- 使用Docker搭建Flink集群
O_1CxH
Flink大数据Kafka大数据dockerflink容器
目录使用Docker搭建Flink集群docker-compose一键搭建步骤附录参考资料使用Docker搭建Flink集群在学习大数据框架的时候,需要一个真实的环境。我们知道,像spark、flink这些计算框架都有多种运行模式:在本地使用多线程模拟集群真正的分布式集群如果直接在IDE(Intellj)里面编译和运行写好的程序,实际上是用的前一种运行模式;如果想尝试真正的生产环境中任务的提交和管
- 国家网络安全宣传周 | 2024年网络安全领域重大政策法规一览
网安加社区
安全网络安全政策法规
随着我国网络安全政策法规不断健全,网络安全工作机制也日渐成熟,各项工作已稳步步入法治化的轨道,与此同时,网络安全标准体系逐步清晰,安全防线日益坚固,为国家的网络安全建设提供了坚实的基础。网安加社区特为大家整理了2024年国内发布的网络安全领域相关政策法规,希望能为广大从业者与关注者提供相关参考,共同促进网络安全生态的健康发展。2024年网络安全重大政策法规一览◉1.《旅游大数据安全与隐私保护要求(
- 【计算机毕设选题】2025计算机毕业设计选题推荐-高通过率选题指南(二)
计算机YiDian
计算机毕设实战案例毕业设计选题/开题源码计算机毕业设计选题毕业设计选题计算机毕设选题计算机毕业设计
计算机毕业设计作为大学生涯的收官之作,承载着对学生专业技能、创新思维及实践能力的全面考验。随着信息技术的飞速发展,计算机毕业设计的形式也日益多样化,从传统的网站(Web)开发到新兴的小程序、APP构建,再到大数据分析与处理,每一种形式都代表着不同的技术挑战与实现路径。本文旨在探讨这些多样化的毕业设计形式及其背后的技术支撑,为即将踏上毕业设计征程的学子们提供一份详实的参考指南,对毕设开发需要帮助,以
- Mongodb主从模式最佳方案
Christian Bai
mongodb数据库
我整理的一些关于【Java】的项目学习资料(附讲解~~)和大家一起分享、学习一下:https://d.51cto.com/bLN8S1MongoDB主从模式最佳方案MongoDB是一款开源的文档型数据库,被广泛应用于许多现代应用中。其强大的性能和灵活的数据结构使得它特别适合处理大数据和高并发访问。本文将介绍MongoDB的主从模式,并提供最佳方案和示例代码,帮助你更好地理解这种模式的运作原理。什么
- DeepSeek推荐未来好就业的十大专业
东锋1.3
人工智能deepseek推荐就业
一、人工智能与数据科学专业聚焦人工智能、大数据技术、计算机科学与技术、机器学习、数据科学与大数据技术等专业,构成了这一前沿领域的核心。这些专业旨在培养学生掌握从数据收集、处理到模型构建、算法优化的全流程能力。就业前景洞察人工智能已广泛渗透到医疗、金融、制造、交通等众多领域。在医疗领域,AI辅助诊断系统帮助医生更精准地识别疾病;金融行业里,智能风控模型有效防范风险。未来,算法工程师负责开发和优化各种
- 云桌面主流架构解析与应用场景分析
一休哥助手
架构
引言随着云计算、大数据和虚拟化技术的快速发展,云桌面作为一种高效、安全、便捷的办公方式,逐渐被企业、教育和政府等多个领域广泛采用。云桌面通过虚拟化技术将计算资源集中管理,并将桌面操作系统、应用程序和数据存储在云端。用户通过终端设备访问云桌面,从而实现随时随地的灵活办公。云桌面架构的设计是其性能、安全性和用户体验的关键因素。目前主流的云桌面架构有多种类型,包括集中式架构、分布式架构、混合式架构等。本
- 微信视频号中的“多位朋友看过”是真的有朋友看过,还是系统分析过大数据后推荐的?
