- 雷达mid360 和 Fast Lio
AugustInSopton
人工智能
1.实时激光里程计+建图(SLAM)FAST‑LIO(及FAST‑LIO2)通过融合LiDAR点云与IMU数据,提供高频(可达~100 Hz)的位姿估计(实时里程计)与增量建图功能https://github.com/SylarAnh/fast_lio_mid360https://github.com/SylarAnh/fast_lio_mid360支持Mid‑360这种全向固态LiDAR,默认r
- 【优秀文章】7月优秀文章推荐
优秀文章智能自主运动体与人工智能技术——环境感知、SLAM定位、路径规划、运动控制、多智能体协同作者:fpga和matlabC++之红黑树认识与实现作者:zzh_zao【手把手带你刷好题】–C语言基础编程题(十)作者:草莓熊Lotso飞算JavaAI:从“码农”到“代码指挥官”的终极进化论作者:可涵不会debug前端网页开发学习(HTML+CSS+JS)有这一篇就够!作者:一颗小谷粒
- 【自动导引车领域涉及许多专业术语】
是刘彦宏吖
制造业数字化转型人工智能AGVAMR
自动导引车领域涉及许多专业术语。以下是一些核心和常见的术语及其解释:核心概念AGV:自动导引车。这是最基础的术语,指装备有自动导引装置(如电磁、光学、激光、SLAM等),能够沿规定的导引路径行驶,具有安全保护以及各种移载功能的运输车。AMR:自主移动机器人。新一代的AGV,强调更强的自主性、灵活性和智能。与依赖固定路径的传统AGV不同,AMR通常使用SLAM技术构建环境地图,并能自主规划最优路径、
- 实战演练:用 AWS Lambda 和 API Gateway 构建你的第一个 Serverless API
实战演练:用AWSLambda和APIGateway构建你的第一个ServerlessAPI理论千遍,不如动手一遍!在前面几篇文章中,我们了解了Serverless的概念、FaaS的核心原理以及BaaS的重要作用。现在,是时候把这些知识运用起来,亲手构建一个简单但完整的Serverless应用了。本次实战,我们将使用AmazonWebServices(AWS)这个主流的云平台,结合它的两个核心Se
- orb-slam run rgbd data
hetongqiyue
计算机视觉slam
TUM数据集准备+RGB-D运行从这个网址下载tum数据集[http://vision.in.tum.de/data/datasets/rgbd-dataset/download]并且解压缩。使用python脚本关联RGB图像和深度图像[associate.py],[http://vision.in.tum.de/data/datasets/rgbd-dataset/tools].我们已经提供了一
- Docker 与 Serverless 架构:无服务器环境下的容器化部署
you的日常
容器技术Docker性能优化实践dockerserverless架构容器
Serverless(无服务器)架构作为云计算领域的革命性范式,以其无需管理服务器、按需付费、自动伸缩的特性,正在改变着应用开发和部署的方式。然而,传统的函数即服务(Function-as-a-Service,FaaS),如AWSLambda,在运行时环境、部署包大小和复杂依赖管理方面存在一定的局限性。幸运的是,Docker容器的出现为Serverless带来了新的活力。容器的强大可移植性和环境一
- PL-SLAM: Real-Time Monocular Visual SLAM with Points and Lines
PL-SLAM文章目录PL-SLAM摘要系统介绍综述方法综述LINE-BASEDSLAM一、基于线的SLAM二、基于线和点的BA三、全局重定位使用线条初始化地图实验结果说明位姿求解三角化LSD直线检测算法**一、核心原理**⚙️**二、实现方法****三、应用场景**⚖️**四、优缺点与优化****优缺点对比****总结**End摘要译文——众所周知,低纹理场景是依赖点对应的几何计算机视觉算法的主
- Serverless成本优化实战:从资源浪费到精准管控的架构演进
知识产权13937636601
计算机serverless架构云原生
本文系统解析Serverless架构下的成本构成黑洞,揭示函数计算、存储服务、API网关等模块的资源浪费真相。基于电商、社交、物联网等行业的真实账单数据,深度剖析冷启动损耗、配置冗余、日志存储三大核心成本痛点。结合AWSLambda、阿里云函数计算等平台的最佳实践,给出冷启动优化、智能伸缩策略、存储分层设计等12项关键优化方案,并展望AI预测调度、多云成本博弈等前沿技术方向,为企业节省60%以上的
