- 朴素贝叶斯模型在文本分类中的应用
Ash Butterfield
nlp分类数据挖掘人工智能
朴素贝叶斯(NaiveBayes)是一种基于贝叶斯定理的概率分类算法,广泛应用于文本分类任务中。它的核心思想是根据训练数据中不同类别的条件概率,预测新文本属于哪个类别。尽管其假设条件较为简单(假设特征之间相互独立),但朴素贝叶斯在许多实际应用中仍表现出色,特别是在处理文本分类任务时。本文将介绍朴素贝叶斯模型的基本原理、在文本分类中的应用以及其优缺点,并通过示例说明其具体实现。1.朴素贝叶斯模型的基
- CAP与BASE:分布式系统设计的灵魂与妥协
后端java分布式
CAP理论CAP理论起源于2000年,由加州大学伯克利分校的EricBrewer教授在分布式计算原理研讨会(PODC)上提出,因此CAP定理又被称作布鲁尔定理(Brewer’stheorem)2年后,麻省理工学院的SethGilbert和NancyLynch发表了布鲁尔猜想的证明,CAP理论正式成为分布式领域的定理。简介CAP也就是Consistency(一致性)、Availability(可用性
- C# 使用余弦定理寻找三角形第三边的程序(Program to find third side of triangle using law of cosines)
csdn_aspnet
C#c#开发语言
给定两条边A、B和角C。利用余弦定理求出三角形的第三边。示例:输入:a=5,b=8,c=49输出:6.04339具体来说,当你知道三角形两条边的长度和中间的角度时,余弦定理可以用来求出三角形第三边的长度。参见此处了解如何求余弦值。假设a、b、c是三角形的边,其中c是角C对面的边。然后,c^2=a^2+b^2-2*a*b*cos(c)或c=sqrt(a^2+b^2-2*a*b*cos(c))示例代码
- 【论文解读】神经网络就像“数学乐高积木”:多层前馈网络如何用简单函数拼接复杂世界
神经美学茂森
无痛入门神经网络神经网络网络人工智能
K.Hornik,M.Stinchcombe,andH.White.Multilayerfeed-forwardnetworksareuniversalapproximators.NeuralNet-works,2(5):359-366,1989论文解读神经网络就像“数学乐高积木”:多层前馈网络如何用简单函数拼接复杂世界第一节:通俗解释——万能近似定理的核心思想万能近似定理(UniversalAp
- 【数论】—— 素数
Tom_wsc
数论算法
素数定义因数只有111和这个数本身的数被称作素数。注意:111既不是素数也不是合数,222是最小的素数。两个关于素数的定理唯一分解定理对于任意大于111的整数xxx,都可以分解成若干个素数的乘积:x=p1a1×p2a2×p3a3×⋯×pnan(ai∈Z+)x=p_1^{a_1}\timesp_2^{a_2}\timesp_3^{a_3}\times\cdots\timesp_n^{a_n}(a_i
- AI学习专题(一)LLM技术路线
王钧石的技术博客
大模型人工智能学习ai
阶段1:AI及大模型基础(1-2个月)数学基础线性代数(矩阵、特征值分解、SVD)概率论与统计(贝叶斯定理、极大似然估计)最优化方法(梯度下降、拉格朗日乘子法)编程&框架Python(NumPy、Pandas、Matplotlib)PyTorch&TensorFlow基础HuggingFaceTransformers入门深度学习基础机器学习基础(监督/无监督学习、正则化、过拟合)反向传播、优化器(
- 解析数论基础:第三十三章 零点分布(二)
AI天才研究院
计算AI大模型企业级应用开发实战DeepSeekR1&大数据AI人工智能大模型计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
解析数论基础:第三十三章零点分布(二)作者:禅与计算机程序设计艺术/ZenandtheArtofComputerProgramming关键词:解析数论、黎曼ζ函数、零点分布、素数定理、蒙哥马利猜想、配对相关函数、随机矩阵理论1.背景介绍1.1问题的由来解析数论是现代数学的重要分支,它利用复变函数论等分析学的方法研究数论问题。其中一个核心课题就是研究黎曼ζ函数的性质,特别是它的零点分布。这个问题不仅
