已知二次型 f = x T A x f = x^T A x f=xTAx,求变换 x = P y x=Py x=Py,使得二次型化为标准型 f = y T Λ y f=y^T \Lambda y f=yTΛy,且 P T A P = Λ P^T A P = \Lambda PTAP=Λ。该过程的实质是一次合同变换,即
[ A , E ] → 对 A , E 作初等行变换,对 A 作相应的初等列变换 [ Λ , P T ] [A,E] \xrightarrow{对A,E作初等行变换,对A作相应的初等列变换} [\Lambda, P^T] [A,E]对A,E作初等行变换,对A作相应的初等列变换[Λ,PT]
具体的操作看下面几个例子。
【例 1】将二次型 f ( x 1 , x 2 , x 3 ) = x 1 2 + 5 x 2 2 + 5 x 3 2 + 2 x 1 x 2 − 4 x 1 x 3 f(x_1, x_2, x_3) = x_1^2 + 5x_2^2 + 5x_3^2 + 2x_1x_2 - 4x_1x_3 f(x1,x2,x3)=x12+5x22+5x32+2x1x2−4x1x3 化为标准型。
【解】由合同变换得
[ 1 1 − 2 1 0 0 1 5 0 0 1 0 − 2 0 5 0 0 1 ] → r 2 − r 1 [ 1 1 − 2 1 0 0 0 4 2 − 1 1 0 − 2 0 5 0 0 1 ] → c 2 − c 1 [ 1 0 − 2 1 0 0 0 4 2 − 1 1 0 − 2 2 5 0 0 1 ] → r 3 + 2 r 1 [ 1 0 − 2 1 0 0 0 4 2 − 1 1 0 0 2 1 2 0 1 ] → c 3 + 2 c 1 [ 1 0 0 1 0 0 0 4 2 − 1 1 0 0 2 1 2 0 1 ] → ( ∗ ) r 3 − 1 2 r 2 [ 1 0 0 1 0 0 0 4 2 − 1 1 0 0 0 0 5 2 − 1 2 1 ] → c 3 − 1 2 c 2 [ 1 0 0 1 0 0 0 4 0 − 1 1 0 0 0 0 5 2 − 1 2 1 ] \begin{aligned} & \left[ \begin{matrix} \begin{array}{ccc | ccc} 1 & 1 & -2 & 1 & 0 & 0 \\ 1 & 5 & 0 & 0 & 1 & 0 \\ -2 & 0 & 5 & 0 & 0 & 1 \\ \end{array} \end{matrix} \right] \\ \xrightarrow{r_2-r_1} & \left[ \begin{matrix} \begin{array}{ccc | ccc} 1 & 1 & -2 & 1 & 0 & 0 \\ 0 & 4 & 2 & -1 & 1 & 0 \\ -2 & 0 & 5 & 0 & 0 & 1 \\ \end{array} \end{matrix} \right] \xrightarrow{c_2-c_1} \left[ \begin{matrix} \begin{array}{ccc | ccc} 1 & 0 & -2 & 1 & 0 & 0 \\ 0 & 4 & 2 & -1 & 1 & 0 \\ -2 & 2 & 5 & 0 & 0 & 1 \\ \end{array} \end{matrix} \right] \\ \xrightarrow{r_3+2r_1} & \left[ \begin{matrix} \begin{array}{ccc | ccc} 1 & 0 & -2 & 1 & 0 & 0 \\ 0 & 4 & 2 & -1 & 1 & 0 \\ 0 & 2 & 1 & 2 & 0 & 1 \\ \end{array} \end{matrix} \right] \xrightarrow{c_3+2c_1} \left[ \begin{matrix} \begin{array}{ccc | ccc} 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 4 & 2 & -1 & 1 & 0 \\ 0 & 2 & 1 & 2 & 0 & 1 \\ \end{array} \end{matrix} \right] \\ \xrightarrow{(*)r_3-\frac{1}{2}r_2} & \left[ \begin{matrix} \begin{array}{ccc | ccc} 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 4 & 2 & -1 & 1 & 0 \\ 0 & 0 & 0 & \frac{5}{2} & -\frac{1}{2} & 1 \\ \end{array} \end{matrix} \right] \xrightarrow{c_3-\frac{1}{2}c_2} \left[ \begin{matrix} \begin{array}{ccc | ccc} 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 4 & 0 & -1 & 1 & 0 \\ 0 & 0 & 0 & \frac{5}{2} & -\frac{1}{2} & 1 \\ \end{array} \end{matrix} \right] \end{aligned} r2−r1r3+2r1(∗)r3−21r2 11−2150−205100010001 10−2140−2251−10010001 c2−c1 10−2042−2251−10010001 100042−2211−12010001 c3+2c1 1000420211−12010001 1000400201−12501−21001 c3−21c2 1000400001−12501−21001
