- 基于 LangChain 实现数据库问答机器人
敲代码敲到头发茂密
人工智能测试开发langchain数据库机器人人工智能语言模型
基于LangChain实现数据库问答机器人一、简介二、应用场景三、实战案例1、需求说明2、实现思路3、对应源码一、简介在Retrieval或者ReACT的一些场景中,常常需要数据库与人工智能结合。而LangChain本身就封装了许多相关的内容,在其官方文档-SQL能力中,也有非常好的示例。二、应用场景在未出现人工智能,如果想要完成数据查询与数据分析的工作,则需要相关人员有相应的数据库的功底,而在L
- 全场景深度学习开源框架(MindSpore)
deepdata_cn
人工智能深度学习开源人工智能
MindSpore是华为推出的一款全场景深度学习开源框架。旨在实现不同计算平台(如云端、边缘端、端侧)和不同硬件(如CPU、GPU、Ascend等)之间的高效协同。无论是在数据中心的大规模计算,还是在手机、物联网设备等资源受限的终端上,MindSpore都能灵活适配,充分发挥各硬件平台的性能优势,实现模型的高效训练和推理。该框架引入了自动并行技术,能够根据模型结构和硬件资源自动进行并行策略的搜索和
- AI学习指南HuggingFace篇-高级优化技巧
俞兆鹏
AI学习指南ai
一、引言在深度学习和自然语言处理(NLP)中,模型训练的效率和性能至关重要。HuggingFace提供了多种高级优化技巧,帮助开发者提升模型训练的效率和效果。本文将介绍混合精度训练、分布式训练等高级优化技巧,并探讨如何通过这些方法提升模型训练效率。二、混合精度训练(一)混合精度训练的原理混合精度训练利用自动混合精度(AMP)技术,高效管理FP16和FP32之间的转换。通过在前向传播中使用FP16加
- 零信任赋予安全牙齿,AI促使它更锋利
零信任Enlink_Young
零信任网络安全AIai网络安全
距离上次写关于安全的文字已经过去了很久很久,久到上次看到的AI还停留在TTS、ASR等最初的语音交互+搜索类似的各种智能音箱以及通过关键字匹配的基于知识库的聊天的机器人。之后的几年各种视觉识别遍地开花,AI四小龙在人脸识别上成熟应用,再然后到大热的机器学习、深度学习,对于AI一直都有关注,但商业价值均没有得到有效发挥,大部分都停在科研和实验室阶段。19年ChatGPT横空处世,直到ChatGPT通
- LlamaIndex架构设计:大模型长期记忆模块竟暗藏图数据库玄机
威哥说编程
数据库llama
随着人工智能技术的不断发展,大型语言模型(LLM)已经在自然语言处理、文本生成、对话系统等领域取得了显著的进展。然而,尽管这些模型在理解和生成语言方面表现出色,它们却面临着一个重要问题——长期记忆的缺失。传统的语言模型通常只依赖于当前输入的信息,并且无法记住过去的上下文或从历史中积累的知识。这使得它们在需要长期记忆或复杂知识推理的任务中表现不佳。为了解决这一问题,越来越多的研究开始探索如何为大模型
- PyTorch动态计算图:如何灵活构建复杂模型
AI天才研究院
计算AI大模型企业级应用开发实战ChatGPT计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
PyTorch动态计算图:如何灵活构建复杂模型关键词:PyTorch、动态计算图、自动微分、反向传播、神经网络、模型构建、计算图优化文章目录PyTorch动态计算图:如何灵活构建复杂模型1.背景介绍1.1深度学习框架的发展1.2静态图与动态图的对比1.3PyTorch的崛起及其优势2.核心概念与联系2.1PyTorch中的张量(Tensor)2.2自动微分(Autograd)机制2.3动态计算图的
- 深度学习框架PyTorch原理与实践
AI天才研究院
AI实战大数据人工智能语言模型JavaPython架构设计
作者:禅与计算机程序设计艺术文章目录1.简介2.背景介绍3.基本概念和术语3.1PyTorch简介3.2PyTorch的特点1)自动求导机制2)GPU加速3)模型部署4)数据管道5)代码阅读友好4.核心算法原理4.1神经网络结构4.2神经网络层4.3激活函数5.实际案例——MNIST手写数字识别数据准备模型定义训练测试整体代码1.简介Deeplearning(DL)hasbeenanincreas
