- 计算机网络笔记(四)——1.4计算机网络在我国的发展
xiao--xin
计算机网络计算机网络笔记面试学习
一、早期探索与奠基(1980-1994年)国际联网的起点1986年:中国启动首个国际联网项目“中国学术网(CANET)”,由北京计算机应用技术研究所与德国卡尔斯鲁厄大学合作,目标是实现电子邮件通信。1987年9月20日:中国发出第一封电子邮件《越过长城,走向世界》,标志着中国首次接入国际互联网。科研网络的突破1989年:中关村地区教育与科研示范网络(NCFC)立项,由中国科学院、北京大学、清华大学
- 探索Python中的集成方法:Stacking
Echo_Wish
Python笔记Python算法python开发语言
在机器学习领域,Stacking是一种高级的集成学习方法,它通过将多个基本模型的预测结果作为新的特征输入到一个元模型中,从而提高整体模型的性能和鲁棒性。本文将深入介绍Stacking的原理、实现方式以及如何在Python中应用。什么是Stacking?Stacking,又称为堆叠泛化(StackedGeneralization),是一种模型集成方法,与Bagging和Boosting不同,它并不直
- 【机会约束、鲁棒优化】机会约束和鲁棒优化研究优化【ccDCOPF】研究(Matlab代码实现)
科研_G.E.M.
matlab概率论开发语言
个人主页欢迎来到本博客❤️❤️博主优势:博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。⛳️座右铭:行百里者,半于九十。本文目录如下:目录1概述机会约束、鲁棒优化与ccDCOPF研究综述1.机会约束规划(ChanceConstrainedProgramming,CCP)在电力系统中的应用2.鲁棒优化(RobustOptimization,RO)在电力系统中的应用3.机会约束与鲁棒优化的协同方法
- AI图像技术:真实与虚假的博弈
XianxinMao
人工智能人工智能计算机视觉深度学习
标题:AI图像技术:真实与虚假的博弈文章信息摘要:随着AI生成图像技术的快速发展,虚假信息的传播风险急剧增加,引发了社会对信息真实性的广泛担忧。AI生成的图像几乎与真实照片无法区分,可能被用于制造虚假新闻、恶意攻击和商业欺诈,导致社会信任危机。为应对这一挑战,Meta开发了StableSignature技术,通过在AI生成图像中嵌入不可见且防篡改的水印,有效识别和追踪图像来源。这项技术具有鲁棒性、
- 更好地进行SQL问题回答的提示技术
bavDHAUO
sqloracle数据库python
在SQL问题回答过程中,提示工程是生成正确SQL查询的关键。通过使用create_sql_query_chain,我们将探讨如何优化提示技术,以改善SQL查询生成。本文将重点讲述如何在提示中获得针对特定数据库的信息。技术背景介绍在使用自然语言生成SQL查询时,数据库的特定方言、表结构信息以及少量示例都能够显著提高生成查询的准确性。通过LangChain库,我们可以优化这些提示来帮助模型更好地理解和
- 金融风控算法透明度与可解释性优化
智能计算研究中心
其他
内容概要金融风控算法的透明化研究面临模型复杂性提升与监管合规要求的双重挑战。随着深度学习框架在特征提取环节的广泛应用,算法可解释性与预测精度之间的平衡成为核心议题。本文从联邦学习架构下的数据协作机制出发,结合特征工程优化与超参数调整技术,系统性分析逻辑回归、随机森林等传统算法在召回率、F1值等关键指标上的表现差异。研究同时探讨数据预处理流程对风控决策鲁棒性的影响,并提出基于注意力机制的特征权重可视
- 95% 向量资源节省,火山引擎云搜索 RAG 技术体系演进
字节跳动云原生计算
火山引擎搜索引擎算法
采访嘉宾|火山引擎云搜索团队鲁蕴铖、李杰辉、余炜强编辑|TinaInfoQ2023年,大模型惊艳了世界。2024年,RAG技术如日中天。RAG使得大模型能够在不更新模型参数的情况下,获得必要的上下文信息,从而减少大模型的幻觉。随着大型语言模型技术的不断成熟和行业应用的深入,人们对RAG系统的期望已经超越了对其“酷炫”效果的追求。企业和组织开始寻找更可靠、可扩展的RAG解决方案,以满足实际业务需求。
