) β \beta β可以由 α 1 , α 2 , ⋯ , α s \alpha_{1},\alpha_{2},\cdots,\alpha_{s} α1,α2,⋯,αs线性表示 ⇔ r ( α 1 , α 2 , ⋯ , α s ) = r ( α 1 , α 2 , ⋯ , α s , β ) \Leftrightarrow r(\alpha_{1},\alpha_{2},\cdots,\alpha_{s}) =r(\alpha_{1},\alpha_{2},\cdots,\alpha_{s},\beta) ⇔r(α1,α2,⋯,αs)=r(α1,α2,⋯,αs,β)
4.向量组的秩与矩阵的秩之间的关系
设 r ( A m × n ) = r r(A_{m \times n}) =r r(Am×n)=r,则 A A A的秩 r ( A ) r(A) r(A)与 A A A的行列向量组的线性相关性关系为:
(1) 若 r ( A m × n ) = r = m r(A_{m \times n}) = r = m r(Am×n)=r=