所以标准型为 y 1 2 + 4 y 2 2 y_1^2 + 4y_2^2 y12+4y22,所作变换矩阵为 P = [ 1 − 1 5 2 0 1 − 1 2 0 0 1 ] P = \left[ \begin{matrix} 1 & -1 & \frac{5}{2} \\ 0 & 1 & -\frac{1}{2} \\ 0 & 0 & 1 \\ \end{matrix} \right] P= 100−11025−211 ,使 x = P y x=Py x=Py。
若要求规范型,需对上述继续作合同变换,将 Λ \Lambda Λ 上的对角元素 a a a 化为 − 1 -1 −1 或 1 1 1 或 0 0 0,为此需作一次初等倍乘行变换( r n / a r_n / \sqrt{a} rn/a),再对应作一次初等倍乘列变换( c n / a c_n / \sqrt{a} cn/a)。
→ r 2 / 4 [ 1 0 0 1 0 0 0 2 0 − 1 2 1 2 0 0 0 0 5 2 − 1 2 1 ] → c 2 / 4 [ 1 0 0 1 0 0 0 1 0 − 1 2 1 2 0 0 0 0 5 2 − 1 2 1 ] \begin{aligned} & \xrightarrow{r_2 / \sqrt{4}} \left[ \begin{matrix} \begin{array}{ccc | ccc} 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 2 & 0 & -\frac{1}{2} & \frac{1}{2} & 0 \\ 0 & 0 & 0 & \frac{5}{2} & -\frac{1}{2} & 1 \\ \end{array} \end{matrix} \right] \xrightarrow{c_2 / \sqrt{4}} \left[ \begin{matrix} \begin{array}{ccc | ccc} 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & -\frac{1}{2} & \frac{1}{2} & 0 \\ 0 & 0 & 0 & \frac{5}{2} & -\frac{1}{2} & 1 \\ \end{array} \end{matrix} \right] \end{aligned} r2/4 1000200001−2125021−21001 c2/4 1000100001−2125021−21001
所以规范型为 z 1 2 + z 2 2 z_1^2 + z_2^2 z12+z22,所作变换矩阵为 Q = [ 1 − 1 2 5 2 0 1 2 − 1 2 0 0 1 ] Q = \left[ \begin{matrix} 1 & -\frac{1}{2} & \frac{5}{2} \\ 0 & \frac{1}{2} & -\frac{1}{2} \\ 0 & 0 & 1 \\ \end{matrix} \right] Q= 100−2121025−211 ,使 x = Q z x=Qz x=Qz。
需要注意的是,合同变换的实质仍是配方,但配方法只是用了某种坐标变换,得到标准型的系数,不一定是特征值(不要以为使用该方法得到的 Λ \Lambda Λ 就是特征值! Λ \Lambda Λ 只能指示正、负和零特征值的个数,即正、负惯性指数一定是唯一的)。只有进行正交变换得到的系数才是特征值。
由此可知,二次型的标准型并不唯一,但是规范型唯一!如对(*)处还可作如下合同变换
→ ( ∗ ) r 3 ↔ r 2 [ 1 0 0 1 0 0 0 2 1 2 0 1 0 4 2 − 1 1 0 ] → c 3 ↔ c 2 [ 1 0 0 1 0 0 0 1 2 2 0 1 0 2 4 − 1 1 0 ] → r 3 − 2 r 2 [ 1 0 0 1 0 0 0 1 2 2 0 1 0 0 0 − 5 1 − 2 ] → c 3 − 2 c 2 [ 1 0 0 1 0 0 0 1 0 2 0 1 0 0 0 − 5 1 − 2 ] \begin{aligned} \xrightarrow{(*)r_3 \leftrightarrow r_2} & \left[ \begin{matrix} \begin{array}{ccc | ccc} 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 2 & 1 & 2 & 0 & 1 \\ 0 & 4 & 2 & -1 & 1 & 0 \\ \end{array} \end{matrix} \right] \xrightarrow{c_3 \leftrightarrow c_2} \left[ \begin{matrix} \begin{array}{ccc | ccc} 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 2 & 2 & 0 & 1 \\ 0 & 2 & 4 & -1 & 1 & 0 \\ \end{array} \end{matrix} \right] \\ \xrightarrow{r_3-2r_2} & \left[ \begin{matrix} \begin{array}{ccc | ccc} 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 