- 机器学习算法 —— 朴素贝叶斯
ZShiJ
机器学习算法机器学习算法分类贝叶斯
欢迎来到我的博客——探索技术的无限可能!博客的简介(文章目录)目录朴素贝叶斯朴素贝叶斯的介绍朴素贝叶斯的优点朴素贝叶斯的缺点朴素贝叶斯的应用实战(贝叶斯分类)莺尾花数据库函数导入数据导入和分析模型训练模型预测原理简析模拟离散数据集朴素贝叶斯朴素贝叶斯的介绍朴素贝叶斯法=贝叶斯定理+特征条件独立。朴素贝叶斯(NaiveBayes)是基于贝叶斯定理的概率分类算法。该算法假设特征之间相互独立,即某个特征
- 可逆矩阵的概念、定理、判断条件和性质(线性代数基础)
盼达思文体科创
考研数二复习线性代数矩阵机器学习考研学习人工智能
可逆矩阵的概念、定理、判断条件和性质可逆矩阵的概念定义:设AAA为nnn阶矩阵,如果存在nnn阶矩阵BBB使得下式成立:AB=BA=E(E是单位矩阵)AB=BA=E(E是单位矩阵)AB=BA=E(E是单位矩阵)则称AAA是可逆矩阵或者非奇异矩阵,其中BBB是AAA的逆矩阵,记做A−1=BA^{-1}=BA−1=B个人理解:事实上,该公式和数学中倒数的概念很像。对于一个非零实数aaa,它的倒数定义为
- 深度探索:机器学习中的粒子群优化算法(PBMT)原理及应用
生瓜蛋子
机器学习机器学习算法人工智能
目录一、引言与背景二、定理三、算法原理四、算法实现五、优缺点分析优点:缺点:六、案例应用七、对比与其他算法八、结论与展望一、引言与背景随着机器学习技术的迅速发展,优化算法在模型训练、特征选择、参数调优等多个环节扮演着至关重要的角色。粒子群优化(ParticleSwarmOptimization,PBMT)作为一类灵感源自鸟群觅食行为的群体智能优化算法,自1995年提出以来,因其简单、高效的特点,在
- 二项分布:成功与失败概率的交织呈现
进一步有进一步的欢喜
二项分布几何分布伯努利分布概率论深度学习
引言在概率论与数理统计的庞大体系中,二项分布占据着举足轻重的地位。它作为一种离散型概率分布,广泛应用于众多领域,从自然科学到社会科学,从工业生产到日常生活,都能看到它的身影。深入探究二项分布,不仅有助于我们理解随机现象背后的数学原理,还能为解决实际问题提供强大的工具。而回顾其发展历程,能让我们更全面地把握这一概念的来龙去脉。同时,了解二项分布与其他相关概念,如几何分布、二项式定理的联系,将进一步加
- 算法:蓝桥杯——四平方和(C语言)
_DonQuijote
C语言算法c语言算法
目录问题说明设计思路程序代码运行结果反思什么是二分法?什么是打表法?数组排序函数qsort()问题说明四平方和定理,又称为拉格朗日定理:每个正整数都可以表示为至多4个正整数的平方和,如果把0包括进去,就正好可以表示为4个数的平方和。比如:5=0^2+0^2+1^2+2^27=1^2+1^2+1^2+2^2(^符号表示乘方的意思)对于一个给定的正整数,可能存在多种平方和的表示法。要求你对4个数排序:
- 基于模糊RBF神经网络轨迹跟踪研究(Matlab代码实现)
@橘柑橙柠桔柚
神经网络matlabmvc
个人主页欢迎来到本博客❤️❤️博主优势:博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。⛳️座右铭:行百里者,半于九十。本文目录如下:目录1概述2运行结果3参考文献4Matlab代码实现1概述模糊控制(FuzzyControl)是1965年,由美国的Zadeh率先创立了模糊集合论,后来又提出了模糊逻辑控制器的概念和有关定理。于1974年第一次组成了模糊逻辑控制器,并使用于锅炉和汽轮机的控制系统
- 图论复习第二章
sinat_40210730
期末复习图论
最短路径问题针对最短路网络(带权有向无环图)存在性:如果s到v的途径上包含负费用有向圈,则不存在最短s-v途径,否则存在最短s-v简单路最优性原理(最优子结构特征):若图G不存在非负有向圈,则任意最短子路也是相应点对之间的最短路三角不等式定理:d(v,w)指v到w的最短路径长度,则d(v,w)<=d(v,x)+d(x,w)最短路径算法函数方程(使用最优性原理所给出的关于最优解目标值之间的递归关系)