- httpcanary动态注入_HttpCanary使用指南——正则匹配注入
火锅大魔王
httpcanary动态注入
HttpCanary于v2.11.0版本上线了正则匹配注入功能。顾名思义,就是使用正则表达式或者匹配字符串,动态修改网络请求数据中的部分数据。举个例子:{"date":"30日星期天","high":"高温30℃","fengli":"","low":"低温23℃","fengxiang":"西南风","type":"多云"}复制代码我们希望将网络请求体中这段数据中的符号℃修改为中文摄氏度,即:{
- 数据增强:扩充数据集,提升模型的鲁棒性
AI天才研究院
DeepSeekR1&大数据AI人工智能大模型LLM大模型落地实战指南计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
数据增强:扩充数据集,提升模型的鲁棒性1.背景介绍1.1数据集的重要性在机器学习和深度学习领域中,数据集是训练模型的基础。高质量的数据集对于构建准确、鲁棒的模型至关重要。然而,在现实世界中,获取大量高质量的数据通常是一个巨大的挑战。数据采集过程耗时耗力,而且成本高昂。此外,某些领域的数据存在隐私和安全问题,难以获取。1.2数据集不足的挑战当数据集规模有限时,模型很容易过拟合,无法很好地推广到新的、
- BioDeepAV:一个多模态基准数据集,包含超过1600个深度伪造视频,用于评估深度伪造检测器在面对未知生成器时的性能。
数据集
2024-11-29,由罗马尼亚布加勒斯特大学创建BioDeepAV数据集,它专门设计来评估最先进的深度伪造检测器在面对未见过的深度伪造生成器时的泛化能力,这对于提高检测器的鲁棒性和适应性具有重要意义。一、研究背景:随着生成模型的快速发展,深度伪造内容的逼真度不断提高,人们越来越难以在线检测出被操纵的媒体内容,从而容易受到各种诈骗的欺骗。这不仅对个人隐私构成威胁,也对社会信任和民主构成挑战。目前遇
- FireRedASR:精准识别普通话、方言和歌曲歌词!小红书开源工业级自动语音识别模型
蚝油菜花
每日AI项目与应用实例语音识别人工智能人工智能开源
❤️如果你也关注AI的发展现状,且对AI应用开发感兴趣,我会每日分享大模型与AI领域的开源项目和应用,提供运行实例和实用教程,帮助你快速上手AI技术!微信公众号|搜一搜:蚝油菜花大家好,我是蚝油菜花,今天跟大家分享一下FireRedASR这个小红书开源的工业级自动语音识别模型。快速阅读FireRedASR是小红书开源的工业级自动语音识别模型,支持普通话、中文方言和英语。该模型在普通话ASR基准测试
- java实现卷积神经网络CNN(附带源码)
Katie。
Java实战项目java
Java实现卷积神经网络(CNN)项目详解目录项目概述1.1项目背景与意义1.2什么是卷积神经网络(CNN)1.3卷积神经网络的应用场景相关知识与理论基础2.1神经网络与深度学习概述2.2卷积操作与卷积层原理2.3激活函数与池化层2.4全连接层与损失函数2.5前向传播、反向传播与梯度下降项目需求与分析3.1项目目标3.2功能需求分析3.3性能与扩展性要求3.4异常处理与鲁棒性考虑系统设计与实现思路
- 小狐狸AI数字人源码独立SAAS部署全开源+搭建环境教程
kaui52066
kaui52066精品源码人工智能uni-app前端小程序php小狐狸AI数字人数字人源码
一.系统介绍小狐狸AI数字人分身系统源码独立部署支持PC端、小程序端、H5端,一键克隆真人形象+声音核心功能亮点:1:1真人级克隆技术声音克隆:上传3分钟音频,AI深度学习声纹特征,复刻语气、情感、方言形象克隆:通过照片/视频建模,生成动态3D数字人,表情自然,动作流畅智能口型同步引擎AI算法精准匹配唇形与语音,实现口型同步0门槛SAAS化操作无需专业设备,网页端一键生成数字人视频海量模板库:电商