- AWS Cognito项目实战指南:集成用户管理与自定义电子邮件功能
一一MIO一一
本文还有配套的精品资源,点击获取简介:本项目涉及利用AWSCognito服务,创建一个基于云端的用户身份验证和管理应用。通过集成Cognito用户池,项目支持社交登录和自定义用户身份保护,同时涉及通过AWSLambda发送自定义电子邮件通知,增强用户体验。项目采用TypeScript编程语言,提升代码的可维护性和可读性,为开发者提供一个学习AWS无服务器认证解决方案的实践案例。1.AWSCogni
- 机器人系统导航里程计介绍
Xian-HHappy
机器人机器人人工智能算法里程计
一、引言在移动机器人的研究与应用领域,精准且实时地确定机器人的位置与姿态是实现其自主功能的关键。里程计作为达成这一目标的核心技术之一,在移动机器人的自主导航、路径规划、定位以及地图构建等诸多关键领域扮演着举足轻重的角色。随着机器人技术的持续演进,里程计已蜕变成为移动机器人实现SLAM(同步定位与地图构建)功能的基石。它通过对各类传感器所采集数据的精细计算与处理,运用增量式递推的策略,实时推算出机器
- AWS Lambda与RDS连接优化之旅
t0_54manong
编程问题解决手册aws云计算个人开发
在云计算的时代,AWSLambda与RDS的结合为开发者提供了高效且灵活的解决方案。然而,在实际应用中,我们常常会遇到一些性能瓶颈。本文将通过一个真实案例,探讨如何优化AWSLambda与RDS之间的连接,以提高API的响应速度。背景介绍最近,我们在AWS上部署了一个使用Dotnet6开发的API,它通过APIGateway暴露给外部,并连接到同VPC内的MySQLAuroraRDS数据库。部署前
- VINS-Mono 开源项目安装与使用指南
劳丽娓Fern
VINS-Mono开源项目安装与使用指南VINS-Mono项目地址:https://gitcode.com/gh_mirrors/vi/VINS-MonoVINS-Mono是一个专为单目视觉惯性系统设计的实时SLAM框架,旨在提供高精度的视觉惯性里程计。本指南将带你深入了解其目录结构、启动文件以及配置文件,帮助你快速上手并应用此项目。目录结构及介绍VINS-Mono的项目结构清晰地组织了不同的组件
- AWS 监控和管理服务 CloudWatch
wumingxiaoyao
BigDataaws大数据云计算CloudWatch日志监控
AWS监控和管理服务CloudWatch什么是CloudWatchCloudWatch工作原理CloudWatchlog收集方法通过AWSLambda发送日志到CloudWatchLogs使用CloudWatchLogsAgent发送日志通过AWSSDK或API将日志发送到CloudWatchLogs通过CloudWatchAgent将应用和系统日志发送到CloudWatchLogsCloudWa
- PHP云原生与Serverless架构深度实践
seopthonshentong
云原生phpserverless
在前六篇系列教程的基础上,本文将深入探讨PHP在云原生和Serverless环境下的高级应用,帮助开发者构建可扩展、高可用的现代化PHP应用。1.ServerlessPHP架构Bref与AWSLambda集成bash#安装Brefcomposerrequirebref/brefphpartisanvendor:publish--tag=serverless-configserverless.yml
- ROS的学习链接整理 (基于古月居)
辣椒炒月饼
学习机器人自动驾驶
机器人控制与仿真:http://wiki.ros.org/roscontrol机器人即使定位与地图建模:http://wiki.ros.org/gmappinghttp://wiki.ros.org/hectorslam机械臂相关学习:http://moveit.ros.org/斯坦福大学公开课———机器人学:https://www.bilibili.com/video/av4506104/交通大
- (02)Cartographer源码无死角解析-(72) 2D后端优化→OptimizationProblem2D-约束残差、landmark残差
江南才尽,年少无知!