- 物理测试暴击AI圈,DeepSeek R1稳超o1、Claude,我们已进入RL黄金时代
AI生成曾小健
LLM大语言模型人工智能
物理测试暴击AI圈,DeepSeekR1稳超o1、Claude,我们已进入RL黄金时代原创关注大模型的机器之心2025年01月25日12:06北京机器之心报道我们都没预料到,AI领域的2025年是这样开始的。DeepSeekR1真是太厉害了!最近,「神秘的东方力量」DeepSeek正在「硬控」硅谷。我让R1详细解释勾股定理。这一切都是AI在不到30秒时间里一次性完成的,没出任何错。简单来说,its
- 【2024蓝桥杯/C++/B组/小球反弹】
Kent_J_Truman
蓝桥杯蓝桥杯c++
题目分析Sx=2*k1*x;Sy=2*k2*y;(其中k1,k2为整数)Vx*t=Sx;Vy*t=Sy;k1/k2=(15*y)/(17*x);目标1:根据k1与k2的关系,找出一组最小整数组(k1,k2)(为什么最小?因为题目求第一次返回!这实际上是一个循环过程!)目标2:求出Sx,Sy,再根据勾股定理求S代码#include//引入所有的标准库头文件usingnamespacestd;//使用
- 点、线、圆、矩形、抛物线的类定义_德语词汇-数学类
weixin_39818662
点线圆矩形抛物线的类定义
德语词汇-数学类定理derTheorem公理dasAxiom定义dieDefinition法则dasGesetz定律dieRegel公式dieformel原理dasPrinzip性质dieBeschaffenheit加plus减minus乘mal除durch和dieSumme差derRest积dasProdukt商derQuotient比例dasVerhaeltnis符号dasZeichen整数d
- 微服务02:如何解决或者说降低架构复杂度?
爆炸糖_Alex
微服务架构微服务云原生
1.什么是CAPCAP定理,也被称为Brewer定理,是分布式计算中的一个重要概念。它由计算机科学家EricBrewer于2000年提出,并由SethGilbert和NancyLynch于2002年正式证明。CAP定理强调了分布式系统中三个关键属性之间的固有权衡,这三个属性分别是:一致性(Consistency)可用性(Availability)分区容忍性(PartitionTolerance)以
- 积分中值定理 柯西积分中值定理及其证明
大嘤三喵军团
数学积分中值定理
积分中值定理是微积分中的一个重要定理,它将函数在某个区间上的积分与函数在该区间内的某个点的函数值联系起来。积分中值定理有助于理解函数的平均行为,并且在计算和估计积分时非常有用。1.积分中值定理的陈述设函数f(x)f(x)f(x)在闭区间[a,b][a,b][a,b]上连续,则存在一个点c∈[a,b]c\in[a,b]c∈[a,b],使得:∫abf(x) dx=f(c)⋅(b−a)。\int_{a}
- 柯西辐角定理(Cauchy Argument Principle)及其可视化
爱代码的小黄人
MATLAB算法复变函数Nyquist柯西辐角定理matlab
CauchyArgumentPrinciple(柯西辐角定理)定义CauchyArgumentPrinciple是复分析中的一个重要原理,它描述了一个全纯函数(meromorphicfunction)在一个闭合路径内的零点与极点的关系。具体来说,对于一个有理函数f(z)f(z)f(z),如果f(z)f(z)f(z)在一个简单闭合路径Γ\GammaΓ内外全纯(除了一些孤立奇点),则有以下关系:12π
- 题目 1127: C语言训练-尼科彻斯定理
星海燚燚
C语言刷题c语言
验证尼科彻斯定理,即:任何一个整数m的立方都可以写成m个连续奇数之和。输出典例:131313=2197=157+159+161+163+165+167+169+171+173+175+177+179+181#includeintmain(){intn,st;scanf("%d",&n);st=n*n-n+1;printf("%d*%d*%d=%d=%d",n,n,n,n*n*n,st);for(i
- 尼科彻斯定理c语言,尼科彻斯定理!