- Paddle进阶实战系列(三):基于SVTR算法的手写英文单词识别
GoAI
深入浅出OCR深入浅出AI计算机视觉OCRpaddle深度学习人工智能
作者简介:CSDN、阿里云人工智能领域博客专家,新星计划计算机视觉导师,百度飞桨PPDE,专注大数据与AI知识分享。公众号:GoAI的学习小屋,免费分享书籍、简历、导图等,更有交流群分享宝藏资料,关注公众号回复“加群”或➡️链接加群。专栏推荐:➡️
- 自动驾驶系列—深度剖析自动驾驶芯片SoC架构:选型指南与应用实战
学步_技术
自动驾驶自动驾驶架构人工智能SoC芯片
欢迎来到我的技术小筑,一个专为技术探索者打造的交流空间。在这里,我们不仅分享代码的智慧,还探讨技术的深度与广度。无论您是资深开发者还是技术新手,这里都有一片属于您的天空。让我们在知识的海洋中一起航行,共同成长,探索技术的无限可能。探索专栏:学步_技术的首页——持续学习,不断进步,让学习成为我们共同的习惯,让总结成为我们前进的动力。技术导航:人工智能:深入探讨人工智能领域核心技术。自动驾驶:分享自动
- 开源模型应用落地-DeepSeek-R1-Distill-Qwen-7B与vllm实现推理加速的正确姿势(一)
开源技术探险家
开源模型-实际应用落地#人工智能自然语言处理语言模型深度学习
一、前言在当今人工智能技术迅猛发展的时代,各类人工智能模型如雨后春笋般不断涌现,其性能的优劣直接影响着应用的广度与深度。从自然语言处理到计算机视觉,从智能安防到医疗诊断,AI模型广泛应用于各个领域,人们对其准确性、稳定性和高效性的期望也与日俱增。在此背景下,DeepSeek模型的出现为行业带来了新的曙光。DeepSeek团队开发的DeepSeek-R1-Distill-Qwen-7B模型,利用蒸馏
- Diffusion--人工智能领域的革命性技术
油泼辣子多加
专业名词解释人工智能
在人工智能领域,“diffusion”一词通常指的是“扩散模型”(DiffusionModels),其全称为“DenoisingDiffusionProbabilisticModels”(DDPMs)。扩散模型是一类生成式模型,它通过逐步去噪的方式,从随机噪声中生成高质量的数据,近年来在图像、音频、视频等多个领域取得了显著进展。1.发展历史扩散模型的概念源于物理学中的扩散过程,即粒子在介质中的随机
- python中keras_Python深度学习——keras(一)
weixin_39534321
python中keras
神经网络的核心组件是层(layer),它是一种数据处理模块,可以看成是一个数据过滤器。进去一些数据,出来的数据变得更加有用(吃进去的是草,挤出来的是奶)。大多数深度学习,都是将若干个简单的层给链接起来,实现渐进式的数据过滤,也就是数据蒸馏(过滤到一定程度就等同于蒸馏)首先来看一个数字识别的案例(1)读取训练集和测试集fromkeras.datasetsimportmnist#加载keras中的mn
- 探索2025年的编程新趋势:技术、工具与未来展望
桂月二二
wasm人工智能前端
随着2025年的到来,编程技术领域依旧在高速发展。一些新兴的技术方向、工具和方法正在悄然改变开发者的日常实践。如果您是一名开发者,无论是资深还是初入门道,跟上这些趋势将让您的技能保持前沿,并为职业发展打下坚实基础。本文将从多个维度深入探讨当前最值得关注的编程技术,希望为您的技术提升带来启发。一、AI驱动的编程辅助工具人工智能已成为程序开发的重要组成部分。以下是几款2025年值得关注的AI驱动编程工
- 基于Hexo的主题Fluid搭建Github博客
qq742234984
计算机githubgitnpmnode.jshexo
公众号:数学建模与人工智能基于Hexo的主题Fluid搭建Github博客一、Github配置1.安装Git2.部署本地Git与Github连接(SSH)二、node.js安装和环境配置1.安装node.js2.查看安装是否成功(版本号)3.配置环境变量三、下载Hexo并配置fluid主题1.下载Hexo2.配置fluid主题1.安装fluid2.配置fluid3.更新部署博客页面4.部署到git