机器人cartographerslam自动驾驶增强现实
讲解关于slam一系列文章汇总链接:史上最全slam从零开始,针对于本栏目讲解(02)Cartographer源码无死角解析-链接如下:(02)Cartographer源码无死角解析-(00)目录_最新无死角讲解:https://blog.csdn.net/weixin_43013761/article/details/127350885文末正下方中心提供了本人联系方式,点击本人照片即可显示WX→
- cartographer官方指导文件说明---第3章 cartographer前端算法流程介绍
从小练武功
前端算法
cartographer官方指导文件说明第3章cartographer前端算法流程介绍3.1ScanMatch扫描匹配扫描匹配(ScanMatching)是Cartographer中实现局部SLAM的核心技术,它通过优化算法将当前激光扫描数据对齐到子图地图中。下面从计算过程、数学模型、参数配置等多个维度进行全面解析:3.1.1扫描匹配工作流程完整处理流程低置信度高置信度原始扫描数据运动畸变校正体素
- 3.3 里程计在SLAM中的应用
小慧1024
ROS1快速入门指南ros机器人linux
启动仿真环境roslaunchwpr_simulationwpb_corridor_hector.launch可视化结果如图所示在Riz建图中存在问题换一种方式建图roslaunchwpr_simulationwpb_corridor_gmapping.launch由于历程计的参与,地图被顺利建成
- SLAM面试笔记(5) — ROS面试
几度春风里
SLAM项目实战面试机器人ros自动驾驶
目录1ROS概述2ROS通信机制问题:服务通信概念问题:服务通信理论模型问题:参数服务器概念问题:参数服务器理论模型问题:参数服务器实现函数3ROS常用命令4常见面试题问题:roslaunch和rosrun区别?问题:什么是ROS?问题:ROS中的节点是什么?问题:ROS的消息通信机制是什么?问题:如何创建ROS的工作空间?问题:ROS中常用的机器人控制库有哪些?问题:ROS中如何进行机器人导航?
- nerf-slam论文复现
搬砖者(视觉算法工程师)
gitpython深度学习
nerf-slam实现三维重建详细的在我文档里面(有图片步骤)TableofContentsInstallDownloadDatasetsRunCitationLicenseAcknowledgmentsContactInstallClonerepowithsubmodules:gitclonehttps://github.com/ToniRV/NeRF-SLAM.git--recurse-sub
- STM32和树莓派的分工
⚙️修正版:典型硬件组合与通信流程(以移动机器人为例)1.硬件分工:大脑vs四肢角色硬件运行软件核心任务是否直接运行ROS决策大脑树莓派4B/JetsonNanoUbuntu+ROS运行SLAM、导航、视觉识别等复杂算法✅是实时四肢STM32F4FreeRTOS/裸机读取电机编码器、控制电机PWM❌否传感器/执行器电机、激光雷达、IMU-执行动作/采集数据-2.为什么需要STM32?树莓派无法直接
- 第5.4章 SLAM实战:使用std::chrono计算传感器消息时间戳
行知SLAM
机器人工程师带你入门SLAMunixc++自动驾驶人工智能
在机器人及自动驾驶定位中,传入的IMU和激光的消息都需要判断其数据的正确性,其中,主要会判断消息的开机时间和观测时间,其中开机时间主要通过调用chrono的函数计算,观测时间主要由GPS的时间来获得(GPS观测时间已由上篇文章总结GPS时间计算)。std::chrono是C++11引入的时间处理库,提供了高精度、类型安全且跨平台的时间计算功能。它主要包含三个核心概念:duration:表示时间间隔
- 《用Java 8新特性重构代码:让项目更简洁高效》
Tech_Jia_Hui
Java8新特性java重构开发语言