cda2024
微信大数据
不知道你有没有注意到,在微信视频号里,经常会出现“多位朋友看过”的提示。这一行小字往往能勾起人们的好奇心,让人不由自主地想要点击观看。那么,这究竟是不是真的意味着我们的朋友确确实实地浏览过这些视频呢?今天,我们就来聊聊这个话题。一、社交网络背后的算法在探讨这个问题之前,我们首先得了解一下社交网络平台背后的算法原理。社交网络平台的推荐机制主要依赖于大数据分析技术,通过用户的行为习惯、兴趣偏好等多维度
- 云计算、大数据、人工智能、物联网、虚拟现实技术、区块链技术
2301_79098963
程序员云计算大数据人工智能
物联网一、物联网的基本概念二、物联网的特征(一)物体感知(二)信息传输(三)智能处理三、物联网关键技术(一)射频识别技术(二)产品电子编码(三)短距离通信技术(四)互联网(五)感知控制技术(六)无线网络技术(七)中间件技术(八)智能处理技术四、物联网的应用领域虚拟现实技术一、VR的基本概念二、VR的特征(一)沉浸性(二)人交互性(三)多感知性(四)想象性(五)自主性三、VR的技术应用(一)在影视娱
- 阿里云MWC 2019发布7款重磅产品,助力全球企业迈向智能化
数据库技术分享者
大数据数据库人工智能
当地时间2月25日,在巴塞罗那举行的MWC2019上,阿里云面向全球发布了7款重磅产品,涵盖无服务器计算、高性能存储、全球网络、企业级数据库、大数据计算等主要云产品,可满足电子商务、物流、金融科技以及制造等各行业企业的数字化转型需求,助力全球企业迈向智能化。在大会期间,阿里云还携手德勤、RedHat以及VMware等合作伙伴展示了从基础设施到企业级应用的智能化解决方案。阿里云在MWC2019上展示
- Spark 和 Flink
信徒_
sparkflink大数据
Spark和Flink都是目前流行的大数据处理引擎,但它们在架构设计、应用场景、性能和生态方面有较大区别。以下是详细对比:1.架构与核心概念方面ApacheSparkApacheFlink计算模型微批(Micro-Batch)为主,但支持结构化流(StructuredStreaming)原生流(TrueStreaming),基于事件驱动处理方式以RDD、DataFrame/Dataset作为核心抽
- 尚硅谷课程【笔记】——大数据之Zookeeper【一】
赶紧写完去睡觉
大数据生态圈大数据zookeeperlinux
课程视频:【尚硅谷Zookeeper教程】一、Zookeeper入门概述Zookeeper是一个开源的分布式的,为分布式应用提供协调服务的Apache项目。Zookeeper从设计模式角度理解:是一个基于观察者模式设计的分布式服务管理框架,它负责存储和管理大家都关心的数据,然后接受观察者的注册,一旦这些数据的状态发生变化,Zookeeper就将负责同志已经在Zookeeper上注册的哪些观察者做出
- spark任务运行
冰火同学
Sparkspark大数据分布式
运行环境在这里插入代码片[root@hadoop000conf]#java-versionjavaversion"1.8.0_144"Java(TM)SERuntimeEnvironment(build1.8.0_144-b01)[root@hadoop000conf]#echo$JAVA_HOME/home/hadoop/app/jdk1.8.0_144[root@hadoop000conf]#
- Hadoop 的分布式缓存机制是如何实现的?如何在大规模集群中优化缓存性能?
