笔者言:
之前的10.2
是二叉树系列,从这篇开始进入labuladong 的算法小抄-手把手刷数组题目
。
田忌赛马的故事大家应该都听说过:
田忌和齐王赛马,两人的马分上中下三等,如果同等级的马对应着比赛,田忌赢不了齐王。但是田忌遇到了孙膑,孙膑就教他用自己的下等马对齐王的上等马,再用自己的上等马对齐王的中等马,最后用自己的中等马对齐王的下等马,结果三局两胜,田忌赢了。
labuladong 算法小抄
以前学到田忌赛马课文的时,我就在想,如果不是三匹马比赛,而是一百匹马比赛,孙膑还能不能合理地安排比赛的顺序,赢得齐王呢?
当时没想出什么好的点子,只觉得这里面最核心问题是要尽可能让自己占便宜,让对方吃亏。总结来说就是,打得过就打,打不过就拿自己的垃圾和对方的精锐互换。
不过,我一直没具体把这个思路实现出来,直到最近刷到力扣第 870 题「优势洗牌」,一眼就发现这是田忌赛马问题的加强版:
给你输入两个长度相等的数组 nums1
和 nums2
,请你重新组织 nums1
中元素的位置,使得 nums1
的「优势」最大化。
如果 nums1[i] > nums2[i]
,就是说 nums1
在索引 i
上对 nums2[i]
有「优势」。优势最大化也就是说让你重新组织 nums1
,尽可能多的让 nums1[i] > nums2[i]
。
算法签名如下:
int[] advantageCount(int[] nums1, int[] nums2);
比如输入:
nums1 = [12,24,8,32]
nums2 = [13,25,32,11]
你的算法应该返回[24,32,8,12]
,因为这样排列 nums1
的话有三个元素都有「优势」。
这就像田忌赛马的情景,nums1
就是田忌的马,nums2
就是齐王的马,数组中的元素就是马的战斗力,你就是孙膑,展示你真正的技术吧。
仔细想想,这个题的解法还是有点扑朔迷离的。什么时候应该放弃抵抗去送人头,什么时候应该硬刚?这里面应该有一种算法策略来最大化「优势」。
送人头一定是迫不得已而为之的权宜之计,否则隔壁田忌就要开语音骂你菜了。只有田忌的上等马比不过齐王的上等马时,所以才会用下等马去和齐王的上等马互换。
对于比较复杂的问题,可以尝试从特殊情况考虑。
你想,谁应该去应对齐王最快的马?肯定是田忌最快的那匹马,我们简称一号选手。
如果田忌的一号选手比不过齐王的一号选手,那其他马肯定是白给了,显然这种情况肯定应该用田忌垫底的马去送人头,降低己方损失,保存实力,增加接下来比赛的胜率。
但如果田忌的一号选手能比得过齐王的一号选手,那就和齐王硬刚好了,反正这把田忌可以赢。
你也许说,这种情况下说不定田忌的二号选手也能干得过齐王的一号选手?如果可以的话,让二号选手去对决齐王的一号选手,不是更节约?
就好比,如果考 60 分就能过的话,何必考 61 分?每多考一分就亏一分,刚刚好卡在 60 分是最划算的。
这种节约的策略是没问题的,但是没有必要。这也是本题有趣的地方,需要绕个脑筋急转弯:
我们暂且把田忌的一号选手称为 T1
,二号选手称为 T2
,齐王的一号选手称为 Q1
。
如果 T2
能赢 Q1
,你试图保存己方实力,让 T2
去战 Q1
,把 T1
留着是为了对付谁?
显然,你担心齐王还有战力大于 T2
的马,可以让 T1
去对付。
但是你仔细想想,现在 T2
已经是可以战胜 Q1
的,Q1
可是齐王的最快的马耶,齐王剩下的那些马里,怎么可能还有比 T2
更强的马?
所以,没必要节约,最后我们得出的策略就是:
将齐王和田忌的马按照战斗力排序,然后按照排名一一对比。如果田忌的马能赢,那就比赛,如果赢不了,那就换个垫底的来送人头,保存实力。
上述思路的代码逻辑如下:
int n = nums1.length;
sort(nums1); // 田忌的马
sort(nums2); // 齐王的马
// 从最快的马开始比
for (int i = n - 1; i >= 0; i--) {
if (nums1[i] > nums2[i]) {
// 比得过,跟他比
} else {
// 比不过,换个垫底的来送人头
}
}
根据这个思路,我们需要对两个数组排序,但是 nums2
中元素的顺序不能改变,因为计算结果的顺序依赖 nums2
的顺序,所以不能直接对 nums2
进行排序,而是利用其他数据结构来辅助。
int[] advantageCount(int[] nums1, int[] nums2) {
int n = nums1.length;
// 给 nums2 降序排序
PriorityQueue maxpq = new PriorityQueue<>(
(int[] pair1, int[] pair2) -> {
return pair2[1] - pair1[1];
}
);
for (int i = 0; i < n; i++) {
maxpq.offer(new int[]{i, nums2[i]});
}
// 给 nums1 升序排序
Arrays.sort(nums1);
// nums1[left] 是最小值,nums1[right] 是最大值
int left = 0, right = n - 1;
int[] res = new int[n];
while (!maxpq.isEmpty()) {
int[] pair = maxpq.poll();
// maxval 是 nums2 中的最大值,i 是对应索引
int i = pair[0], maxval = pair[1];
if (maxval < nums1[right]) {
// 如果 nums1[right] 能胜过 maxval,那就自己上
res[i] = nums1[right];
right--;
} else {
// 否则用最小值混一下,养精蓄锐
res[i] = nums1[left];
left++;
}
}
return res;
}
算法的时间复杂度很好分析,也就是二叉堆和排序的复杂度 O(nlogn)
。
至此,这道田忌赛马的题就解决了,其代码实现上用到了双指针技巧,从最快的马开始,比得过就比,比不过就送,这样就能对任意数量的马求取一个最优的比赛策略了。