销号le
尼科彻斯定理c语言
该楼层疑似违规已被系统折叠隐藏此楼查看此楼#include"stdio.h"voidmain(){inti,j,k=0,l,n,m,sum,flag=1;printf("输入一个数:");scanf("%d",&n);m=n*n*n;i=m/2;if(i%2==0){i=i+1;}while(flag==l&&i>=1){sum=0;k=0;while(l){sum+=(i-2*k);k++;if
- 【华为机试真题JavaScript】尼科彻斯定理
forest_long
华为机试真题-JS动态规划javascriptpythonjava华为
目录题目描述输入描述输出描述参考示例参考代码机试介绍写在最后题目描述验证尼科彻斯定理,即:任何一个整数m的立方都可以写成m个连续奇数之和。例如:1^3=12^3=3+53^3=7+9+114^3=13+15+17+19输入一个正整数m(m≤100),将m的立方写成m个连续奇数之和的形式输出。数据范围:1≤m≤100进阶:时间复杂度:O(m),空间复杂度:O(1)输入描述输入一个int整数输出描述输
- c语言网 1127 尼科彻斯定理
Xzh0423
算法c++数据结构
原题题目描述验证尼科彻斯定理,即:任何一个整数m的立方都可以写成m个连续奇数之和。输入格式任一正整数输出格式该数的立方分解为一串连续奇数的和样例输入13样例输出13*13*13=2197=157+159+161+163+165+167+169+171+173+175+177+179+181#includeusingnamespacestd;intmain(){intm;cin>>m;intm_c
- java cap理论_架构设计之「 CAP 定理 」
Can Li
javacap理论
点击上方“Java知音”,选择“置顶公众号”技术文章第一时间送达!作者:奎哥来源:不止思考在计算机领域,如果是初入行就算了,如果是多年的老码农还不懂CAP定理,那就真的说不过去了。CAP可是每一名技术架构师都必须掌握的基础原则啊。现在只要是稍微大一点的互联网项目都是采用分布式结构了,一个系统可能有多个节点组成,每个节点都可能需要维护一份数据。那么如何维护各个节点之间的状态,如何保障各个节点之间数据
- 【架构设计】CAP定理、BASE理论
Bolon0708
Java分布式架构
目录一、CAP定理什么是CAP?Consisteny(一致性)Availability(可用性)Partitiontolerance(分区容错性)CAP怎么应用?CP架构AP架构CAP注意事项?二、BASE理论基本可用软状态最终一致性小结在计算机领域,如果是初入行就算了,如果是多年的老码农还不懂CAP定理,那就真的说不过去了。CAP可是每一名技术架构师都必须掌握的基础原则啊。现在只要是稍微大一点的
- 【算法】经典博弈论问题——斐波那契博弈 + Zeckendorf 定理 python
查理零世
算法python数据结构
目录斐波那契博弈(FibonacciNim)齐肯多夫(Zeckendorf)定理示例分析实战演练斐波那契博弈(FibonacciNim)先说结论:当初始石子数目n是斐波那契数时,先手必败;否则,先手有策略获胜。证明概要:当n=2时,先手只能取1颗石子,后手直接取剩下的1颗石子获胜,因此先手必败。假设对于所有小于等于某个斐波那契数f[k]的情况,结论都成立。归纳:对于f[k+1]=f[k]+f[k-
- 分布式组件底层逻辑是什么?
Jtti
分布式
分布式组件的底层逻辑围绕如何在多节点系统中实现协调、通信和可靠性展开,其核心目标是通过协作提供高可用、高性能和容错能力的服务。以下是分布式组件的核心底层逻辑:1.核心概念与原理1.1数据一致性分布式系统中,多个节点可能会同时处理数据,如何保持一致性是核心问题。CAP定理:C(Consistency):所有节点对同一数据的视图一致。A(Availability):每个请求都能得到响应(不保证最新数据
- DP优化专题
pytKonnyaku
算法动态规划
文章目录倍增优化DP[NOIP2012提高组]开车旅行题目描述输入格式输出格式数据结构优化DP清理班次2赤壁之战估算单调队列优化DP[SCOI2010]股票交易题目描述裁剪序列单调队列优化多重背包斜率优化DPⅠ状态转移方程Ⅱ决策点关系Ⅲ凸壳Ⅳ维护答案Ⅴ特殊性Ⅵ模板CodeⅦ注意事项K匿名序列四边形不等式优化DP定义:定理:一维线性DP的四边形不等式优化决策单调性定理二维四边形不等式优化DP决策单调
- 嵌入式工程师必学(99):直流电路定理
芯片-嵌入式
嵌入式硬件
线性度属性LinearityProperty线性是描述因果之间线性关系的元素的属性。它是均匀性和可加性特性的组合。齐次性属性要求,如果输入(激励)乘以一个常数,则输出(响应)乘以相同的常数。例如,对于电阻,欧姆定律将输入i与输出v相关联:v=iR。如果i增加一个常数k,则v相应地增加k;那是可加性属性要求对输入之和的响应是对单独应用的每个输入的响应之和。因此,对于电阻,如果V1=i1R
- 算法 单链的创建与删除
换个号韩国红果果
c算法
先创建结构体
struct student {
int data;
//int tag;//标记这是第几个
struct student *next;
};
// addone 用于将一个数插入已从小到大排好序的链中
struct student *addone(struct student *h,int x){
if(h==NULL) //??????