- 基于BiGRU的预测模型及其Python和MATLAB实现
追蜻蜓追累了
机器学习深度学习cnnlstm神经网络gru回归算法
##一、背景在当今快速发展的数据驱动的时代,尤其是在自然语言处理(NLP)、时间序列预测、语音识别等任务中,深度学习技术的应用已经变得越来越普遍。传统的机器学习算法往往无法很好地捕捉数据中的时序信息和上下文关系,因此深度学习中的循环神经网络(RNN)逐渐成为解决这一问题的重要工具。RNN能够处理序列数据,但它们在长序列数据的学习中存在梯度消失和梯度爆炸的问题。为了解决这些问题,长短期记忆网络(LS
- 关于双塔模型的简单介绍
eso1983
python算法推荐算法
双塔模型是一种常用于推荐系统和信息检索等领域的深度学习架构,其核心思想是将用户和物品分别映射到不同的向量空间,通过计算两个向量的相似度来预测用户对物品的偏好或相关性。1.python示例使用python语言来简单示例一下实现过程如下:importtensorflowastffromtensorflow.keras.layersimportInput,Dense,Embedding,Concaten
- DeepSeek在协同过滤和深度学习技术中的应用场景
python算法(魔法师版)
深度学习人工智能
DeepSeek作为一个集成多种先进技术的平台,利用协同过滤和深度学习技术在多个领域实现了创新应用。以下是一些具体的场景和示例,展示了这些技术如何被应用于实际问题中。一、推荐系统电子商务协同过滤:在电商平台中,协同过滤用于根据用户的历史行为(如购买记录、浏览历史等)推荐相关商品。基于用户的相似性或项目的相似性来生成个性化推荐。Python深色版本fromsurpriseimportDataset,
- 一篇文章了解AI大神何凯明
Ai知识精灵
人工智能
何凯明(KaimingHe)是一位在国际计算机视觉和深度学习领域享有盛誉的科学家。以下是对他的一些详细介绍:个人背景:何凯明出生于中国,后赴美国深造。他分别在2007年和2011年在清华大学获得学士和博士学位,专业是电子工程。职业经历:在完成博士学位后,何凯明加入了微软亚洲研究院(MicrosoftResearchAsia)。2015年,他加入了FacebookAIResearch(FAIR),成
- 【自我修炼】 大疆技术总监对于大学生学习机器人工程师路线建议 ( 大一 篇)
2401_89323952
学习机器人
很多朋友私信问我对机器人和人工智能感兴趣,该怎么展开学习。最近稍微有点空,我写写我的看法。两年前,我在知乎回答如何定义「机器人」?YY硕的回答中试图给机器人做出一个比较仔细的定义,我觉得机器人和人工智能最大的区别在于是否要和物理世界进行交互。今年初在另一篇知乎回答里对机器人或人工智能的研究会帮助我们更好的了解人类自己吗?-YY硕的回答我说到传感器是和物理世界交互的基础。后来,我又在知乎回答有哪些与
- 【C++】C++回调函数基本用法(详细讲解)
米码收割机
C/C++c++php开发语言
博__主:米码收割机技__能:C++/Python语言公众号:测试开发自动化【获取源码+商业合作】荣__誉:阿里云博客专家博主、51CTO技术博主专__注:专注主流机器人、人工智能等相关领域的开发、测试技术。一文详解C++回调函数目录一文详解C++回调函数1.什么是回调函数?2.为什么需要回调函数3.回调函数的应用场合4.举例说明5.高级回调方式1.什么是回调函数?回调函数可以被简单地理解为:A函
- DeepSeek 详细使用教程
神探阿航
计算机产业科普与思考大模型人工智能
1.简介DeepSeek是一款基于人工智能技术的多功能工具,旨在帮助用户高效处理和分析数据、生成内容、解答问题、进行语言翻译等。无论是学术研究、商业分析还是日常使用,DeepSeek都能提供强大的支持。本教程将详细介绍DeepSeek的各项功能及使用方法。2.注册与登录注册:访问DeepSeek官网(https://www.deepseek.com)。点击“注册”按钮。填写邮箱地址、设置密码,并完