晚夜微雨问海棠呀
分布式hadoop缓存
Hadoop的分布式缓存机制是一种用于在MapReduce任务中高效分发和访问文件的机制。通过分布式缓存,用户可以将小文件(如配置文件、字典文件等)分发到各个计算节点,从而提高任务的执行效率。分布式缓存的工作原理文件上传:用户将需要缓存的文件上传到HDFS(HadoopDistributedFileSystem)。文件路径可以在作业配置中指定。作业提交:在提交MapReduce作业时,用户可以通过
- 集群与分片:深入理解及应用实践
一休哥助手
架构系统架构
目录引言什么是集群?集群的定义集群的类型什么是分片?分片的定义分片的类型集群与分片的关系集群的应用场景负载均衡高可用性分片的应用场景大数据处理数据库分片集群与分片的架构设计系统架构设计数据存储设计案例分析Hadoop集群Elasticsearch分片性能优化策略集群性能优化分片性能优化挑战和解决方案总结参考资料引言在现代计算系统中,处理大规模数据和提高系统的可靠性已经成为了基础需求。集群和分片是两
- hive spark读取hive hbase外表报错分析和解决
spring208208
hivehivesparkhbase
问题现象使用Sparkshell操作hive关联Hbase的外表导致报错;hive使用tez引擎操作关联Hbase的外表时报错。问题1:使用tez或spark引擎,在hive查询时只要关联hbase的hive表就会有问题其他表正常。“org.apache.hadoop.hbase.client.RetriesExhaustedException:Can’tgetthelocations”问题2:s
- HBase的合并操作
b1gx
HBase
compact的作用flush操作会将memstore的数据落地为一个个StoreFile(HFile),那么随着时间的增长在HDFS上面就会有很多的HFile文件,这样对读操作会产生比较大的影响(读操作会对HFile进行归并查询),并且对DataNode的压力也会比较大。为了降低对读操作的影响,可以对这些HFile进行compact操作,但是compact操作会产生大量的IO,所以可以看出com
- 如何学习Elasticsearch(ES):从入门到精通的完整指南
狮歌~资深攻城狮
jenkins运维elasticsearch大数据
如何学习Elasticsearch(ES):从入门到精通的完整指南嘿,小伙伴们!如果你对大数据搜索和分析感兴趣,并且想要掌握Elasticsearch这一强大的分布式搜索引擎,那么你来对地方了!本文将为你提供一个系统的学习路径,帮助你从零开始逐步深入理解Elasticsearch。1.基础知识准备1.1理解全文搜索在开始学习Elasticsearch之前,建议先了解一下全文搜索的基本概念。全文搜索
- 如何学习HBase:从入门到精通的完整指南
狮歌~资深攻城狮
hbase大数据
如何学习HBase:从入门到精通的完整指南嘿,小伙伴们!如果你对大数据存储感兴趣,并且想要掌握HBase这一强大的分布式数据库,那么你来对地方了!本文将为你提供一个系统的学习路径,帮助你从零开始逐步深入理解HBase。1.基础知识准备1.1理解NoSQL数据库在开始学习HBase之前,建议先了解一下NoSQL数据库的基本概念和分类。NoSQL数据库与传统的关系型数据库(如MySQL)有很大的不同,
- Go 语言的优势和学习路线图
weixin_jie401214
golang学习java
简介Go语言又称Golang,由Google公司于2009年发布,近几年伴随着云计算、微服务、分布式的发展而迅速崛起,跻身主流编程语言之列,和Java类似,它是一门静态的、强类型的、编译型编程语言,为并发而生,所以天生适用于并发编程(网络编程)。目前Go语言支持Windows、Linux等多个平台,也可以直接在Android和iOS等移动端执行,从业务角度来看,Go语言在云计算、微服务、大数据、区
- 架构师技术图谱
modouwu
系统架构
分布式漫谈分布式系统大数据存储微服务可落地的DDD(6)-工程结构推荐系统框架消息队列编程语言设计模式重构集群
- python 读取各类文件格式的文本信息:doc,html,mht,excel
北房有佳人
手写功能python读取doc文档python读取mhtpython读取excelpython读取html
引言众所周知,python最强大的地方在于,python社区汇总拥有丰富的第三方库,开源的特性,使得有越来越多的技术开发者来完善python的完美性。未来人工智能,大数据方向,区块链的识别和进阶都将以python为中心来展开。咳咳咳!好像有点打广告的嫌疑了。当前互联网信息共享时代,最重要的是什么?是数据。最有价值的是什么?是数据。最能直观体现技术水平的是什么?还是数据。所以,今天我们要分享的是:如