1.Lambda表达式:简化匿名内部类1.1传统方式vsLambda表达式1.2集合遍历对比1.3事件监听器简化2.StreamAPI:革命性的集合操作2.1基本Stream操作示例2.2数值流操作2.3分组和分区3.Optional:优雅处理null3.1基本Optional用法3.2Optional实践示例4.方法引用:更简洁的Lambda4.1四种方法引用类型4.2方法引用实践5.新的日期时
- 基于AWS无服务器架构的区块链API集成:零基础设施运维实践
AWS官方合作商
awsserverless架构web3区块链
引言区块链开发常面临节点部署、网络维护和扩展性挑战。本文将介绍如何通过AWS全托管服务构建高可用的区块链API层,无需自建节点、无需管理服务器,实现快速接入主流区块链网络(如以太坊、比特币),并保证企业级安全性与扩展性。graphLRA[前端应用]-->B[AmazonAPIGateway]B-->C[AWSLambda]C-->D[AmazonManagedBlockchain]C-->E[Bl
- 【SLAM】基于拓展卡尔曼滤波实现激光雷达传感器和角点提取的机器人定位附matlab代码
matlab科研社
机器人matlab数据结构
✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。往期回顾关注个人主页:Matlab科研工作室个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。内容介绍自主移动机器人定位是机器人学研究的核心问题之一。本文探讨了基于拓展卡尔曼滤波(EKF)融合激光雷达传感器数据和角点提取技术实现机器人定位的方法。通过深入分析激光雷达传感器的工
- 【ROS2】slam_toolbox建图详解
郭老二
ROSROS2SLAM
【ROS】郭老二博文之:ROS目录1、简介1)安装sudoaptinstallros-$ROS_DISTRO-slam-toolbox2)源码https://github.com/SteveMacenski/slam_toolbox3)官网https://joss.theoj.org/papers/10.21105/joss.027832、启动2.1启动slam_toolboxslam_toolb
- Python中日志输出配置
亚林瓜子
python开发语言logawslambdacloudwatchexception
问题在AWSlambdaPython中怎么样打印日志?Pythonimportlogginglogging.basicConfig()logging.getLogger("sqlalchemy.engine").setLevel(logging.INFO)logger=logging.getLogger()logger.setLevel(logging.INFO)上面是全局配置主要是如下配置:lo
- 视觉slam--框架
猿饵块
人工智能
视觉里程计的框架传感器VO--frontendVO的缺点后端--backend后端对什么数据进行优化利用什么数据进行优化的后端是怎么进行优化的回环检测建图建图是指构建地图的过程。构建的地图是点云地图还是什么信息的地图?建图并没有一个固定的形式和算法,地图的构建形式不是固定的,需要视SLAM的应用需求而定。
- 视觉slam十四讲实践部分记录——ch2、ch3
kikikidult
slam学习slamc++笔记
ch2一、使用g++编译.cpp为可执行文件并运行(P30)g++helloSLAM.cpp./a.out运行二、使用cmake编译mkdirbuildcdbuildcmake..makeCMakeCache.txt文件仍然指向旧的目录。这表明在源代码目录中可能还存在旧的CMakeCache.txt文件,或者在构建过程中仍然引用了旧的路径。我们需要彻底清理并重新开始。详细解决步骤步骤1:彻底清理源
- 【2D与3D SLAM中的扫描匹配算法全面解析】
Unpredictable222
SLAM算法自动驾驶自主导航算法opencvpclSLAMICPNDT