2 & 2 & 0 & 1 \\ 0 & 0 & 0 & -5 & 1 & -2 \\ \end{array} \end{matrix} \right] \xrightarrow{c_3-2c_2} \left[ \begin{matrix} \begin{array}{ccc | ccc} 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 2 & 0 & 1 \\ 0 & 0 & 0 & -5 & 1 & -2 \\ \end{array} \end{matrix} \right] \end{aligned} (∗)r3↔r2r3−2r2 10002401212−1001010 c3↔c2 10001202412−1001010 10001002012−500101−2 c3−2c2 10001000012−500101−2
所以标准型为 y 1 2 + y 2 2 y_1^2 + y_2^2 y12+y22,所作变换矩阵为 P = [ 1 2 − 5 0 0 1 0 1 − 2 ] P = \left[ \begin{matrix} 1 & 2 & -5 \\ 0 & 0 & 1 \\ 0 & 1 & -2 \\ \end{matrix} \right] P= 100201−51−2 ,使 x = P y x=Py x=Py。
【例 2】(2014 年数二第 14 题)设二次型 f ( x 1 , x 2 , x 3 ) = x 1 2 − x 2 2 + 2 a x 1 x 2 + 4 x 2 x 3 f(x_1, x_2, x_3) = x_1^2 - x_2^2 + 2ax_1x_2 + 4x_2x_3 f(x1,x2,x3)=x12−x22+2ax1x2+4x2x3 的负惯性指数为 1 1 1,求 a a a 的取值范围。
【解】本题可使用配方法,但对于填空题来说比较麻烦。不妨采用合同变换法迅速解决本题。
[ 1 0 a 1 0 0 0 − 1 2 0 1 0 a 2 0 0 0 1 ] → r 3 − a r 1 [ 1 0 a 1 0 0 0 − 1 2 0 1 0 0 2 − a 2 1 − a 0 1 ] → c 3 − a c 1 [ 1 0 0 1 0 0 0 − 1 2 0 1 0 0 2 − a 2 1 − a 0 1 ] → r 3 + 2 r 2 [ 1 0 0 1 0 0 0 − 1 2 0 1 0 0 0 4 − a 2 1 − a 2 1 ] → c 3 + 2 c 2 [ 1 0 0 1 0 0 0 − 1 0 0 1 0 0 0 4 − a 2 1 − a 2 1 ] \begin{aligned} & \left[ \begin{matrix} \begin{array}{ccc | ccc} 1 & 0 & a & 1 & 0 & 0 \\ 0 & -1 & 2 & 0 & 1 & 0 \\ a & 2 & 0 & 0 & 0 & 1 \\ \end{array} \end{matrix} \right] \\ \xrightarrow{r_3-ar_1} & \left[ \begin{matrix} \begin{array}{ccc | ccc} 1 & 0 & a & 1 & 0 & 0 \\ 0 & -1 & 2 & 0 & 1 & 0 \\ 0 & 2 & -a^2 & 1-a & 0 & 1 \\ \end{array} \end{matrix} \right] \xrightarrow{c_3-ac_1} \left[ \begin{matrix} \begin{array}{ccc | ccc} 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & -1 & 2 & 0 & 1 & 0 \\ 0 & 2 & -a^2 & 1-a & 0 & 1 \\ \end{array} \end{matrix} \right] \\ \xrightarrow{r_3+2r_2} & \left[ \begin{matrix} \begin{array}{ccc | ccc} 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & -1 & 2 & 0 & 1 & 0 \\ 0 & 0 & 4-a^2 & 1-a & 2 & 1 \\ \end{array} \end{matrix} \right] \xrightarrow{c_3+2c_2} \left[ \begin{matrix} \begin{array}{ccc | ccc} 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & -1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 4-a^2 & 1-a & 2 & 1 \\ \end{array} \end{matrix} \right] \end{aligned} r3−ar1r3+2r2 10a0−12a20100010001 1000−12a2−a2101−a010001 c3−ac1 1000−1202−a2101−a010001 1000−10024−a2101−a012001 c3+2c2 1000−10004−a2101−a012001
因为负惯性指数为 1 1 1,所以 4 − a 2 ≥ 0 4-a^2 \geq 0 4−a2≥0,解得 − 2 ≤ a ≤ 2 -2 \leq a \leq 2 −2≤a≤2。