- python中常见的生成器内容
哈哈哈哈q
pythonpython
在Python中,生成器(Generator)是一种特殊的迭代器,可以通过函数中的yield关键字轻松创建。生成器的主要特点有:惰性计算:生成器不会一次性计算出所有的值,而是在需要时逐个生成值。节省内存:因为不会一次性存储所有值,所以在处理大数据时效率很高。访问的形式
- 大数据java篇——复制
sp_ur
笔记java文件夹复制大数据java
1.文件夹复制packageCopy;importjava.io.File;importjava.io.FileInputStream;importjava.io.FileNotFoundException;importjava.io.FileOutputStream;publicclassDirCopyDemo{publicstaticStringsrcRoot;publicstaticvoid
- 【大数据安全分析】网络异常相关安全分析场景
扫地僧009
大数据安全分析网络安全大数据web安全
引言在当今数字化时代,网络安全面临着前所未有的挑战。随着信息技术的飞速发展,网络环境变得日益复杂,各种网络攻击手段层出不穷。在大数据安全分析领域,威胁情报关联和账号异常分析已经取得了较好的效果,而网络异常分析同样具有重要的价值。网络异常相关安全分析场景丰富多样,通过对这些场景的深入研究和分析,可以及时发现潜在的网络安全威胁,采取有效的防范措施,保障网络系统的安全稳定运行。本文将详细介绍网络异常相关
- 国标GB28181网页直播平台EasyGBS国标GB28181软件与GB28181应用场景分析
科技小E
音视频视频监控安全
随着5G、AI、云计算、大数据、物联网等新兴技术的快速发展,各行各业都在积极探索智能化、现代化的管理与运营模式。国标GB28181网页直播平台EasyGBS作为一款基于国标GB28181协议的视频云服务平台,凭借其强大的功能和广泛的应用场景,在众多领域中展现出了独特的优势。一、EasyGBS场景智慧交通在交通视频监控领域,通过搭建全套的国标系统,可满足GB/T28181的要求,实现和公安网的对接。
- 《小区综合管理服务平台设计与实现》任务书
zp8126
毕业设计任务书论文
任务书项目名称小区综合管理服务平台设计与实现项目背景随着信息技术的发展,社区服务逐渐向数字化、智能化方向转型。为了提高居民生活质量,增强物业管理效率,减少人力成本,构建一个高效便捷的小区综合管理服务平台显得尤为重要。本项目旨在通过结合云计算、大数据分析等技术手段,为用户提供包括但不限于物业报修、费用缴纳、公告通知、安防监控等功能在内的全方位服务体验。一、课题主要内容1.需求分析目标用户群体:明确平
- 深入HBase——引入
黄雪超
大数据基础#深入HBase大数据数据库hbase
引入前面我们通过深入HDFS到深入MapReduce,从设计和落地,去深入了解了大数据最底层的基石——存储与计算是如何实现的。这个专栏则开始来看大数据的三驾马车中最后一个。通过前面我们对于GFS和MapReduce论文实现的了解,我们知道GFS在数据写入时,只对顺序写入有比较弱的一致性保障,而对于数据读取,虽然GFS支持随机读取,但在当时的硬件条件下,实际上也是支撑不了真正的高并发读取的;此外,M
- Ubuntu下配置安装Hadoop 2.2
weixin_30501857
大数据java运维
---恢复内容开始---这两天玩Hadoop,之前在我的Mac上配置了好长时间都没成功的Hadoop环境,今天想在win7虚拟机下的Ubuntu12.0464位机下配置,然后再建一个组群看一看。参考资料:1.InstallingsinglenodeHadoop2.2.0onUbuntu:http://bigdatahandler.com/hadoop-hdfs/installing-single-
- 数字化转型三大核心要素:数据、技术、人才
千千标寻
大数据云计算人工智能ai
数字化转型的三大核心要素——数据、技术和人才,是推动企业在数字经济时代取得成功的关键。数据数据是数字化转型的基础。高质量的数据能够为企业提供深刻的市场洞察和客户行为分析,帮助做出更明智的决策。通过有效管理和利用数据,企业可以优化运营流程,提升产品和服务质量,从而实现更高的效率和客户满意度。技术先进的技术支持是实现数字化转型的关键驱动力。无论是云计算、人工智能、大数据分析还是物联网,这些前沿技术的应
- 探索数据云的无缝桥梁:Apache Spark 与 Snowflake 的完美结合