引言扫描匹配(ScanMatching)是同步定位与地图构建(SLAM)系统中的核心组件,它通过对齐连续的传感器观测数据来估计机器人的运动。本文将深入探讨2D和3DSLAM中的各种扫描匹配算法,包括数学原理、实现细节以及实际应用中的性能对比,特别关注激光雷达SLAM中的典型方法。一、扫描匹配数学基础与核心原理1.1刚体变换的数学表示扫描匹配的核心是求解刚体变换,在2D和3D空间中有不同的数学表示:
- Spring中@Value注解,需要注意的地方
无量
springbean@Valuexml
Spring 3以后,支持@Value注解的方式获取properties文件中的配置值,简化了读取配置文件的复杂操作
1、在applicationContext.xml文件(或引用文件中)中配置properties文件
<bean id="appProperty"
class="org.springframework.beans.fac
- mongoDB 分片
开窍的石头
mongodb
mongoDB的分片。要mongos查询数据时候 先查询configsvr看数据在那台shard上,configsvr上边放的是metar信息,指的是那条数据在那个片上。由此可以看出mongo在做分片的时候咱们至少要有一个configsvr,和两个以上的shard(片)信息。
第一步启动两台以上的mongo服务
&nb
- OVER(PARTITION BY)函数用法
0624chenhong
oracle
这篇写得很好,引自
http://www.cnblogs.com/lanzi/archive/2010/10/26/1861338.html
OVER(PARTITION BY)函数用法
2010年10月26日
OVER(PARTITION BY)函数介绍
开窗函数 &nb
- Android开发中,ADB server didn't ACK 解决方法
一炮送你回车库
Android开发
首先通知:凡是安装360、豌豆荚、腾讯管家的全部卸载,然后再尝试。
一直没搞明白这个问题咋出现的,但今天看到一个方法,搞定了!原来是豌豆荚占用了 5037 端口导致。
参见原文章:一个豌豆荚引发的血案——关于ADB server didn't ACK的问题
简单来讲,首先将Windows任务进程中的豌豆荚干掉,如果还是不行,再继续按下列步骤排查。
&nb
- canvas中的像素绘制问题
换个号韩国红果果
JavaScriptcanvas
pixl的绘制,1.如果绘制点正处于相邻像素交叉线,绘制x像素的线宽,则从交叉线分别向前向后绘制x/2个像素,如果x/2是整数,则刚好填满x个像素,如果是小数,则先把整数格填满,再去绘制剩下的小数部分,绘制时,是将小数部分的颜色用来除以一个像素的宽度,颜色会变淡。所以要用整数坐标来画的话(即绘制点正处于相邻像素交叉线时),线宽必须是2的整数倍。否则会出现不饱满的像素。
2.如果绘制点为一个像素的
- 编码乱码问题
灵静志远
javajvmjsp编码
1、JVM中单个字符占用的字节长度跟编码方式有关,而默认编码方式又跟平台是一一对应的或说平台决定了默认字符编码方式;2、对于单个字符:ISO-8859-1单字节编码,GBK双字节编码,UTF-8三字节编码;因此中文平台(中文平台默认字符集编码GBK)下一个中文字符占2个字节,而英文平台(英文平台默认字符集编码Cp1252(类似于ISO-8859-1))。
3、getBytes()、getByte
- java 求几个月后的日期
darkranger
calendargetinstance
Date plandate = planDate.toDate();
SimpleDateFormat df = new SimpleDateFormat("yyyy-MM-dd");
Calendar cal = Calendar.getInstance();
cal.setTime(plandate);
// 取得三个月后时间
cal.add(Calendar.M
- 数据库设计的三大范式(通俗易懂)
aijuans
数据库复习
关系数据库中的关系必须满足一定的要求。满足不同程度要求的为不同范式。数据库的设计范式是数据库设计所需要满足的规范。只有理解数据库的设计范式,才能设计出高效率、优雅的数据库,否则可能会设计出错误的数据库.
