- Spring Boot 学习笔记
剑走偏锋o.O
springboot学习笔记
文章目录一、SpringBoot简介二、SpringBoot的优势三、SpringBoot的核心组件1.SpringBootStarter2.自动配置3.嵌入式容器4.Actuator四、SpringBoot的开发流程1.创建项目2.配置文件3.编写代码4.运行应用五、SpringBoot的常用注解1.`@SpringBootApplication`2.`@EnableAutoConfigurat
- Rust入门学习笔记
凌云行者
Rustrust入门笔记
Rust简介特点即安全又高效,并发是一种静态编译语言,要在写代码时声明数据类型擅长领域高性能WebServiceWebAssembly命令行工具网络编程嵌入式设备系统编程操作更新rust:rustupupdate卸载rust:rustupselfuninstall查看rust版本:rustc--version查看本地文档:rustupdoc用vscode打开某项目:进入项目目录后code.文件名后
- jQuery学习笔记:属性操作、内容文本值、元素操作、尺寸、位置操作、事件注册与处理、对象拷贝(浅拷贝与深拷贝)、多库共存问题
miraculous111
jquery学习笔记前端
文章目录jQuery属性操作设置或获取元素固有属性值prop()设置或者获取自定义属性值attr()数据缓存data()jQuery内容文本值普通元素内容html()(相当于原生innerHTML)普通元素文本内容text()(相当于原生innerText)表单的val()jQuery元素操作遍历元素语法一:语法二:创建元素添加元素内部添加外部添加删除元素jQuery尺寸、位置操作jQuery尺寸
- 基于K8S设计实现机器学习管理调度平台
richenlin
机器学习
设计和实现一套基于Kubernetes(K8s)的机器学习管理调度平台,目标是利用K8s的容器化和调度能力,提供高效的资源管理、任务调度、可扩展性及灵活性,适应机器学习(ML)训练、推理等不同场景的需求。以下是平台设计的主要模块和实施步骤:1.系统架构概述该平台需要一个多层架构,其中K8s作为底层容器调度和资源管理平台,机器学习任务管理与调度层作为平台的核心模块。平台应具备高可用、弹性伸缩、任务监
- 【python数据挖掘之numpy】-数组及对象属性和数据转换
sc.溯琛
python数据挖掘numpy
Numpy是一个Python库,用于处理多维数组和矩阵,以及针对这些数组执行数学运算的函数。它提供了高效的数组对象和相关的操作,可以用于快速处理大量数据。Numpy的主要功能包括:创建数组、数组运算、数组索引和切片、线性代数、随机数生成等。Numpy在科学计算、数据分析、机器学习等领域都广泛应用。tips:(本博文在jupyter中实训)目录一、创建数组对象1.array()函数来创建数组的对象2
- 低功耗设计的影响、概述、LPMM
TrustZone_
数字IC低功耗
文章目录0-低功率芯片技术或影响整个芯片设计流程设计挑战2-更高抽象层1.数字IC设计中的低功耗处理方式概述1.1系统层面低功耗1.2处理器层面低功耗1.3单元层面低功耗1.4寄存器层面低功耗1.5锁存器层面低功耗1.6SRAM层面低功耗1.7组合逻辑层面低功耗3-《LowPowerMethodologyManualForSystem-on-ChipDesign》读书笔记1引言1.1功耗带来的问题
- vue学习笔记 export ‘default‘ (imported as ‘Vue‘) was not found in ‘vue‘
xiaoweiwei99
前端htmlvue.js学习javascript
版本:vue3vue/cli5.0.0做写store时报错importVuefrom"vue";importVuexfrom"vuex";importgettersfrom"./getters";importuserfrom"./modules/user";Vue.use(Vuex);conststore=newVuex.Store({modules:{user,},getters,});expo
- 神经网络:人工智能的核心技术
m0_75126181
人工智能神经网络深度学习
神经网络简介神经网络是一种模仿生物神经系统的计算模型,由大量相互连接的神经元组成。它通过学习大量的数据来完成复杂的模式识别和决策任务,是当前人工智能和机器学习领域最重要的技术之一。神经网络的基本结构包括输入层、隐藏层和输出层。输入层接收外部数据,隐藏层对数据进行处理和特征提取,输出层产生最终结果。神经元之间通过带权重的连接相互作用,通过调整这些权重来实现学习过程。神经网络的工作原理神经网络的工作原
- 打造高清3D虚拟世界|零基础学习Unity HDRP高清渲染管线(第一天)