窦育培
探索数据云的无缝桥梁:ApacheSpark与Snowflake的完美结合spark-snowflakeSnowflakeDataSourceforApacheSpark.项目地址:https://gitcode.com/gh_mirrors/sp/spark-snowflake项目介绍在大数据处理的浩瀚宇宙中,Snowflake以其独特的云数据仓库能力闪耀,而ApacheSpark则是数据分析和
- 插入表主键冲突做更新
a-john
有以下场景:
用户下了一个订单,订单内的内容较多,且来自多表,首次下单的时候,内容可能会不全(部分内容不是必须,出现有些表根本就没有没有该订单的值)。在以后更改订单时,有些内容会更改,有些内容会新增。
问题:
如果在sql语句中执行update操作,在没有数据的表中会出错。如果在逻辑代码中先做查询,查询结果有做更新,没有做插入,这样会将代码复杂化。
解决:
mysql中提供了一个sql语
- Android xml资源文件中@、@android:type、@*、?、@+含义和区别
Cb123456
@+@?@*
一.@代表引用资源
1.引用自定义资源。格式:@[package:]type/name
android:text="@string/hello"
2.引用系统资源。格式:@android:type/name
android:textColor="@android:color/opaque_red"
- 数据结构的基本介绍
天子之骄
数据结构散列表树、图线性结构价格标签
数据结构的基本介绍
数据结构就是数据的组织形式,用一种提前设计好的框架去存取数据,以便更方便,高效的对数据进行增删查改。正确选择合适的数据结构,对软件程序的高效执行的影响作用不亚于算法的设计。此外,在计算机系统中数据结构的作用也是非同小可。例如常常在编程语言中听到的栈,堆等,就是经典的数据结构。
经典的数据结构大致如下:
一:线性数据结构
(1):列表
a
- 通过二维码开放平台的API快速生成二维码
一炮送你回车库
api
现在很多网站都有通过扫二维码用手机连接的功能,联图网(http://www.liantu.com/pingtai/)的二维码开放平台开放了一个生成二维码图片的Api,挺方便使用的。闲着无聊,写了个前台快速生成二维码的方法。
html代码如下:(二维码将生成在这div下)
? 1
&nbs
- ImageIO读取一张图片改变大小
3213213333332132
javaIOimageBufferedImage
package com.demo;
import java.awt.image.BufferedImage;
import java.io.File;
import java.io.IOException;
import javax.imageio.ImageIO;
/**
* @Description 读取一张图片改变大小
* @author FuJianyon
- myeclipse集成svn(一针见血)
7454103
eclipseSVNMyEclipse
&n
- 装箱与拆箱----autoboxing和unboxing
darkranger
J2SE
4.2 自动装箱和拆箱
基本数据(Primitive)类型的自动装箱(autoboxing)、拆箱(unboxing)是自J2SE 5.0开始提供的功能。虽然为您打包基本数据类型提供了方便,但提供方便的同时表示隐藏了细节,建议在能够区分基本数据类型与对象的差别时再使用。
4.2.1 autoboxing和unboxing
在Java中,所有要处理的东西几乎都是对象(Object)
- ajax传统的方式制作ajax
aijuans
Ajax
//这是前台的代码
<%@ page language="java" import="java.util.*" pageEncoding="UTF-8"%> <% String path = request.getContextPath(); String basePath = request.getScheme()+
- 只用jre的eclipse是怎么编译java源文件的?
avords
javaeclipsejdktomcat
eclipse只需要jre就可以运行开发java程序了,也能自动 编译java源代码,但是jre不是java的运行环境么,难道jre中也带有编译工具? 还是eclipse自己实现的?谁能给解释一下呢问题补充:假设系统中没有安装jdk or jre,只在eclipse的目录中有一个jre,那么eclipse会采用该jre,问题是eclipse照样可以编译java源文件,为什么呢?