- doris:SQL 方言兼容
向阳1218
大数据doris
提示从2.1版本开始,Doris可以支持多种SQL方言,如Presto、Trino、Hive、PostgreSQL、Spark、Clickhouse等等。通过这个功能,用户可以直接使用对应的SQL方言查询Doris中的数据,方便用户将原先的业务平滑的迁移到Doris中。警告该功能目前是实验性功能,您在使用过程中如遇到任何问题,欢迎通过邮件组、GitHubIssue等方式进行反馈。部署服务下载最新版
- LLM Weekly(2025.03.03-03.09)
UnknownBody
LLMDailyLLMWeekly语言模型人工智能
网络新闻QwQ-32B:拥抱强化学习的力量。研究人员推出了QwQ-32B,这是一个拥有320亿参数的模型,它利用强化学习来提升推理能力。尽管参数较少,但通过整合类似智能体的推理和反馈机制,QwQ-32B的表现可与更大规模的模型相媲美。该模型可在HuggingFace平台上获取。**人工智能领域的先驱安德鲁·巴托(AndrewBarto)和理查德·萨顿(RichardSutton)因对强化学习的开创
- PCL 点云迭代加权最小二乘法拟合平面(抑制噪声)
大鱼BIGFISH
点云进阶最小二乘法平面C++PCL迭代加权
文章目录一、简介二、实现代码三、实现效果参考资料一、简介受到之前博客的启发(Matlab点云最小二乘法拟合平面(剔除噪声)),我们不仅可以通过剔除一些异常点来拟合更为合适的平面,而且还可以在这个过程中对每个点进行加权来抑制噪声点,双管齐下也可以使得算法更具鲁棒性,并拟合出合适的平面,具体过程如下所示:1、首先使用加权的最小二乘法拟合一个平面系数的初值。2、计算所有有效点到拟合平面的距离did_i
- 仓储系统货位优化毕业论文【Flexsim仿真】
aikelele
人工智能
一、内容简介由堆垛机、货架、输送系统、管理系统、控制系统等组成的传统堆垛式仓储系统因为其成熟的技术和推广方式、高效等特点广泛的应用在物流、车间、制造等行业。但是堆垛机仓库每个巷道都会拥有一台堆垛机,其作业方式受到限制,鲁棒性比较差,一个巷道堆垛机出现问题题将导致整个巷道作业停止。同时,堆垛机立体仓库的可协调性比较差,企业的产品有旺季、淡季之分,在旺季时可能满足正常的出入库需求;在淡季时,可能会出现
- 无人机动态追踪技术难点与距离分析!
云卓SKYDROID
无人机人工智能云卓科技智能跟踪吊舱
一、技术难点概述目标识别与跟踪算法的鲁棒性复杂场景适应性**:在动态背景(如人群、森林)或光照变化(逆光、夜间)下,算法需精准区分目标与干扰物。传统计算机视觉方法(如光流法、卡尔曼滤波)易受干扰,需结合深度学习(如YOLO、SiamRPN++)提升抗干扰能力。多目标跟踪与遮挡处理**:目标被遮挡或短暂消失时,需通过轨迹预测或特征匹配恢复跟踪,对算法的记忆能力和实时性要求极高。实时性要求**:算法需
- 跨领域算法安全优化与可解释实践
智能计算研究中心
其他
内容概要作为系统性研究框架,《跨领域算法安全优化与可解释实践》从算法研发的全生命周期切入,重点解决多领域交叉应用中的核心矛盾。通过整合联邦学习的分布式架构与量子计算的高效特性,构建兼顾隐私保护与运算效率的算法优化范式,同时引入动态可解释性分析技术,为医疗影像诊断、金融风险预测等高敏感场景提供决策透明度保障。在技术路径层面,研究聚焦特征工程的鲁棒性设计、超参数的自适应调优策略,以及生成对抗网络在数据
- 池化的定义与核心思想
code 旭
AI人工智能学习pythonnumpy人工智能
一、池化的定义与核心思想定义:池化是卷积神经网络(CNN)中的一种下采样操作,用于降低特征图的空间维度(宽高),保留主要特征。核心目标:减少计算量:缩小特征图尺寸,降低后续层参数规模。增强模型鲁棒性:对微小平移、旋转等变化不敏感。防止过拟合:通过降维减少冗余信息。二、池化的数学公式1.最大池化(MaxPooling)取池化窗口内的最大值:yi,j=maxp=0kh−1maxq=0kw−1xi⋅