- 基于深度学习的物体分割技术:从理论到实践
人工智能_SYBH
深度学习人工智能神经网络机器学习lstm
1.引言物体分割(ObjectSegmentation)是计算机视觉中的一项核心任务,其目标是将图像中的不同物体或区域分离出来,通常分为语义分割和实例分割两种类型。随着深度学习的迅猛发展,尤其是卷积神经网络(CNN)的应用,物体分割技术已取得了显著的进展。它被广泛应用于医学影像分析、自动驾驶、视频监控、机器人感知等领域。在本篇博客中,我们将深入探讨基于深度学习的物体分割技术,介绍其发展历程、核心原
- 人工智能第2章-知识点与学习笔记
想拿高薪的韭菜
人工智能学习笔记
结合教材2.1节,阐述什么是知识、知识的特性,以及知识的表示。人工智能最早应用的两种逻辑是什么?阐述你对这两种逻辑表示的内涵理解。什么谓词,什么是谓词逻辑,什么是谓词公式。谈谈你对谓词逻辑中的量词的理解。阐述谓词公式的解释的含义。介绍谓词公式表示知识的一般步骤,阐述谓词逻辑表示知识的优点与局限性。什么是知识表示的产生式,请详细阐释产生式和谓词逻辑蕴涵式的差异。什么是产生式系统,请详细阐述产生式系统
- 微软推出GRIN-MoE:开创专家路由新范式
OpenCSG
microsoft
前沿科技速递在人工智能领域,模型的性能和可扩展性一直是研究的热点。微软最近推出的GRIN-MoE(Gradient-InformedMixture-of-Experts)模型,以其独特的架构和显著的性能表现,正引领着AI技术的前沿,特别是在编码和数学任务上展现出强大的能力。GRIN-MoE的发布标志着企业级应用中AI技术的又一次飞跃,旨在提升处理复杂任务的效率和准确性。来源:传神社区01模型简介G
- 动手学PyTorch建模与应用:从深度学习到大模型
王国平
pytorch人工智能数据分析python数据挖掘
在人工智能时代,机器学习技术日新月异,深度学习是机器学习领域中一个全新的研究方向和应用热点,它是机器学习的一种,也是实现人工智能的必由之路。深度学习的出现不仅推动了机器学习的发展,而且促进了人工智能技术的革新,已经被成功应用在语音识别、图像分类识别、地球物理、大语言模型等领域,具有巨大的发展潜力和价值。本书是一本带领读者快速学习PyTorch并将其运用于深度学习建模方向的入门指南,重点介绍了基于P
- AI浪潮下程序员的职业转型与技术进阶之路
nbsaas-boot
人工智能
一、引言1.1研究背景与意义在科技飞速发展的当今时代,人工智能(AI)无疑是最为耀眼的技术领域之一。从早期简单的专家系统到如今复杂的深度学习模型,AI技术经历了从理论探索到广泛应用的巨大跨越,正以前所未有的速度改变着我们的生活和工作方式。近年来,AI技术取得了一系列突破性进展。以GPT系列为代表的大型语言模型,展现出强大的自然语言处理能力,能够实现文本生成、对话交互、代码编写等多种任务。根据《20
- TensorFlow实现卷积神经网络CNN
红叶骑士之初
Tensorflow
一、卷积神经网络CNN简介卷积神经网络(ConvolutionalNeuralNetwork,CNN)最初是为解决图像识别等问题设计的,CNN现在的应用已经不限于图像和视频,也可用于时间序列信号,比如音频信号和文本数据等。CNN作为一个深度学习架构被提出的最初诉求是降低对图像数据预处理的要求,避免复杂的特征工程。在卷积神经网络中,第一个卷积层会直接接受图像像素级的输入,每一层卷积(滤波器)都会提取
- DeepSeek的出现对全球GPT产业产生的冲击
不要em0啦
机器学习gpt
引言近年来,人工智能技术的迅猛发展推动了自然语言处理(NLP)领域的革命性进步。特别是以GPT(GenerativePre-trainedTransformer)系列模型为代表的大规模预训练语言模型,已经在全球范围内引发了广泛关注和应用。然而,随着技术的不断演进,新兴的GPT模型如DeepSeek的出现,正在对全球GPT产业产生深远的影响。本文将从技术、市场、应用场景和产业生态等多个维度,深入探讨
- 国产AI疯卷!DeepSeek-R1成开源霸主,字节腾讯纷纷放大招?