&nb
- 前端模块化
bee1314
模块化
背景: 前端JavaScript模块化,其实已经不是什么新鲜事了。但是很多的项目还没有真正的使用起来,还处于刀耕火种的野蛮生长阶段。 JavaScript一直缺乏有效的包管理机制,造成了大量的全局变量,大量的方法冲突。我们多么渴望有天能像Java(import),Python (import),Ruby(require)那样写代码。在没有包管理机制的年代,我们是怎么避免所
- 处理百万级以上的数据处理
bijian1013
oraclesql数据库大数据查询
一.处理百万级以上的数据提高查询速度的方法: 1.应尽量避免在 where 子句中使用!=或<>操作符,否则将引擎放弃使用索引而进行全表扫描。
2.对查询进行优化,应尽量避免全表扫描,首先应考虑在 where 及 o
- mac 卸载 java 1.7 或更高版本
征客丶
javaOS
卸载 java 1.7 或更高
sudo rm -rf /Library/Internet\ Plug-Ins/JavaAppletPlugin.plugin
成功执行此命令后,还可以执行 java 与 javac 命令
sudo rm -rf /Library/PreferencePanes/JavaControlPanel.prefPane
成功执行此命令后,还可以执行 java
- 【Spark六十一】Spark Streaming结合Flume、Kafka进行日志分析
bit1129
Stream
第一步,Flume和Kakfa对接,Flume抓取日志,写到Kafka中
第二部,Spark Streaming读取Kafka中的数据,进行实时分析
本文首先使用Kakfa自带的消息处理(脚本)来获取消息,走通Flume和Kafka的对接 1. Flume配置
1. 下载Flume和Kafka集成的插件,下载地址:https://github.com/beyondj2ee/f
- Erlang vs TNSDL
bookjovi
erlang
TNSDL是Nokia内部用于开发电信交换软件的私有语言,是在SDL语言的基础上加以修改而成,TNSDL需翻译成C语言得以编译执行,TNSDL语言中实现了异步并行的特点,当然要完整实现异步并行还需要运行时动态库的支持,异步并行类似于Erlang的process(轻量级进程),TNSDL中则称之为hand,Erlang是基于vm(beam)开发,
- 非常希望有一个预防疲劳的java软件, 预防过劳死和眼睛疲劳,大家一起努力搞一个
ljy325
企业应用
非常希望有一个预防疲劳的java软件,我看新闻和网站,国防科技大学的科学家累死了,太疲劳,老是加班,不休息,经常吃药,吃药根本就没用,根本原因是疲劳过度。我以前做java,那会公司垃圾,老想赶快学习到东西跳槽离开,搞得超负荷,不明理。深圳做软件开发经常累死人,总有不明理的人,有个软件提醒限制很好,可以挽救很多人的生命。
相关新闻:
(1)IT行业成五大疾病重灾区:过劳死平均37.9岁
- 读《研磨设计模式》-代码笔记-原型模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/**
* Effective Java 建议使用copy constructor or copy factory来代替clone()方法:
* 1.public Product copy(Product p){}
* 2.publi
- 配置管理---svn工具之权限配置
chenyu19891124
SVN
今天花了大半天的功夫,终于弄懂svn权限配置。下面是今天收获的战绩。
安装完svn后就是在svn中建立版本库,比如我本地的是版本库路径是C:\Repositories\pepos。pepos是我的版本库。在pepos的目录结构
pepos
component
webapps
在conf里面的auth里赋予的权限配置为
[groups]
- 浅谈程序员的数学修养
comsci
设计模式编程算法面试招聘
浅谈程序员的数学修养
- 批量执行 bulk collect与forall用法
daizj
oraclesqlbulk collectforall
BULK COLLECT 子句会批量检索结果,即一次性将结果集绑定到一个集合变量中,并从SQL引擎发送到PL/SQL引擎。通常可以在SELECT INTO、
FETCH INTO以及RETURNING INTO子句中使用BULK COLLECT。本文将逐一描述BULK COLLECT在这几种情形下的用法。
有关FORALL语句的用法请参考:批量SQL之 F
- Linux下使用rsync最快速删除海量文件的方法
dongwei_6688
OS
1、先安装rsync:yum install rsync
2、建立一个空的文件夹:mkdir /tmp/test