当发现二次型所对应的实对称矩阵 A A A 上的对角元素为 0 时,需要先想办法将对角线上的元素变成不为 0 的数,具体看下例。
【例 3】将二次型 f ( x 1 , x 2 , x 3 ) = 2 x 1 x 2 + 2 x 1 x 3 + 2 x 2 x 3 f(x_1, x_2, x_3) = 2x_1x_2 + 2x_1x_3 + 2x_2x_3 f(x1,x2,x3)=2x1x2+2x1x3+2x2x3 化为标准型。
【解】发现对角线上第一个元素为 0,为使其不为 0,可将第二行加到第一行上,相应的就要作一次列变换,将第二列加到第一列上。对角线上其他位置为 0 的元素也是类似的处理方法。
[ 0 1 1 1 0 0 1 0 1 0 1 0 1 1 0 0 0 1 ] → r 1 + r 2 [ 1 1 2 1 1 0 1 0 1 0 1 0 1 1 0 0 0 1 ] → c 1 + c 2 [ 2 1 2 1 1 0 1 0 1 0 1 0 2 1 0 0 0 1 ] → r 2 − 1 2 r 1 [ 2 1 2 1 1 0 0 − 1 2 0 − 1 2 1 2 0 2 1 0 0 0 1 ] → c 2 − 1 2 c 1 [ 2 0 2 1 1 0 0 − 1 2 0 − 1 2 1 2 0 2 0 0 0 0 1 ] → r 3 − r 1 [ 2 0 2 1 1 0 0 − 1 2 0 − 1 2 1 2 0 0 0 − 2 − 1 − 1 1 ] → c 3 − c 1 [ 2 0 0 1 1 0 0 − 1 2 0 − 1 2 1 2 0 0 0 − 2 − 1 − 1 1 ] \begin{aligned} & \left[ \begin{matrix} \begin{array}{ccc | ccc} 0 & 1 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 & 0 & 1 \\ \end{array} \end{matrix} \right] \\ \xrightarrow{r_1+r_2} & \left[ \begin{matrix} \begin{array}{ccc | ccc} 1 & 1 & 2 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 & 0 & 1 \\ \end{array} \end{matrix} \right] \xrightarrow{c_1+c_2} \left[ \begin{matrix} \begin{array}{ccc | ccc} 2 & 1 & 2 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 2 & 1 & 0 & 0 & 0 & 1 \\ \end{array} \end{matrix} \right] \\ \xrightarrow{r_2-\frac{1}{2}r_1} & \left[ \begin{matrix} \begin{array}{ccc | ccc} 2 & 1 & 2 & 1 & 1 & 0 \\ 0 & -\frac{1}{2} & 0 & -\frac{1}{2} & \frac{1}{2} & 0 \\ 2 & 1 & 0 & 0 & 0 & 1 \\ \end{array} \end{matrix} \right] \xrightarrow{c_2-\frac{1}{2}c_1} \left[ \begin{matrix} \begin{array}{ccc | ccc} 2 & 0 & 2 & 1 & 1 & 0 \\ 0 & -\frac{1}{2} & 0 & -\frac{1}{2} & \frac{1}{2} & 0 \\ 2 & 0 & 0 & 0 & 0 & 1 \\ \end{array} \end{matrix} \right] \\ \xrightarrow{r_3-r_1} & \left[ \begin{matrix} \begin{array}{ccc | ccc} 2 & 0 & 2 & 1 & 1 & 0 \\ 0 & -\frac{1}{2} & 0 & -\frac{1}{2} & \frac{1}{2} & 0 \\ 0 & 0 & -2 & -1 & -1 & 1 \\ \end{array} \end{matrix} \right] \xrightarrow{c_3-c_1} \left[ \begin{matrix} \begin{array}{ccc | ccc} 2 & 0 & 0 & 1 & 1 & 0 \\ 0 & -\frac{1}{2} & 0 & -\frac{1}{2} & \frac{1}{2} & 0 \\ 0 & 0 & -2 & -1 & -1 & 1 \\ \end{array} \end{matrix} \right] \end{aligned} r1+r2r2−21r1r3−r1 011101110100010001 111101210100110001 c1+c2 212101210100110001 2021−2112001−2101210001 c2−21c1 2020−2102001−2101210001 2000−21020−21−21−1121−1001 c3−c1 2000−21000−21−21−1121−1001