- 针对AF调试过程中PD多窗机制是如何打分的
爱写BUG的长歌
人工智能计算机视觉算法
在AF(自动对焦)调试中,PD多窗机制(PhaseDetectionMulti-Window)是提升相位对焦精度和鲁棒性的关键技术,其核心是通过在画面中划分多个相位检测窗口,分别计算各窗口的相位差(PhaseDifference)并进行综合评分,最终选择最优对焦位置。以下是其打分机制的核心逻辑和调试要点:1.多窗口布局与权重分配窗口划分根据Sensor的PDAF像素分布,将画面划分为多个区域(例如
- 《颠覆认知,我用大模型+Redis实现SQL智能补全,开发效率暴涨500%》
煜bart
mysqlAI编程人工智能redis
一、前言:当SQL补全遇到大模型(插入传统SQL补全工具与ChatGPT对比图)你是否还在为这些场景抓狂?-凌晨3点记不清HiveQL的窗口函数语法-面对新接触的ClickHouse方言不知所措-团队新人总把STR_TO_DATE写成DATE_FORMAT传统IDE的SQL补全就像"人工智障",直到我把大模型装进Redis…##二、效果展示:智能补全的降维打击(GIF动图展示输入SELECT*FR
- 深度学习 PyTorch 中 18 种数据增强策略与实现
@Mr_LiuYang
计算机视觉基础数据增强深度学习torchvisiontransforms
深度学习pytorch之简单方法自定义9类卷积即插即用数据增强通过对训练数据进行多种变换,增加数据的多样性,它帮助我们提高模型的鲁棒性,并减少过拟合的风险。PyTorch提供torchvision.transforms模块丰富的数据增强操作,我们可以通过组合多种策略来实现复杂的增强效果。本文将介绍18种常用的图像数据增强策略,并展示如何使用PyTorch中的torchvision.transfor
- 在MATLAB环境中,对矩阵拼接(Matrix Concatenation)的测试
蚂蚁质量
软件测试matlab矩阵
在MATLAB环境中,对矩阵拼接(MatrixConcatenation)的正确性与鲁棒性开展测试时,需要依据不同的拼接场景精心设计测试用例,全面验证矩阵维度、数据顺序、边界条件以及异常处理等关键方面。以下是详尽的测试方法与具体示例:基础功能测试(1)水平拼接([A,B]或horzcat)测试目的:确认在列方向进行拼接后,所得矩阵的尺寸是否准确无误,以及数据排列顺序是否符合预期。测试代码:matl
- 语义检索-BAAI Embedding语义向量模型深度解析[1-详细版]:预训练至精通、微调至卓越、评估至精准、融合提升模型鲁棒性
汀、人工智能
LLM工业级落地实践embeddinglangchain人工智能智能问答RAG检索增强生成大模型
语义检索-BAAIEmbedding语义向量模型深度解析[1-详细版]:预训练至精通、微调至卓越、评估至精准、融合提升模型鲁棒性语义向量模型(EmbeddingModel)已经被广泛应用于搜索、推荐、数据挖掘等重要领域。在大模型时代,它更是用于解决幻觉问题、知识时效问题、超长文本问题等各种大模型本身制约或不足的必要技术。然而,当前中文世界的高质量语义向量模型仍比较稀缺,且很少开源。为加快解决大模型
- 面试时,如何回答好“你是怎么测试接口的?”
海姐软件测试
接口测试测试工具面试职场和发展postman
一、回答框架设计(金字塔原理)总述:"我通常采用分层测试策略,遵循需求分析→场景拆解→用例设计→自动化实施→持续监控的闭环流程。以最近测试的支付中台项目为例,核心围绕功能正确性、异常鲁棒性、安全防护、性能基线四个维度展开,下面详细说明各环节的关键动作……"二、分步骤技术解析(STAR法则)1.需求分析阶段-建立测试基准协议与文档解析:"首先确认接口协议类型(HTTP/GRPC/WebSocket等
- 互联网晚报 | 10月6日 星期三 | 微软正式推送Windows 11;网易严选西南首店落地成都;2021年诺贝尔物理学奖揭晓...