盼达思文体科创
经验分享
引言家人们,最近的AI圈简直是“火药味”十足,热闹程度堪比世界杯!在科技飞速发展的当下,人工智能领域已经成为全球科技竞争的焦点,各国科技企业都在这个赛道上你追我赶,试图占据一席之地。AI技术不仅深刻改变了我们的生活方式,像智能语音助手让生活更便捷,智能推荐算法让信息获取更精准,还推动了众多行业的变革,如医疗、交通、金融等。今天咱们要聊的这几件AI大事,每一件都可能会对未来的科技走向产生深远影响。先
- 打架检测系统:基于YOLOv5的实时人群打架行为识别
2025年数学建模美赛
YOLO深度学习ui计算机视觉视觉检测
1.引言打架检测,作为一个复杂且具有挑战性的任务,已经在多个领域展现出其巨大的应用潜力,尤其是在公共安全监控、安防摄像头、智能城市等应用场景中。通过深度学习技术,尤其是基于YOLOv5的目标检测,我们能够对实时视频流中的人群行为进行实时监控,并有效地检测和识别人群中的打架行为。本博客将详细介绍如何使用YOLOv5模型搭建一个打架检测系统,包含数据集准备、YOLOv5训练、UI界面设计以及优化和部署
- mysql主从数据同步
林鹤霄
mysql主从数据同步
配置mysql5.5主从服务器(转)
教程开始:一、安装MySQL
说明:在两台MySQL服务器192.168.21.169和192.168.21.168上分别进行如下操作,安装MySQL 5.5.22
二、配置MySQL主服务器(192.168.21.169)mysql -uroot -p &nb
- oracle学习笔记
caoyong
oracle
1、ORACLE的安装
a>、ORACLE的版本
8i,9i : i是internet
10g,11g : grid (网格)
12c : cloud (云计算)
b>、10g不支持win7
&
- 数据库,SQL零基础入门
天子之骄
sql数据库入门基本术语
数据库,SQL零基础入门
做网站肯定离不开数据库,本人之前没怎么具体接触SQL,这几天起早贪黑得各种入门,恶补脑洞。一些具体的知识点,可以让小白不再迷茫的术语,拿来与大家分享。
数据库,永久数据的一个或多个大型结构化集合,通常与更新和查询数据的软件相关
- pom.xml
一炮送你回车库
pom.xml
1、一级元素dependencies是可以被子项目继承的
2、一级元素dependencyManagement是定义该项目群里jar包版本号的,通常和一级元素properties一起使用,既然有继承,也肯定有一级元素modules来定义子元素
3、父项目里的一级元素<modules>
<module>lcas-admin-war</module>
<
- sql查地区省市县
3213213333332132
sqlmysql
-- db_yhm_city
SELECT * FROM db_yhm_city WHERE class_parent_id = 1 -- 海南 class_id = 9 港、奥、台 class_id = 33、34、35
SELECT * FROM db_yhm_city WHERE class_parent_id =169
SELECT d1.cla
- 关于监听器那些让人头疼的事
宝剑锋梅花香
画图板监听器鼠标监听器
本人初学JAVA,对于界面开发我只能说有点蛋疼,用JAVA来做界面的话确实需要一定的耐心(不使用插件,就算使用插件的话也没好多少)既然Java提供了界面开发,老师又要求做,只能硬着头皮上啦。但是监听器还真是个难懂的地方,我是上了几次课才略微搞懂了些。
- JAVA的遍历MAP
darkranger
map
Java Map遍历方式的选择
1. 阐述
对于Java中Map的遍历方式,很多文章都推荐使用entrySet,认为其比keySet的效率高很多。理由是:entrySet方法一次拿到所有key和value的集合;而keySet拿到的只是key的集合,针对每个key,都要去Map中额外查找一次value,从而降低了总体效率。那么实际情况如何呢?