所以标准型为 2 y 1 2 − 1 2 y 2 2 − 2 y 3 2 2y_1^2 -\frac{1}{2} y_2^2 -2y_3^2 2y12−21y22−2y32,所作变换矩阵为 P = [ 1 − 1 2 − 1 1 1 2 − 1 0 0 1 ] P = \left[ \begin{matrix} 1 & -\frac{1}{2} & -1 \\ 1 & \frac{1}{2} & -1 \\ 0 & 0 & 1 \\ \end{matrix} \right] P= 110−21210−1−11 ,使 x = P y x=Py x=Py。
若要求规范型,则继续进行变换
→ r 1 / 2 [ 2 0 0 1 2 1 2 0 0 − 1 2 0 − 1 2 1 2 0 0 0 − 2 − 1 − 1 1 ] → c 1 / 2 [ 1 0 0 1 2 1 2 0 0 − 1 2 0 − 1 2 1 2 0 0 0 − 2 − 1 − 1 1 ] → r 2 / 1 2 [ 1 0 0 1 2 1 2 0 0 − 1 2 0 − 1 2 1 2 0 0 0 − 2 − 1 − 1 1 ] → c 2 / 1 2 [ 1 0 0 1 2 1 2 0 0 − 1 0 − 1 2 1 2 0 0 0 − 2 − 1 − 1 1 ] → r 3 / 2 [ 1 0 0 1 2 1 2 0 0 − 1 0 − 1 2 1 2 0 0 0 − 2 − 1 2 − 1 2 1 2 ] → c 3 / 2 [ 1 0 0 1 2 1 2 0 0 − 1 0 − 1 2 1 2 0 0 0 − 1 − 1 2 − 1 2 1 2 ] \begin{aligned} & \xrightarrow{r_1/\sqrt{2}} \left[ \begin{matrix} \begin{array}{ccc | ccc} \sqrt{2} & 0 & 0 & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\ 0 & -\frac{1}{2} & 0 & -\frac{1}{2} & \frac{1}{2} & 0 \\ 0 & 0 & -2 & -1 & -1 & 1 \\ \end{array} \end{matrix} \right] \xrightarrow{c_1/\sqrt{2}} \left[ \begin{matrix} \begin{array}{ccc | ccc} 1 & 0 & 0 & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\ 0 & -\frac{1}{2} & 0 & -\frac{1}{2} & \frac{1}{2} & 0 \\ 0 & 0 & -2 & -1 & -1 & 1 \\ \end{array} \end{matrix} \right] \\ & \xrightarrow{r_2/\frac{1}{\sqrt{2}}} \left[ \begin{matrix} \begin{array}{ccc | ccc} 1 & 0 & 0 & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\ 0 & -\frac{1}{\sqrt{2}} & 0 & -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\ 0 & 0 & -2 & -1 & -1 & 1 \\ \end{array} \end{matrix} \right] \xrightarrow{c_2/\frac{1}{\sqrt{2}}} \left[ \begin{matrix} \begin{array}{ccc | ccc} 1 & 0 & 0 & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\ 0 & -1 & 0 & -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\ 0 & 0 & -2 & -1 & -1 & 1 \\ \end{array} \end{matrix} \right] \\ & \xrightarrow{r_3/\sqrt{2}} \left[ \begin{matrix} \begin{array}{ccc | ccc} 1 & 0 & 0 & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\ 0 & -1 & 0 & -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\ 0 & 0 & -\sqrt{2} & -\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \end{array} \end{matrix} \right] \xrightarrow{c_3/\sqrt{2}} \left[ \begin{matrix} \begin{array}{ccc | ccc} 1 & 0 & 0 & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\ 0 & -1 & 0 & -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\ 0 & 0 & -1 & -\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \end{array} \end{matrix} \right] \end{aligned} r1/2 2000−21000−221−21−12121−1001 c1/2 1000−21000−221−21−12121−1001 r2/21 1000−21000−221−21−12121−1001 c2/21 1000−1000−221−21−12121−1001 r3/2 1000−1000−221−21−212121−210021 c3/2 1000−1000−121−21−212121−210021