「已注销」
区块链微软iot比特币物联网
今日看点✦2021年诺贝尔物理学奖揭晓,授予3位“复杂物理系统”研究者✦淘宝直播发布“超级种草官计划”,千万奖金、亿级流量奖励招募短视频种草达人✦网易严选西南首店落地成都,为新中产打造高品质生活方式✦电影《长津湖》成影史国庆档票房冠军,超过《我和我的祖国》✦积极推行驾驶证电子化,全国已发放1300多万个电子驾驶证✦微软正式推送Windows11系统,符合条件的Win10用户可免费升级国内要闻1、微
- 复杂网络;社交网络;社区检测;节点重要性(重要节点识别);舆论动力学模型; 传染病模型 ;蓄意攻击 、随机攻击;网络鲁棒性、脆弱性、稳定性
xiao黄
复杂网络python复杂网络
复杂网络社交网络社区检测节点重要性(重要节点识别)舆论动力学模型传染病模型蓄意攻击随机攻击网络鲁棒性、脆弱性、稳定性Python基本的网络分析详细私聊网络拓扑图连通性网络效率下降
- 永久免费,不限次数,安卓神器
zhslhm
人工智能安卓神器工具分享
很多时候我们在手机上录了音频,需要把它转成文字,临时又不知道用什么软件,那今天我给大家找来一个完全免费语音转文字工具:小白转文字,其核心定位为“全能免费语音文字转换神器”,集成视频、语音、图片、文档文字识别等功能,支持无限制使用(时长、字数、次数均不设限),适配Android系统。(文末有链接下载)主要功能语音转文字支持实时语音输入或本地音频文件转文字,识别准确率高达98%。支持多种方言及
- 2024年图灵奖公布:两位AI先锋因强化学习获奖
吴脑的键客
人工智能人工智能chatgpt
据《纽约时报》报道,全球最大的计算机专业人士协会计算机协会(ACM)周三宣布,将2024年图灵奖授予安德鲁·巴托(AndrewBarto)博士和理查德·萨顿(RichardSutton)博士,以表彰他们在强化学习方面的研究。巴托目前是马萨诸塞大学荣誉退休教授。萨顿现在担任阿尔伯塔大学教授,他也是前DeepMind研究科学家。两人将分享图灵奖的100万美元奖金。图灵奖设立于1966年,常被称为“计算
- [黑洞与暗粒子]没有光的世界
comsci
无论是相对论还是其它现代物理学,都显然有个缺陷,那就是必须有光才能够计算
但是,我相信,在我们的世界和宇宙平面中,肯定存在没有光的世界....
那么,在没有光的世界,光子和其它粒子的规律无法被应用和考察,那么以光速为核心的
&nbs
- jQuery Lazy Load 图片延迟加载
aijuans
jquery
基于 jQuery 的图片延迟加载插件,在用户滚动页面到图片之后才进行加载。
对于有较多的图片的网页,使用图片延迟加载,能有效的提高页面加载速度。
版本:
jQuery v1.4.4+
jQuery Lazy Load v1.7.2
注意事项:
需要真正实现图片延迟加载,必须将真实图片地址写在 data-original 属性中。若 src
- 使用Jodd的优点
Kai_Ge
jodd
1. 简化和统一 controller ,抛弃 extends SimpleFormController ,统一使用 implements Controller 的方式。
2. 简化 JSP 页面的 bind, 不需要一个字段一个字段的绑定。
3. 对 bean 没有任何要求,可以使用任意的 bean 做为 formBean。
使用方法简介
- jpa Query转hibernate Query
120153216
Hibernate
public List<Map> getMapList(String hql,
Map map) {
org.hibernate.Query jpaQuery = entityManager.createQuery(hql);
if (null != map) {
for (String parameter : map.keySet()) {
jp
- Django_Python3添加MySQL/MariaDB支持
2002wmj
mariaDB
现状
首先,
[email protected] 中默认的引擎为 django.db.backends.mysql 。但是在Python3中如果这样写的话,会发现 django.db.backends.mysql 依赖 MySQLdb[5] ,而 MySQLdb 又不兼容 Python3 于是要找一种新的方式来继续使用MySQL。 MySQL官方的方案
首先据MySQL文档[3]说,自从MySQL
- 在SQLSERVER中查找消耗IO最多的SQL
357029540
SQL Server
返回做IO数目最多的50条语句以及它们的执行计划。
select top 50
(total_logical_reads/execution_count) as avg_logical_reads,
(total_logical_writes/execution_count) as avg_logical_writes,
(tot
- spring UnChecked 异常 官方定义!