井队Tell
#HDRP3d学习unity
打造高清3D虚拟世界|零基础学习UnityHDRP高清渲染管线(第一天)前言最后前言说真的,用Unity工作这几年,经历的项目大大小小,对于场景的渲染算是有一定的经验,但涉及到HDRP高清渲染管线的了解,真是少之又少,一方面由于现有项目的要求不高,二是HDRP的学习存在一些门槛,所以下定决心,从零开始,每天记录一点点,打造一个属于自己的高清世界!我会从各种渠道,多方面记录,形成笔记,没有什么特殊的
- vue3(笔记)4.0 vueRouter.导航守卫.ElementPuls知识点
不断努力的根号七
vue3笔记前端javascript
---vueRouter创建路由:完整写法(懒加载):默认写法与vue2一致:导入然后写成component:LoginPageimport{createRouter,createWebHistory}from'vue-router'constrouter=createRouter({history:createWebHistory(import.meta.env.BASE_URL),routes
- 【HTML学习笔记基础篇】
努力的小好
html学习笔记
HTML学习笔记基础篇一、HTML概述1.1什么是HTML1.2HTML文档的基本结构二、HTML基础标签2.1标题标签2.2段落标签2.3换行标签2.4链接标签2.6列表标签2.7表格标签三、HTML进阶知识3.1行级元素与块级元素3.3语义化标签四、开发工具与技巧4.1开发工具4.2常用技巧五、总结六、示例一、HTML概述1.1什么是HTMLHTML,全称超文本标记语言(HyperTextMa
- Vue.js之MVVM设计模式
炑焽
前端web开发JavaScript核心技术vue.js前端vuejavascript
前言看到招聘信息网站上有对MVVM框架经验的需求,刚好曾有过这方面的笔记,在复习的同时总结核心知识点分析给大家。MVVM是可以实现View和Model的完全分离,通过ViewModel这个桥梁进行交互,然后ViewModel通过双向数据绑定把View层和Model层连接起来,而View层和Model层之间的通信则完全由ViewModel负责。一、MVC设计模式与MVVM设计模式,vue.js1、什
- 模板注入漏洞(SSTI)学习笔记
栀寒老醑
学习笔记网络安全安全web安全系统安全安全架构
模板注入漏洞(SSTI)学习笔记1.模板注入简介什么是模板引擎?模板引擎用于将动态数据渲染到静态页面(如HTML)。例如,Jinja2(Python)、Twig(PHP)等。示例:#Flask中使用Jinja2渲染模板fromflaskimportrender_template@app.route('/')defindex():user_input=request.args.get('name')
- 强化学习是否能够在完全不确定的环境中找到一个合理的策略,还是说它只能在已知规则下生效?
concisedistinct
人工智能人工智能强化学习
强化学习(ReinforcementLearning,RL)是机器学习的一个重要分支,广泛应用于机器人控制、自动驾驶、游戏策略和金融决策等领域。其核心理念是通过与环境的互动,不断学习如何选择最优行动以最大化累积奖励。尽管强化学习在许多已知和相对确定的环境中表现出色,但在面对完全不确定或动态变化的环境时,其表现和可靠性是否依然能保持一致是一个值得深入探讨的问题。我们生活的世界充满了不确定性,尤其是在
- 别只会用别人的模型了,自学Ai大模型,顺序千万不要搞反了!刚入门的小白必备!
ai大模型应用开发
人工智能pdf机器学习面试AI
在使用诸如DeepSeek、ChatGPT、豆包、文心一言等大模型之余,你是否知道这些大模型背后的技术原理是什么?假如让你从头开始学习大模型,你知道应该遵循什么样的路线嘛?今天给大家介绍一下Ai大模型的学习路线,顺序千万不要搞反了!,大家可以按照这个路线进行学习。一、前置阶段数学:线性代数、高等数学自然语言处理:Word2Vec、Seq2SeqPython:Pyotch、Tensorflow二、基
- (一)spark是什么?
一智哇
大数据框架学习sparkbigdata大数据
1.spark是什么?spark是一个用来实现快速,通用的集群计算平台spark适用于各种各样原先需要多种不同的分布式平台的场景,包括批处理,迭代算法,交互式查询,流处理。通过在一个统一的框架下支持这些不同的计算,spark使我们可以简单而低耗地把各种处理流程整合在一起。2.spark的用途(1):数据科学任务具备SQL、统计、预测建模(机器学习)等方面的经验,以及一定的python,matlab
- 推荐收藏!数据分析必会的 10 个 python 库!
