初识动态规划

0-1 背包问题

备忘录

private int maxW = Integer.MIN_VALUE; // 结果放到maxW中
private int[] weight = {2,2,4,6,3};  // 物品重量
private int n = 5; // 物品个数
private int w = 9; // 背包承受的最大重量
private boolean[][] mem = new boolean[5][10]; // 备忘录,默认值false
public void f(int i, int cw) { // 调用f(0, 0)
  if (cw == w || i == n) { // cw==w表示装满了,i==n表示物品都考察完了
    if (cw > maxW) maxW = cw;
    return;
  }
  if (mem[i][cw]) return; // 重复状态
  mem[i][cw] = true; // 记录(i, cw)这个状态
  f(i+1, cw); // 选择不装第i个物品
  if (cw + weight[i] <= w) {
    f(i+1,cw + weight[i]); // 选择装第i个物品
  }
}

动态规划-二维数组

weight:物品重量,n:物品个数,w:背包可承载重量
public int knapsack(int[] weight, int n, int w) {
  boolean[][] states = new boolean[n][w+1]; // 默认值false
  states[0][0] = true;  // 第一行的数据要特殊处理,可以利用哨兵优化
  if (weight[0] <= w) {
    states[0][weight[0]] = true;
  }
  for (int i = 1; i < n; ++i) { // 动态规划状态转移
    for (int j = 0; j <= w; ++j) {// 不把第i个物品放入背包
      if (states[i-1][j] == true) states[i][j] = states[i-1][j];
    }
    for (int j = 0; j <= w-weight[i]; ++j) {//把第i个物品放入背包
      if (states[i-1][j]==true) states[i][j+weight[i]] = true;
    }
  }
  for (int i = w; i >= 0; --i) { // 输出结果
    if (states[n-1][i] == true) return i;
  }
  return 0;
}

动态规划-一维数组

public static int knapsack2(int[] items, int n, int w) {
  boolean[] states = new boolean[w+1]; // 默认值false
  states[0] = true;  // 第一行的数据要特殊处理,可以利用哨兵优化
  if (items[0] <= w) {
    states[items[0]] = true;
  }
  for (int i = 1; i < n; ++i) { // 动态规划
    for (int j = w-items[i]; j >= 0; --j) {//把第i个物品放入背包
      if (states[j]==true) states[j+items[i]] = true;
    }
  }
  for (int i = w; i >= 0; --i) { // 输出结果
    if (states[i] == true) return i;
  }
  return 0;
}

0-1 背包问题升级版

回溯算法

private int maxV = Integer.MIN_VALUE; // 结果放到maxV中
private int[] items = {2,2,4,6,3};  // 物品的重量
private int[] value = {3,4,8,9,6}; // 物品的价值
private int n = 5; // 物品个数
private int w = 9; // 背包承受的最大重量
public void f(int i, int cw, int cv) { // 调用f(0, 0, 0)
  if (cw == w || i == n) { // cw==w表示装满了,i==n表示物品都考察完了
    if (cv > maxV) maxV = cv;
    return;
  }
  f(i+1, cw, cv); // 选择不装第i个物品
  if (cw + weight[i] <= w) {
    f(i+1,cw+weight[i], cv+value[i]); // 选择装第i个物品
  }
}

动态规划-二维数组

public static int knapsack3(int[] weight, int[] value, int n, int w) {
  int[][] states = new int[n][w+1];
  for (int i = 0; i < n; ++i) { // 初始化states
    for (int j = 0; j < w+1; ++j) {
      states[i][j] = -1;
    }
  }
  states[0][0] = 0;
  if (weight[0] <= w) {
    states[0][weight[0]] = value[0];
  }
  for (int i = 1; i < n; ++i) { //动态规划,状态转移
    for (int j = 0; j <= w; ++j) { // 不选择第i个物品
      if (states[i-1][j] >= 0) states[i][j] = states[i-1][j];
    }
    for (int j = 0; j <= w-weight[i]; ++j) { // 选择第i个物品
      if (states[i-1][j] >= 0) {
        int v = states[i-1][j] + value[i];
        if (v > states[i][j+weight[i]]) {
          states[i][j+weight[i]] = v;
        }
      }
    }
  }
  // 找出最大值
  int maxvalue = -1;
  for (int j = 0; j <= w; ++j) {
    if (states[n-1][j] > maxvalue) maxvalue = states[n-1][j];
  }
  return maxvalue;
}

动态规划-一维数组

public static int knapsack4(int[] weight, int[] value, int n, int w) {
        int[] states = new int[w + 1];
        for (int i = 0; i < w + 1; ++i) { // 初始化states
            states[i] = -1;
        }
        states[0] = 0;
        if (weight[0] <= w) {
            states[weight[0]] = value[0];
        }
        for (int i = 1; i < n; ++i) { //动态规划,状态转移
            for (int j = w - weight[i]; j >= 0; --j) {//把第i个物品放入背包
                if (states[j] >= 0) {
                    int v = states[j] + value[i];
                    if (v > states[j + weight[i]]) {
                        states[j + weight[i]] = v;
                    }
                }
            }
        }
        // 找出最大值
        int maxvalue = -1;
        for (int i = w; i >= 0; --i) { // 输出结果
            if (states[i] > maxvalue) {
                maxvalue = states[i];
            }
        }
        return maxvalue;
    }

你可能感兴趣的:(初识动态规划)