- 《大型网站系统与Java中间件实践》第2章读后感
白糖_
java中间件
断断续续花了两天时间试读了《大型网站系统与Java中间件实践》的第2章,这章总述了从一个小型单机构建的网站发展到大型网站的演化过程---整个过程会遇到很多困难,但每一个屏障都会有解决方案,最终就是依靠这些个解决方案汇聚到一起组成了一个健壮稳定高效的大型系统。
看完整章内容,
- zeus持久层spring事务单元测试
deng520159
javaDAOspringjdbc
今天把zeus事务单元测试放出来,让大家指出他的毛病,
1.ZeusTransactionTest.java 单元测试
package com.dengliang.zeus.webdemo.test;
import java.util.ArrayList;
import java.util.List;
import org.junit.Test;
import
- Rss 订阅 开发
周凡杨
htmlxml订阅rss规范
RSS是 Really Simple Syndication的缩写(对rss2.0而言,是这三个词的缩写,对rss1.0而言则是RDF Site Summary的缩写,1.0与2.0走的是两个体系)。
RSS
- 分页查询实现
g21121
分页查询
在查询列表时我们常常会用到分页,分页的好处就是减少数据交换,每次查询一定数量减少数据库压力等等。
按实现形式分前台分页和服务器分页:
前台分页就是一次查询出所有记录,在页面中用js进行虚拟分页,这种形式在数据量较小时优势比较明显,一次加载就不必再访问服务器了,但当数据量较大时会对页面造成压力,传输速度也会大幅下降。
服务器分页就是每次请求相同数量记录,按一定规则排序,每次取一定序号直接的数据
- spring jms异步消息处理
510888780
jms
spring JMS对于异步消息处理基本上只需配置下就能进行高效的处理。其核心就是消息侦听器容器,常用的类就是DefaultMessageListenerContainer。该容器可配置侦听器的并发数量,以及配合MessageListenerAdapter使用消息驱动POJO进行消息处理。且消息驱动POJO是放入TaskExecutor中进行处理,进一步提高性能,减少侦听器的阻塞。具体配置如下:
- highCharts柱状图
布衣凌宇
hightCharts柱图
第一步:导入 exporting.js,grid.js,highcharts.js;第二步:写controller
@Controller@RequestMapping(value="${adminPath}/statistick")public class StatistickController { private UserServi
- 我的spring学习笔记2-IoC(反向控制 依赖注入)
aijuans
springmvcSpring 教程spring3 教程Spring 入门
IoC(反向控制 依赖注入)这是Spring提出来了,这也是Spring一大特色。这里我不用多说,我们看Spring教程就可以了解。当然我们不用Spring也可以用IoC,下面我将介绍不用Spring的IoC。
IoC不是框架,她是java的技术,如今大多数轻量级的容器都会用到IoC技术。这里我就用一个例子来说明:
如:程序中有 Mysql.calss 、Oracle.class 、SqlSe
- TLS java简单实现
antlove
javasslkeystoretlssecure
1. SSLServer.java
package ssl;
import java.io.FileInputStream;
import java.io.InputStream;
import java.net.ServerSocket;
import java.net.Socket;
import java.security.KeyStore;
import
- Zip解压压缩文件
百合不是茶
Zip格式解压Zip流的使用文件解压
ZIP文件的解压缩实质上就是从输入流中读取数据。Java.util.zip包提供了类ZipInputStream来读取ZIP文件,下面的代码段创建了一个输入流来读取ZIP格式的文件;
ZipInputStream in = new ZipInputStream(new FileInputStream(zipFileName));
&n
- underscore.js 学习(一)
bijian1013
JavaScriptunderscore
工作中需要用到underscore.js,发现这是一个包括了很多基本功能函数的js库,里面有很多实用的函数。而且它没有扩展 javascript的原生对象。主要涉及对Collection、Object、Array、Function的操作。 学
- java jvm常用命令工具——jstatd命令(Java Statistics Monitoring Daemon)
bijian1013
javajvmjstatd
1.介绍
jstatd是一个基于RMI(Remove Method Invocation)的服务程序,它用于监控基于HotSpot的JVM中资源的创建及销毁,并且提供了一个远程接口允许远程的监控工具连接到本地的JVM执行命令。
jstatd是基于RMI的,所以在运行jstatd的服务
- 【Spring框架三】Spring常用注解之Transactional
bit1129
transactional
Spring可以通过注解@Transactional来为业务逻辑层的方法(调用DAO完成持久化动作)添加事务能力,如下是@Transactional注解的定义:
/*
* Copyright 2002-2010 the original author or authors.