Python数据挖掘
深度学习机器学习数据分析及可视化数据分析python数据挖掘算法
大家好,今天给大家分享除了基本的NumPy、Pandas和Matplotlib之外的10个流行的数据分析Python库。文末提供资料和技术交流Scikit-learnScikit-learn是一个功能强大的机器学习库,为监督和无监督学习、模型选择和预处理提供了广泛的算法。Scikit-learn简化了构建机器学习模型的过程,使其成为数据科学家和分析师的热门选择。可以通过pip命令来进行安装。pip
- 探秘Mixup:数据增强的新利器
荣正青
探秘Mixup:数据增强的新利器mixupImplementationofthemixuptrainingmethod项目地址:https://gitcode.com/gh_mirrors/mi/mixup项目简介是一个由HongyiZhang开发的Python库,它实现了机器学习中的数据增强策略——Mixup方法。这个项目的目标是通过混合不同样本的数据点生成新的训练样本,从而帮助模型更好地学习数
- AI创业机遇:垂直领域无限可能
AGI大模型与大数据研究院
DeepSeekR1&大数据AI人工智能javapythonjavascriptkotlingolang架构人工智能
AI创业垂直领域机器学习深度学习自然语言处理计算机视觉无人驾驶1.背景介绍人工智能(AI)正在各行各业掀起一场革命,为创业者带来了前所未有的机遇。垂直领域,即特定行业或细分市场,正在成为AI创业的热门选择。本文将深入探讨AI在垂直领域的应用,并提供实用的指南,帮助读者把握AI创业机遇。2.核心概念与联系2.1AI与垂直领域AI在垂直领域的应用,需要理解AI与垂直领域的关系。AI可以为垂直领域提供智
- 国内如何快速拿下微软AI-900!?
全球认证考试中心
microsoft人工智能ai
微软AI-900认证,全称AzureAIFundamentals是由微软官方最新研发的一项有关人工智能的认证证书。想要获得该证书,需通过AI-900测试或者AI-102。适用于全行业、全学龄人员,考试不设置专业和年龄限制,对人工智能感兴趣即可参加。获得证书能够证明证书持有者在机器学习(ML)、人工智能(AI)基础概念、云技术基础及MicrosoftAzure服务等多方面的掌握程度。此考试的考生应熟
- [自然语言处理基础]NumPy基本操作
Steve lu
自然语言处理NLP自然语言处理numpypythonconda人工智能机器学习深度学习
什么是NumPyNumPy是Python中科学计算的基本包。它是一个Python库,提供多维数组对象、各种派生对象(如掩码数组和矩阵)以及用于对数组进行快速操作的各种例程,包括数学、逻辑、形状操作、排序、选择、I/O、离散傅里叶变换、基本线性代数、基本统计运算、随机模拟等等。NumPy数组在创建时具有固定大小,这与Python列表(可以动态增长)不同。更改数组的大小ndarray将创建新数组并删除
- Java笔记第二章
荷包蛋大王iovo
笔记
第二章:变量、数据类型、运算符、表达式一、变量1.概念:计算机中的一块内存空间,存储数据的基本单元2.变量的组成部分:数据类型、变量名、数据3.语法:(1)先声明,再赋值:数据类型变量名;//声明变量名=值;//赋值(2)声明的同时并赋值:数据类型变量名=值;(3)同时定义多个相同类型的变量:数据类型变量名1,变量名2=值,变量3;二、java中的数据类型分类1.简单数据类型、基本数据类型(原始数
- 【论文笔记】3DGS压缩相关工作2篇
AndrewHZ
深度学习新浪潮论文阅读3DGS计算机图形学算法三维高斯飞溅压缩方法
1.背景介绍:NVS神经辐射场(NeRFs)引入了一种基于多层感知机(MLP)的新型隐式场景表示方法,它将体密度编码作为几何形状和方向辐射的代理量。渲染通过光线行进的方式来执行。这一解决方案为新视图合成(NVS)带来了前所未有的视觉质量,但代价是训练多层感知机的优化过程极为耗时,且渲染速度很慢。有几种方法加速了训练和渲染过程,通常是利用空间数据结构或者像哈希这样的编码方式,不过牺牲了视觉质量。近期
- Self-Attentive Sequential Recommendation论文阅读笔记
调包调参侠
推荐系统学习深度学习机器学习神经网络算法