3、用rsync删除目标目录:rsync --delete-before -a -H -v --progress --stats /tmp/test/ log/这样我们要删除的log目录就会被清空了,删除的速度会非常快。rsync实际上用的是替换原理,处理数十万个文件也是秒删。
- Yii CModel中rules验证规格
dcj3sjt126com
rulesyiivalidate
Yii cValidator主要用法分析:
yii验证rulesit 分类: Yii yii的rules验证 cValidator主要属性 attributes ,builtInValidators,enableClientValidation,message,on,safe,skipOnError
 
- 基于vagrant的redis主从实验
dcj3sjt126com
vagrant
平台: Mac
工具: Vagrant
系统: Centos6.5
实验目的: Redis主从
实现思路
制作一个基于sentos6.5, 已经安装好reids的box, 添加一个脚本配置从机, 然后作为后面主机从机的基础box
制作sentos6.5+redis的box
mkdir vagrant_redis
cd vagrant_
- Memcached(二)、Centos安装Memcached服务器
frank1234
centosmemcached
一、安装gcc
rpm和yum安装memcached服务器连接没有找到,所以我使用的是make的方式安装,由于make依赖于gcc,所以要先安装gcc
开始安装,命令如下,[color=red][b]顺序一定不能出错[/b][/color]:
建议可以先切换到root用户,不然可能会遇到权限问题:su root 输入密码......
rpm -ivh kernel-head
- Remove Duplicates from Sorted List
hcx2013
remove
Given a sorted linked list, delete all duplicates such that each element appear only once.
For example,Given 1->1->2, return 1->2.Given 1->1->2->3->3, return&
- Spring4新特性——JSR310日期时间API的支持
jinnianshilongnian
spring4
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- 浅谈enum与单例设计模式
247687009
java单例
在JDK1.5之前的单例实现方式有两种(懒汉式和饿汉式并无设计上的区别故看做一种),两者同是私有构
造器,导出静态成员变量,以便调用者访问。
第一种
package singleton;
public class Singleton {
//导出全局成员
public final static Singleton INSTANCE = new S
- 使用switch条件语句需要注意的几点
openwrt
cbreakswitch
1. 当满足条件的case中没有break,程序将依次执行其后的每种条件(包括default)直到遇到break跳出
int main()
{
int n = 1;
switch(n) {
case 1:
printf("--1--\n");
default:
printf("defa
- 配置Spring Mybatis JUnit测试环境的应用上下文
schnell18
springmybatisJUnit
Spring-test模块中的应用上下文和web及spring boot的有很大差异。主要试下来差异有:
单元测试的app context不支持从外部properties文件注入属性
@Value注解不能解析带通配符的路径字符串
解决第一个问题可以配置一个PropertyPlaceholderConfigurer的bean。
第二个问题的具体实例是:
 
- Java 定时任务总结一
tuoni
javaspringtimerquartztimertask
Java定时任务总结 一.从技术上分类大概分为以下三种方式: 1.Java自带的java.util.Timer类,这个类允许你调度一个java.util.TimerTask任务; 说明: java.util.Timer定时器,实际上是个线程,定时执行TimerTask类 &
- 一种防止用户生成内容站点出现商业广告以及非法有害等垃圾信息的方法
yangshangchuan
rank相似度计算文本相似度词袋模型余弦相似度
本文描述了一种在ITEYE博客频道上面出现的新型的商业广告形式及其应对方法,对于其他的用户生成内容站点类型也具有同样的适用性。
最近在ITEYE博客频道上面出现了一种新型的商业广告形式,方法如下:
1、注册多个账号(一般10个以上)。
2、从多个账号中选择一个账号,发表1-2篇博文