目前,主要有六种范式:第一范式、第二范式、第三范式、BC范式、第四范式和第五范式。满足最低要求的叫第一范式,简称1NF。在第一范式基础上进一步满足一些要求的为第二范式,简称2NF。其余依此类推。
- 想学工作流怎么入手
atongyeye
jbpm
工作流在工作中变得越来越重要,很多朋友想学工作流却不知如何入手。 很多朋友习惯性的这看一点,那了解一点,既不系统,也容易半途而废。好比学武功,最好的办法是有一本武功秘籍。研究明白,则犹如打通任督二脉。
系统学习工作流,很重要的一本书《JBPM工作流开发指南》。
本人苦苦学习两个月,基本上可以解决大部分流程问题。整理一下学习思路,有兴趣的朋友可以参考下。
1 首先要
- Context和SQLiteOpenHelper创建数据库
百合不是茶
androidContext创建数据库
一直以为安卓数据库的创建就是使用SQLiteOpenHelper创建,但是最近在android的一本书上看到了Context也可以创建数据库,下面我们一起分析这两种方式创建数据库的方式和区别,重点在SQLiteOpenHelper
一:SQLiteOpenHelper创建数据库:
1,SQLi
- 浅谈group by和distinct
bijian1013
oracle数据库group bydistinct
group by和distinct只了去重意义一样,但是group by应用范围更广泛些,如分组汇总或者从聚合函数里筛选数据等。
譬如:统计每id数并且只显示数大于3
select id ,count(id) from ta
- vi opertion
征客丶
macoprationvi
进入 command mode (命令行模式)
按 esc 键
再按 shift + 冒号
注:以下命令中 带 $ 【在命令行模式下进行】,不带 $ 【在非命令行模式下进行】
一、文件操作
1.1、强制退出不保存
$ q!
1.2、保存
$ w
1.3、保存并退出
$ wq
1.4、刷新或重新加载已打开的文件
$ e
二、光标移动
2.1、跳到指定行
数字
- 【Spark十四】深入Spark RDD第三部分RDD基本API
bit1129
spark
对于K/V类型的RDD,如下操作是什么含义?
val rdd = sc.parallelize(List(("A",3),("C",6),("A",1),("B",5))
rdd.reduceByKey(_+_).collect
reduceByKey在这里的操作,是把
- java类加载机制
BlueSkator
java虚拟机
java类加载机制
1.java类加载器的树状结构
引导类加载器
^
|
扩展类加载器
^
|
系统类加载器
java使用代理模式来完成类加载,java的类加载器也有类似于继承的关系,引导类是最顶层的加载器,它是所有类的根加载器,它负责加载java核心库。当一个类加载器接到装载类到虚拟机的请求时,通常会代理给父类加载器,若已经是根加载器了,就自己完成加载。
虚拟机区分一个Cla
- 动态添加文本框
BreakingBad
文本框
<script> var num=1; function AddInput() { var str=""; str+="<input 
- 读《研磨设计模式》-代码笔记-单例模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
public class Singleton {
}
/*
* 懒汉模式。注意,getInstance如果在多线程环境中调用,需要加上synchronized,否则存在线程不安全问题
*/
class LazySingleton
- iOS应用打包发布常见问题
chenhbc
iosiOS发布iOS上传iOS打包
这个月公司安排我一个人做iOS客户端开发,由于急着用,我先发布一个版本,由于第一次发布iOS应用,期间出了不少问题,记录于此。
1、使用Application Loader 发布时报错:Communication error.please use diagnostic mode to check connectivity.you need to have outbound acc
- 工作流复杂拓扑结构处理新思路
comsci
设计模式工作算法企业应用OO
我们走的设计路线和国外的产品不太一样,不一样在哪里呢? 国外的流程的设计思路是通过事先定义一整套规则(类似XPDL)来约束和控制流程图的复杂度(我对国外的产品了解不够多,仅仅是在有限的了解程度上面提出这样的看法),从而避免在流程引擎中处理这些复杂的图的问题,而我们却没有通过事先定义这样的复杂的规则来约束和降低用户自定义流程图的灵活性,这样一来,在引擎和流程流转控制这一个层面就会遇到很
- oracle 11g新特性Flashback data archive
daizj
oracle
1. 什么是flashback data archive
Flashback data archive是oracle 11g中引入的一个新特性。Flashback archive是一个新的数据库对象,用于存储一个或多表的历史数据。Flashback archive是一个逻辑对象,概念上类似于表空间。实际上flashback archive可以看作是存储一个或多个表的所有事务变化的逻辑空间。
- 多叉树:2-3-4树