*
* Licensed under the Apache License, Version
- 我(程序员)的前进方向
bitray
程序员
作为一个普通的程序员,我一直游走在java语言中,java也确实让我有了很多的体会.不过随着学习的深入,java语言的新技术产生的越来越多,从最初期的javase,我逐渐开始转变到ssh,ssi,这种主流的码农,.过了几天为了解决新问题,webservice的大旗也被我祭出来了,又过了些日子jms架构的activemq也开始必须学习了.再后来开始了一系列技术学习,osgi,restful.....
- nginx lua开发经验总结
ronin47
使用nginx lua已经两三个月了,项目接开发完毕了,这几天准备上线并且跟高德地图对接。回顾下来lua在项目中占得必中还是比较大的,跟PHP的占比差不多持平了,因此在开发中遇到一些问题备忘一下 1:content_by_lua中代码容量有限制,一般不要写太多代码,正常编写代码一般在100行左右(具体容量没有细心测哈哈,在4kb左右),如果超出了则重启nginx的时候会报 too long pa
- java-66-用递归颠倒一个栈。例如输入栈{1,2,3,4,5},1在栈顶。颠倒之后的栈为{5,4,3,2,1},5处在栈顶
bylijinnan
java
import java.util.Stack;
public class ReverseStackRecursive {
/**
* Q 66.颠倒栈。
* 题目:用递归颠倒一个栈。例如输入栈{1,2,3,4,5},1在栈顶。
* 颠倒之后的栈为{5,4,3,2,1},5处在栈顶。
*1. Pop the top element
*2. Revers
- 正确理解Linux内存占用过高的问题
cfyme
linux
Linux开机后,使用top命令查看,4G物理内存发现已使用的多大3.2G,占用率高达80%以上:
Mem: 3889836k total, 3341868k used, 547968k free, 286044k buffers
Swap: 6127608k total,&nb
- [JWFD开源工作流]当前流程引擎设计的一个急需解决的问题
comsci
工作流
当我们的流程引擎进入IRC阶段的时候,当循环反馈模型出现之后,每次循环都会导致一大堆节点内存数据残留在系统内存中,循环的次数越多,这些残留数据将导致系统内存溢出,并使得引擎崩溃。。。。。。
而解决办法就是利用汇编语言或者其它系统编程语言,在引擎运行时,把这些残留数据清除掉。
- 自定义类的equals函数
dai_lm
equals
仅作笔记使用
public class VectorQueue {
private final Vector<VectorItem> queue;
private class VectorItem {
private final Object item;
private final int quantity;
public VectorI
- Linux下安装R语言
datageek
R语言 linux
命令如下:sudo gedit /etc/apt/sources.list1、deb http://mirrors.ustc.edu.cn/CRAN/bin/linux/ubuntu/ precise/ 2、deb http://dk.archive.ubuntu.com/ubuntu hardy universesudo apt-key adv --keyserver ke
- 如何修改mysql 并发数(连接数)最大值
dcj3sjt126com
mysql
MySQL的连接数最大值跟MySQL没关系,主要看系统和业务逻辑了
方法一:进入MYSQL安装目录 打开MYSQL配置文件 my.ini 或 my.cnf查找 max_connections=100 修改为 max_connections=1000 服务里重起MYSQL即可
方法二:MySQL的最大连接数默认是100客户端登录:mysql -uusername -ppass
- 单一功能原则
dcj3sjt126com
面向对象的程序设计软件设计编程原则
单一功能原则[
编辑]
SOLID 原则
单一功能原则
开闭原则
Liskov代换原则
接口隔离原则