7454103
spring
如果你接触过spring的 事物管理!那么你必须明白 spring的 非捕获异常! 即 unchecked 异常! 因为 spring 默认这类异常事物自动回滚!!
public static boolean isCheckedException(Throwable ex)
{
return !(ex instanceof RuntimeExcep
- mongoDB 入门指南、示例
adminjun
javamongodb操作
一、准备工作
1、 下载mongoDB
下载地址:http://www.mongodb.org/downloads
选择合适你的版本
相关文档:http://www.mongodb.org/display/DOCS/Tutorial
2、 安装mongoDB
A、 不解压模式:
将下载下来的mongoDB-xxx.zip打开,找到bin目录,运行mongod.exe就可以启动服务,默
- CUDA 5 Release Candidate Now Available
aijuans
CUDA
The CUDA 5 Release Candidate is now available at http://developer.nvidia.com/<wbr></wbr>cuda/cuda-pre-production. Now applicable to a broader set of algorithms, CUDA 5 has advanced fe
- Essential Studio for WinRT网格控件测评
Axiba
JavaScripthtml5
Essential Studio for WinRT界面控件包含了商业平板应用程序开发中所需的所有控件,如市场上运行速度最快的grid 和chart、地图、RDL报表查看器、丰富的文本查看器及图表等等。同时,该控件还包含了一组独特的库,用于从WinRT应用程序中生成Excel、Word以及PDF格式的文件。此文将对其另外一个强大的控件——网格控件进行专门的测评详述。
网格控件功能
1、
- java 获取windows系统安装的证书或证书链
bewithme
windows
有时需要获取windows系统安装的证书或证书链,比如说你要通过证书来创建java的密钥库 。
有关证书链的解释可以查看此处 。
public static void main(String[] args) {
SunMSCAPI providerMSCAPI = new SunMSCAPI();
S
- NoSQL数据库之Redis数据库管理(set类型和zset类型)
bijian1013
redis数据库NoSQL
4.sets类型
Set是集合,它是string类型的无序集合。set是通过hash table实现的,添加、删除和查找的复杂度都是O(1)。对集合我们可以取并集、交集、差集。通过这些操作我们可以实现sns中的好友推荐和blog的tag功能。
sadd:向名称为key的set中添加元
- 异常捕获何时用Exception,何时用Throwable
bingyingao
用Exception的情况
try {
//可能发生空指针、数组溢出等异常
} catch (Exception e) {
 
- 【Kafka四】Kakfa伪分布式安装
bit1129
kafka
在http://bit1129.iteye.com/blog/2174791一文中,实现了单Kafka服务器的安装,在Kafka中,每个Kafka服务器称为一个broker。本文简单介绍下,在单机环境下Kafka的伪分布式安装和测试验证 1. 安装步骤
Kafka伪分布式安装的思路跟Zookeeper的伪分布式安装思路完全一样,不过比Zookeeper稍微简单些(不
- Project Euler
bookjovi
haskell
Project Euler是个数学问题求解网站,网站设计的很有意思,有很多problem,在未提交正确答案前不能查看problem的overview,也不能查看关于problem的discussion thread,只能看到现在problem已经被多少人解决了,人数越多往往代表问题越容易。
看看problem 1吧:
Add all the natural num
- Java-Collections Framework学习与总结-ArrayDeque
BrokenDreams
Collections
表、栈和队列是三种基本的数据结构,前面总结的ArrayList和LinkedList可以作为任意一种数据结构来使用,当然由于实现方式的不同,操作的效率也会不同。
这篇要看一下java.util.ArrayDeque。从命名上看
- 读《研磨设计模式》-代码笔记-装饰模式-Decorator
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.io.BufferedOutputStream;
import java.io.DataOutputStream;
import java.io.FileOutputStream;
import java.io.Fi
- Maven学习(一)
chenyu19891124
Maven私服
学习一门技术和工具总得花费一段时间,5月底6月初自己学习了一些工具,maven+Hudson+nexus的搭建,对于maven以前只是听说,顺便再自己的电脑上搭建了一个maven环境,但是完全不了解maven这一强大的构建工具,还有ant也是一个构建工具,但ant就没有maven那么的简单方便,其实简单点说maven是一个运用命令行就能完成构建,测试,打包,发布一系列功
- [原创]JWFD工作流引擎设计----节点匹配搜索算法(用于初步解决条件异步汇聚问题) 补充
comsci
算法工作PHP搜索引擎嵌入式
本文主要介绍在JWFD工作流引擎设计中遇到的一个实际问题的解决方案,请参考我的博文"带条件选择的并行汇聚路由问题"中图例A2描述的情况(http://comsci.iteye.com/blog/339756),我现在把我对图例A2的一个解决方案公布出来,请大家多指点
节点匹配搜索算法(用于解决标准对称流程图条件汇聚点运行控制参数的算法)
需要解决的问题:已知分支
- Linux中用shell获取昨天、明天或多天前的日期
daizj
linuxshell上几年昨天获取上几个月
在Linux中可以通过date命令获取昨天、明天、上个月、下个月、上一年和下一年
# 获取昨天
date -d 'yesterday' # 或 date -d 'last day'
# 获取明天
date -d 'tomorrow' # 或 date -d 'next day'
# 获取上个月
date -d 'last month'
#
- 我所理解的云计算
dongwei_6688
云计算
在刚开始接触到一个概念时,人们往往都会去探寻这个概念的含义,以达到对其有一个感性的认知,在Wikipedia上关于“云计算”是这么定义的,它说:
Cloud computing is a phrase used to describe a variety of computing co
- YII CMenu配置
dcj3sjt126com
yii
Adding id and class names to CMenu
We use the id and htmlOptions to accomplish this. Watch.