dieslrae
树
平衡树多叉树,每个节点最多有4个子节点和3个数据项,2,3,4的含义是指一个节点可能含有的子节点的个数,效率比红黑树稍差.一般不允许出现重复关键字值.2-3-4树有以下特征:
1、有一个数据项的节点总是有2个子节点(称为2-节点)
2、有两个数据项的节点总是有3个子节点(称为3-节
- C语言学习七动态分配 malloc的使用
dcj3sjt126com
clanguagemalloc
/*
2013年3月15日15:16:24
malloc 就memory(内存) allocate(分配)的缩写
本程序没有实际含义,只是理解使用
*/
# include <stdio.h>
# include <malloc.h>
int main(void)
{
int i = 5; //分配了4个字节 静态分配
int * p
- Objective-C编码规范[译]
dcj3sjt126com
代码规范
原文链接 : The official raywenderlich.com Objective-C style guide
原文作者 : raywenderlich.com Team
译文出自 : raywenderlich.com Objective-C编码规范
译者 : Sam Lau
- 0.性能优化-目录
frank1234
性能优化
从今天开始笔者陆续发表一些性能测试相关的文章,主要是对自己前段时间学习的总结,由于水平有限,性能测试领域很深,本人理解的也比较浅,欢迎各位大咖批评指正。
主要内容包括:
一、性能测试指标
吞吐量、TPS、响应时间、负载、可扩展性、PV、思考时间
http://frank1234.iteye.com/blog/2180305
二、性能测试策略
生产环境相同 基准测试 预热等
htt
- Java父类取得子类传递的泛型参数Class类型
happyqing
java泛型父类子类Class
import java.lang.reflect.ParameterizedType;
import java.lang.reflect.Type;
import org.junit.Test;
abstract class BaseDao<T> {
public void getType() {
//Class<E> clazz =
- 跟我学SpringMVC目录汇总贴、PDF下载、源码下载
jinnianshilongnian
springMVC
----广告--------------------------------------------------------------
网站核心商详页开发
掌握Java技术,掌握并发/异步工具使用,熟悉spring、ibatis框架;
掌握数据库技术,表设计和索引优化,分库分表/读写分离;
了解缓存技术,熟练使用如Redis/Memcached等主流技术;
了解Ngin
- the HTTP rewrite module requires the PCRE library
流浪鱼
rewrite
./configure: error: the HTTP rewrite module requires the PCRE library.
模块依赖性Nginx需要依赖下面3个包
1. gzip 模块需要 zlib 库 ( 下载: http://www.zlib.net/ )
2. rewrite 模块需要 pcre 库 ( 下载: http://www.pcre.org/ )
3. s
- 第12章 Ajax(中)
onestopweb
Ajax
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- Optimize query with Query Stripping in Web Intelligence
blueoxygen
BO
http://wiki.sdn.sap.com/wiki/display/BOBJ/Optimize+query+with+Query+Stripping+in+Web+Intelligence
and a very straightfoward video
http://www.sdn.sap.com/irj/scn/events?rid=/library/uuid/40ec3a0c-936
- Java开发者写SQL时常犯的10个错误
tomcat_oracle
javasql
1、不用PreparedStatements 有意思的是,在JDBC出现了许多年后的今天,这个错误依然出现在博客、论坛和邮件列表中,即便要记住和理解它是一件很简单的事。开发者不使用PreparedStatements的原因可能有如下几个: 他们对PreparedStatements不了解 他们认为使用PreparedStatements太慢了 他们认为写Prepar
- 世纪互联与结盟有感
阿尔萨斯
10月10日,世纪互联与(Foxcon)签约成立合资公司,有感。
全球电子制造业巨头(全球500强企业)与世纪互联共同看好IDC、云计算等业务在中国的增长空间,双方迅速果断出手,在资本层面上达成合作,此举体现了全球电子制造业巨头对世纪互联IDC业务的欣赏与信任,另一方面反映出世纪互联目前良好的运营状况与广阔的发展前景。
众所周知,精于电子产品制造(世界第一),对于世纪互联而言,能够与结盟