依赖反转原则
查
论
编
在面向对象编程领域中,单一功能原则(Single responsibility principle)规定每个类都应该有
- POJO、VO和JavaBean区别和联系
fanmingxing
VOPOJOjavabean
POJO和JavaBean是我们常见的两个关键字,一般容易混淆,POJO全称是Plain Ordinary Java Object / Plain Old Java Object,中文可以翻译成:普通Java类,具有一部分getter/setter方法的那种类就可以称作POJO,但是JavaBean则比POJO复杂很多,JavaBean是一种组件技术,就好像你做了一个扳子,而这个扳子会在很多地方被
- SpringSecurity3.X--LDAP:AD配置
hanqunfeng
SpringSecurity
前面介绍过基于本地数据库验证的方式,参考http://hanqunfeng.iteye.com/blog/1155226,这里说一下如何修改为使用AD进行身份验证【只对用户名和密码进行验证,权限依旧存储在本地数据库中】。
将配置文件中的如下部分删除:
<!-- 认证管理器,使用自定义的UserDetailsService,并对密码采用md5加密-->
- mac mysql 修改密码
IXHONG
mysql
$ sudo /usr/local/mysql/bin/mysqld_safe –user=root & //启动MySQL(也可以通过偏好设置面板来启动)$ sudo /usr/local/mysql/bin/mysqladmin -uroot password yourpassword //设置MySQL密码(注意,这是第一次MySQL密码为空的时候的设置命令,如果是修改密码,还需在-
- 设计模式--抽象工厂模式
kerryg
设计模式
抽象工厂模式:
工厂模式有一个问题就是,类的创建依赖于工厂类,也就是说,如果想要拓展程序,必须对工厂类进行修改,这违背了闭包原则。我们采用抽象工厂模式,创建多个工厂类,这样一旦需要增加新的功能,直接增加新的工厂类就可以了,不需要修改之前的代码。
总结:这个模式的好处就是,如果想增加一个功能,就需要做一个实现类,
- 评"高中女生军训期跳楼”
nannan408
首先,先抛出我的观点,各位看官少点砖头。那就是,中国的差异化教育必须做起来。
孔圣人有云:有教无类。不同类型的人,都应该有对应的教育方法。目前中国的一体化教育,不知道已经扼杀了多少创造性人才。我们出不了爱迪生,出不了爱因斯坦,很大原因,是我们的培养思路错了,我们是第一要“顺从”。如果不顺从,我们的学校,就会用各种方法,罚站,罚写作业,各种罚。军
- scala如何读取和写入文件内容?
qindongliang1922
javajvmscala
直接看如下代码:
package file
import java.io.RandomAccessFile
import java.nio.charset.Charset
import scala.io.Source
import scala.reflect.io.{File, Path}
/**
* Created by qindongliang on 2015/
- C语言算法之百元买百鸡
qiufeihu
c算法
中国古代数学家张丘建在他的《算经》中提出了一个著名的“百钱买百鸡问题”,鸡翁一,值钱五,鸡母一,值钱三,鸡雏三,值钱一,百钱买百鸡,问翁,母,雏各几何?
代码如下:
#include <stdio.h>
int main()
{
int cock,hen,chick; /*定义变量为基本整型*/
for(coc
- Hadoop集群安全性:Hadoop中Namenode单点故障的解决方案及详细介绍AvatarNode
wyz2009107220
NameNode
正如大家所知,NameNode在Hadoop系统中存在单点故障问题,这个对于标榜高可用性的Hadoop来说一直是个软肋。本文讨论一下为了解决这个问题而存在的几个solution。
1. Secondary NameNode
原理:Secondary NN会定期的从NN中读取editlog,与自己存储的Image进行合并形成新的metadata image
优点:Hadoop较早的版本都自带,