所以规范型为 z 1 2 − z 2 2 − z 3 2 z_1^2 -z_2^2-z_3^2 z12−z22−z32,所作变换矩阵为 Q = [ 1 2 − 1 2 − 1 2 1 2 1 2 − 1 2 0 0 1 2 ] Q = \left[ \begin{matrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ 0 & 0 & \frac{1}{\sqrt{2}} \\ \end{matrix} \right] Q= 21210−21210−21−2121 ,使 x = Q z x=Qz x=Qz。
【例 4】(2021年数一张宇八套卷卷一第21题)已知实对称矩阵 A = [ 2 2 2 a ] A = \left[ \begin{matrix} 2 & 2 \\ 2 & a \end{matrix}\right] A=[222a] 和 B = [ 4 3 3 1 ] B = \left[ \begin{matrix} 4 & 3 \\ 3 & 1 \end{matrix}\right] B=[4331],其中 a a a 为正整数,求可逆矩阵 C C C,使得 C T A C = B C^TAC=B CTAC=B。
【解】由于 A A A 有未知参数,先对 B B B 进行合同变换。
[ 4 3 1 0 3 1 0 1 ] → r 2 − 3 4 r 1 [ 4 3 1 0 0 − 5 4 − 3 4 1 ] → c 2 − 3 4 c 1 [ 4 0 1 0 0 − 5 4 − 3 4 1 ] → r 1 / 2 [ 2 0 1 2 0 0 − 5 4 − 3 4 1 ] → c 1 / 2 [ 1 0 1 2 0 0 − 5 4 − 3 4 1 ] → r 2 / 5 2 [ 1 0 1 2 0 0 − 5 2 − 3 2 5 2 5 ] → c 2 / 5 2 [ 1 0 1 2 0 0 − 1 − 3 2 5 2 5 ] \begin{aligned} & \left[ \begin{matrix} \begin{array}{cc | cc} 4 & 3 & 1 & 0 \\ 3 & 1 & 0 & 1 \\ \end{array} \end{matrix} \right] \\ \xrightarrow{r_2 - \frac{3}{4}r_1} & \left[ \begin{matrix} \begin{array}{cc | cc} 4 & 3 & 1 & 0 \\ 0 & -\frac{5}{4} & -\frac{3}{4} & 1 \\ \end{array} \end{matrix} \right] \xrightarrow{c_2 - \frac{3}{4}c_1} \left[ \begin{matrix} \begin{array}{cc | cc} 4 & 0 & 1 & 0 \\ 0 & -\frac{5}{4} & -\frac{3}{4} & 1 \\ \end{array} \end{matrix} \right] \\ \xrightarrow{r_1/2} & \left[ \begin{matrix} \begin{array}{cc | cc} 2 & 0 & \frac{1}{2} & 0 \\ 0 & -\frac{5}{4} & -\frac{3}{4} & 1 \\ \end{array} \end{matrix} \right] \xrightarrow{c_1/2} \left[ \begin{matrix} \begin{array}{cc | cc} 1 & 0 & \frac{1}{2} & 0 \\ 0 & -\frac{5}{4} & -\frac{3}{4} & 1 \\ \end{array} \end{matrix} \right] \\ \xrightarrow{r_2/\frac{\sqrt{5}}{2}} & \left[ \begin{matrix} \begin{array}{cc | cc} 1 & 0 & \frac{1}{2} & 0 \\ 0 & -\frac{\sqrt{5}}{2} & -\frac{3}{2\sqrt{5}} & \frac{2}{\sqrt{5}} \\ \end{array} \end{matrix} \right] \xrightarrow{c_2/\frac{\sqrt{5}}{2}} \left[ \begin{matrix} \begin{array}{cc | cc} 1 & 0 & \frac{1}{2} & 0 \\ 0 & -1 & -\frac{3}{2\sqrt{5}} & \frac{2}{\sqrt{5}} \\ \end{array} \end{matrix} \right] \end{aligned} r2−43r1r1/2r2/25[43311001][403−451−4301]c2−43c1[400−451−4301][200−4521−4301]c1/2[100−4521−4301][100−2521−253052]c2/25[100−121−253052]