为了解遍历性能的真实差距,包括在遍历ke
- POJ 2312 Battle City 优先多列+bfs
aijuans
搜索
来源:http://poj.org/problem?id=2312
题意:题目背景就是小时候玩的坦克大战,求从起点到终点最少需要多少步。已知S和R是不能走得,E是空的,可以走,B是砖,只有打掉后才可以通过。
思路:很容易看出来这是一道广搜的题目,但是因为走E和走B所需要的时间不一样,因此不能用普通的队列存点。因为对于走B来说,要先打掉砖才能通过,所以我们可以理解为走B需要两步,而走E是指需要1
- Hibernate与Jpa的关系,终于弄懂
avords
javaHibernate数据库jpa
我知道Jpa是一种规范,而Hibernate是它的一种实现。除了Hibernate,还有EclipseLink(曾经的toplink),OpenJPA等可供选择,所以使用Jpa的一个好处是,可以更换实现而不必改动太多代码。
在play中定义Model时,使用的是jpa的annotations,比如javax.persistence.Entity, Table, Column, OneToMany
- 酸爽的console.log
bee1314
console
在前端的开发中,console.log那是开发必备啊,简直直观。通过写小函数,组合大功能。更容易测试。但是在打版本时,就要删除console.log,打完版本进入开发状态又要添加,真不够爽。重复劳动太多。所以可以做些简单地封装,方便开发和上线。
/**
* log.js hufeng
* The safe wrapper for `console.xxx` functions
*
- 哈佛教授:穷人和过于忙碌的人有一个共同思维特质
bijian1013
时间管理励志人生穷人过于忙碌
一个跨学科团队今年完成了一项对资源稀缺状况下人的思维方式的研究,结论是:穷人和过于忙碌的人有一个共同思维特质,即注意力被稀缺资源过分占据,引起认知和判断力的全面下降。这项研究是心理学、行为经济学和政策研究学者协作的典范。
这个研究源于穆来纳森对自己拖延症的憎恨。他7岁从印度移民美国,很快就如鱼得水,哈佛毕业
- other operate
征客丶
OSosx
一、Mac Finder 设置排序方式,预览栏 在显示-》查看显示选项中
二、有时预览显示时,卡死在那,有可能是一些临时文件夹被删除了,如:/private/tmp[有待验证]
--------------------------------------------------------------------
若有其他凝问或文中有错误,请及时向我指出,
我好及时改正,同时也让我们一
- 【Scala五】分析Spark源代码总结的Scala语法三
bit1129
scala
1. If语句作为表达式
val properties = if (jobIdToActiveJob.contains(jobId)) {
jobIdToActiveJob(stage.jobId).properties
} else {
// this stage will be assigned to "default" po
- ZooKeeper 入门
BlueSkator
中间件zk
ZooKeeper是一个高可用的分布式数据管理与系统协调框架。基于对Paxos算法的实现,使该框架保证了分布式环境中数据的强一致性,也正是基于这样的特性,使得ZooKeeper解决很多分布式问题。网上对ZK的应用场景也有不少介绍,本文将结合作者身边的项目例子,系统地对ZK的应用场景进行一个分门归类的介绍。
值得注意的是,ZK并非天生就是为这些应用场景设计的,都是后来众多开发者根据其框架的特性,利
- MySQL取得当前时间的函数是什么 格式化日期的函数是什么
BreakingBad
mysqlDate
取得当前时间用 now() 就行。
在数据库中格式化时间 用DATE_FORMA T(date, format) .