//in your view
$this->widget('zii.widgets.CMenu', array(
'id'=>'myMenu',
'items'=>$this-&g
- 设计模式之静态代理与动态代理
come_for_dream
设计模式
静态代理与动态代理
代理模式是java开发中用到的相对比较多的设计模式,其中的思想就是主业务和相关业务分离。所谓的代理设计就是指由一个代理主题来操作真实主题,真实主题执行具体的业务操作,而代理主题负责其他相关业务的处理。比如我们在进行删除操作的时候需要检验一下用户是否登陆,我们可以删除看成主业务,而把检验用户是否登陆看成其相关业务
- 【转】理解Javascript 系列
gcc2ge
JavaScript
理解Javascript_13_执行模型详解
摘要: 在《理解Javascript_12_执行模型浅析》一文中,我们初步的了解了执行上下文与作用域的概念,那么这一篇将深入分析执行上下文的构建过程,了解执行上下文、函数对象、作用域三者之间的关系。函数执行环境简单的代码:当调用say方法时,第一步是创建其执行环境,在创建执行环境的过程中,会按照定义的先后顺序完成一系列操作:1.首先会创建一个
- Subsets II
hcx2013
set
Given a collection of integers that might contain duplicates, nums, return all possible subsets.
Note:
Elements in a subset must be in non-descending order.
The solution set must not conta
- Spring4.1新特性——Spring缓存框架增强
jinnianshilongnian
spring4
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- shell嵌套expect执行命令
liyonghui160com
一直都想把expect的操作写到bash脚本里,这样就不用我再写两个脚本来执行了,搞了一下午终于有点小成就,给大家看看吧.
系统:centos 5.x
1.先安装expect
yum -y install expect
2.脚本内容:
cat auto_svn.sh
#!/bin/bash
- Linux实用命令整理
pda158
linux
0. 基本命令 linux 基本命令整理
1. 压缩 解压 tar -zcvf a.tar.gz a #把a压缩成a.tar.gz tar -zxvf a.tar.gz #把a.tar.gz解压成a
2. vim小结 2.1 vim替换 :m,ns/word_1/word_2/gc  
- 独立开发人员通向成功的29个小贴士
shoothao
独立开发
概述:本文收集了关于独立开发人员通向成功需要注意的一些东西,对于具体的每个贴士的注解有兴趣的朋友可以查看下面标注的原文地址。
明白你从事独立开发的原因和目的。
保持坚持制定计划的好习惯。
万事开头难,第一份订单是关键。
培养多元化业务技能。
提供卓越的服务和品质。
谨小慎微。
营销是必备技能。
学会组织,有条理的工作才是最有效率的。
“独立
- JAVA中堆栈和内存分配原理
uule
java
1、栈、堆
1.寄存器:最快的存储区, 由编译器根据需求进行分配,我们在程序中无法控制.2. 栈:存放基本类型的变量数据和对象的引用,但对象本身不存放在栈中,而是存放在堆(new 出来的对象)或者常量池中(字符串常量对象存放在常量池中。)3. 堆:存放所有new出来的对象。4. 静态域:存放静态成员(static定义的)5. 常量池:存放字符串常量和基本类型常量(public static f