由此可知 B B B 的正、负惯性指数均为 1,变换矩阵为 C 2 = [ 1 2 − 3 2 5 0 2 5 ] C_2 = \left[ \begin{matrix} \frac{1}{2} & -\frac{3}{2\sqrt{5}} \\ 0 & \frac{2}{\sqrt{5}} \\ \end{matrix} \right] C2=[210−25352],使得 C 2 T B C 2 = [ 1 0 0 − 1 ] C_2^TBC_2 = \left[ \begin{matrix} 1 & 0 \\ 0 & -1 \\ \end{matrix} \right] C2TBC2=[100−1]。下面来对 A A A 进行合同变换。
[ 2 2 1 0 2 a 0 1 ] → r 2 − r 1 [ 2 2 1 0 0 a − 2 − 1 1 ] → c 2 − c 1 [ 2 0 1 0 0 a − 2 − 1 1 ] \begin{aligned} & \left[ \begin{matrix} \begin{array}{cc | cc} 2 & 2 & 1 & 0 \\ 2 & a & 0 & 1 \\ \end{array} \end{matrix} \right] \\ \xrightarrow{r_2 - r_1} & \left[ \begin{matrix} \begin{array}{cc | cc} 2 & 2 & 1 & 0 \\ 0 & a-2 & -1 & 1 \\ \end{array} \end{matrix} \right] \xrightarrow{c_2 - c_1} \left[ \begin{matrix} \begin{array}{cc | cc} 2 & 0 & 1 & 0 \\ 0 & a-2 & -1 & 1 \\ \end{array} \end{matrix} \right] \end{aligned} r2−r1[222a1001][202a−21−101]c2−c1[200a−21−101]
由于 C T A C = B C^TAC=B CTAC=B,即 A A A 与 B B B 合同,所以两者的正、负惯性指数相等,于是有 a − 2 < 0 a-2<0 a−2<0,又因为 a a a 为正整数,所以 a = 1 a=1 a=1。继续对 A A A 进行合同变换得
[ 2 0 1 0 0 − 1 − 1 1 ] → r 1 / 2 [ 2 0 1 2 0 0 − 1 − 1 1 ] → c 1 / 2 [ 1 0 1 2 0 0 − 1 − 1 1 ] \begin{aligned} & \left[ \begin{matrix} \begin{array}{cc | cc} 2 & 0 & 1 & 0 \\ 0 & -1 & -1 & 1 \\ \end{array} \end{matrix} \right] \\ \xrightarrow{r_1 / \sqrt{2}} & \left[ \begin{matrix} \begin{array}{cc | cc} \sqrt{2} & 0 & \frac{1}{\sqrt{2}} & 0 \\ 0 & -1 & -1 & 1 \\ \end{array} \end{matrix} \right] \xrightarrow{c_1 / \sqrt{2}} \left[ \begin{matrix} \begin{array}{cc | cc} 1 & 0 & \frac{1}{\sqrt{2}} & 0 \\ 0 & -1 & -1 & 1 \\ \end{array} \end{matrix} \right] \end{aligned} r1/2[200−11−101][200−121−101]c1/2[100−121−101]
由此可知变换矩阵为 C 1 = [ 1 2 − 1 0 1 ] C_1 = \left[ \begin{matrix} \frac{1}{\sqrt{2}} & -1 \\ 0 & 1 \\ \end{matrix} \right] C1=[210−11],使得 C 1 T A C 1 = [ 1 0 0 − 1 ] C_1^TAC_1 = \left[ \begin{matrix} 1 & 0 \\ 0 & -1 \\ \end{matrix} \right] C1TAC1=[100−1]。
因此有 C 1 T A C 1 = C 2 T B C 2 C_1^TAC_1 = C_2^TBC_2 C1TAC1=C2TBC2,即 ( C 1 C 2 − 1 ) T A ( C 1 C 2 − 1 ) = B (C_1C_2^{-1})^TA(C_1C_2^{-1}) = B (C1C2−1)TA(C1C2−1)=B,因此所求矩阵为
C = C 1 C 2 − 1 = [ 1 2 − 1 0 1 ] [ 2 3 2 0 5 2 ] = [ 2 3 2 − 2 5 4 0 5 2 ] C = C_1C_2^{-1} = \left[ \begin{matrix} \frac{1}{\sqrt{2}} & -1 \\ 0 & 1 \\ \end{matrix} \right] \left[ \begin{matrix} 2 & \frac{3}{2} \\ 0 & \frac{\sqrt{5}}{2} \\ \end{matrix} \right] = \left[ \begin{matrix} \sqrt{2} & \frac{3\sqrt{2}-2\sqrt{5}}{4} \\ 0 & \frac{\sqrt{5}}{2} \\ \end{matrix} \right] C=C1C2−1=[210−11][202325]=[20432−2525]