根据格式串format 格式化日期或日期和时间值date,返回结果串。
可用DATE_FORMAT( ) 来格式化DATE 或DATETIME 值,以便得到所希望的格式。根据format字符串格式化date值:
%S, %s 两位数字形式的秒( 00,01,
- 读《研磨设计模式》-代码笔记-组合模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.util.ArrayList;
import java.util.List;
abstract class Component {
public abstract void printStruct(Str
- 4_JAVA+Oracle面试题(有答案)
chenke
oracle
基础测试题
卷面上不能出现任何的涂写文字,所有的答案要求写在答题纸上,考卷不得带走。
选择题
1、 What will happen when you attempt to compile and run the following code? (3)
public class Static {
static {
int x = 5; // 在static内有效
}
st
- 新一代工作流系统设计目标
comsci
工作算法脚本
用户只需要给工作流系统制定若干个需求,流程系统根据需求,并结合事先输入的组织机构和权限结构,调用若干算法,在流程展示版面上面显示出系统自动生成的流程图,然后由用户根据实际情况对该流程图进行微调,直到满意为止,流程在运行过程中,系统和用户可以根据情况对流程进行实时的调整,包括拓扑结构的调整,权限的调整,内置脚本的调整。。。。。
在这个设计中,最难的地方是系统根据什么来生成流
- oracle 行链接与行迁移
daizj
oracle行迁移
表里的一行对于一个数据块太大的情况有二种(一行在一个数据块里放不下)
第一种情况:
INSERT的时候,INSERT时候行的大小就超一个块的大小。Oracle把这行的数据存储在一连串的数据块里(Oracle Stores the data for the row in a chain of data blocks),这种情况称为行链接(Row Chain),一般不可避免(除非使用更大的数据
- [JShop]开源电子商务系统jshop的系统缓存实现
dinguangx
jshop电子商务
前言
jeeshop中通过SystemManager管理了大量的缓存数据,来提升系统的性能,但这些缓存数据全部都是存放于内存中的,无法满足特定场景的数据更新(如集群环境)。JShop对jeeshop的缓存机制进行了扩展,提供CacheProvider来辅助SystemManager管理这些缓存数据,通过CacheProvider,可以把缓存存放在内存,ehcache,redis,memcache
- 初三全学年难记忆单词
dcj3sjt126com
englishword
several 儿子;若干
shelf 架子
knowledge 知识;学问
librarian 图书管理员
abroad 到国外,在国外
surf 冲浪
wave 浪;波浪
twice 两次;两倍
describe 描写;叙述
especially 特别;尤其
attract 吸引
prize 奖品;奖赏
competition 比赛;竞争
event 大事;事件
O
- sphinx实践
dcj3sjt126com
sphinx
安装参考地址:http://briansnelson.com/How_to_install_Sphinx_on_Centos_Server
yum install sphinx
如果失败的话使用下面的方式安装
wget http://sphinxsearch.com/files/sphinx-2.2.9-1.rhel6.x86_64.rpm
yum loca
- JPA之JPQL(三)
frank1234
ormjpaJPQL
1 什么是JPQL
JPQL是Java Persistence Query Language的简称,可以看成是JPA中的HQL, JPQL支持各种复杂查询。
2 检索单个对象
@Test
public void querySingleObject1() {
Query query = em.createQuery("sele
- Remove Duplicates from Sorted Array II
hcx2013
remove
Follow up for "Remove Duplicates":What if duplicates are allowed at most twice?
For example,Given sorted array nums = [1,1,1,2,2,3],
Your function should return length
- Spring4新特性——Groovy Bean定义DSL
jinnianshilongnian
spring 4
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- CentOS安装Mysql5.5
liuxingguome
centos
CentOS下以RPM方式安装MySQL5.5
首先卸载系统自带Mysql:
yum remove mysql mysql-server mysql-libs compat-mysql51
rm -rf /var/lib/mysql
rm /etc/my.cnf
查看是否还有mysql软件:
rpm -qa|grep mysql
去http://dev.mysql.c
- 第14章 工具函数(下)
onestopweb
函数
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- POJ 1050
SaraWon
二维数组子矩阵最大和
POJ ACM第1050题的详细描述,请参照
http://acm.pku.edu.cn/JudgeOnline/problem?id=1050
题目意思:
给定包含有正负整型的二维数组,找出所有子矩阵的和的最大值。
如二维数组
0 -2 -7 0
9 2 -6 2
-4 1 -4 1
-1 8 0 -2
中和最大的子矩阵是
9 2
-4 1
-1 8
且最大和是15
- [5]设计模式——单例模式
tsface
java单例设计模式虚拟机
单例模式:保证一个类仅有一个实例,并提供一个访问它的全局访问点
安全的单例模式:
/*
* @(#)Singleton.java 2014-8-1
*
* Copyright 2014 XXXX, Inc. All rights reserved.
*/
package com.fiberhome.singleton;
- Java8全新打造,英语学习supertool
yangshangchuan
javasuperword闭包java8函数式编程
superword是一个Java实现的英文单词分析软件,主要研究英语单词音近形似转化规律、前缀后缀规律、词之间的相似性规律等等。Clean code、Fluent style、Java8 feature: Lambdas, Streams and Functional-style Programming。
升学考试、工作求职、充电提高,都少不了英语的身影,英语对我们来说实在太重要