SASRec论文阅读笔记论文标题:Self-AttentiveSequentialRecommendation发表于:2018ICDM作者:Wang-ChengKang,JulianMcAuley论文代码:https://github.com/pmixer/SASRec.pytorch论文地址:https://arxiv.org/pdf/1808.09781v1.pdf摘要顺序动态是许多现代推荐系
- AI大模型学习笔记-- 大模型应用技术架构
AI大模型-搬运工
人工智能学习笔记语言模型大模型AI大模型AI
AI大模型学习笔记--大模型应用技术架构大模型就像是大脑,就像孩子从小学习说话和认知世界一样,通过大量的数据学习,能够理解语言、识别图像、玩游戏、写作、作曲等。如果2023年是AI大模型爆发的一年,很多大厂投入到大模型的研发中,很多创业者通过AI大模型拿到了大笔融资,那对于2024年,将是AI大模型应用大爆发的一年,将有更多的普通人加入到这一浪潮中来。今天,请跟着我一起来揭开大模型应用的神秘面纱,
- 【量子退火(Quantum Annealing, QA)在Machine Learning Classification中的应用】
搞技术的妹子
机器学习量子计算人工智能
随着量子计算技术的发展,**量子退火(QuantumAnnealing,QA)成为了优化问题中一种潜力巨大的方法。它不仅可以用于求解传统优化问题,还被逐渐应用于机器学习领域,特别是机器学习分类(MachineLearningClassification)**任务中。在这篇博客中,我们将探讨量子退火在机器学习分类中的应用,并通过一个实际的案例来展示如何使用量子退火优化分类模型。什么是量子退火(Qua
- 二维随机变量
Shockang
机器学习数学通关指南机器学习人工智能数学概率论
前言本文隶属于专栏《机器学习数学通关指南》,该专栏为笔者原创,引用请注明来源,不足和错误之处请在评论区帮忙指出,谢谢!本专栏目录结构和参考文献请见《机器学习数学通关指南》正文1.二维随机变量基础1.1基本定义二维随机变量(X,Y)(X,Y)(X,Y)是由两个定义在同一概率空间上的随机变量XXX和YYY组成的向量样本空间:每个试验结果e∈Se\inSe∈S对应到平面上的一个点(X(e),Y(e))(
- 似然函数与极大似然估计
Shockang
机器学习数学通关指南机器学习人工智能数学概率论
前言本文隶属于专栏《机器学习数学通关指南》,该专栏为笔者原创,引用请注明来源,不足和错误之处请在评论区帮忙指出,谢谢!本专栏目录结构和参考文献请见《机器学习数学通关指南》正文1.似然函数:直观理解与数学定义核心概念似然函数是机器学习中参数估计的基石,它从数据与模型之间的关系出发,提供了一种优化参数的数学框架。直观理解:假设你正在调整相机参数以拍摄最清晰的照片。似然函数就像是一个"清晰度指标",告诉
- 正交投影与内积空间:机器学习的几何基础
Shockang
机器学习数学通关指南机器学习人工智能线性代数数学
前言本文隶属于专栏《机器学习数学通关指南》,该专栏为笔者原创,引用请注明来源,不足和错误之处请在评论区帮忙指出,谢谢!本专栏目录结构和参考文献请见《机器学习数学通关指南》正文1.内积空间的数学定义1.1代数定义✏️两个维度相同的向量a=[a1,…,an]\mathbf{a}=[a_1,\dots,a_n]a=[a1,…,an]和b=[b1,…,bn]\mathbf{b}=[b_1,\dots,b_
- 特征值与特征向量
Shockang
机器学习数学通关指南机器学习线性代数矩阵数学
前言本文隶属于专栏《机器学习数学通关指南》,该专栏为笔者原创,引用请注明来源,不足和错误之处请在评论区帮忙指出,谢谢!本专栏目录结构和参考文献请见《机器学习数学通关指南》正文一、定义与数学表达特征向量:对于方阵AAA,若存在非零向量v\mathbf{v}v满足Av=λvA\mathbf{v}=\lambda\mathbf{v}Av=λv,则v\mathbf{v}v称为AAA的特征向量。特征值:对应
- jvm调优总结(从基本概念 到 深度优化)
oloz
javajvmjdk虚拟机应用服务器
JVM参数详解:http://www.cnblogs.com/redcreen/archive/2011/05/04/2037057.html
Java虚拟机中,数据类型可以分为两类:基本类型和引用类型。基本类型的变量保存原始值,即:他代表的值就是数值本身;而引用类型的变量保存引用值。“引用值”代表了某个对象的引用,而不是对象本身,对象本身存放在这个引用值所表示的地址的位置。
- 【Scala十六】Scala核心十:柯里化函数
bit1129
scala
本篇文章重点说明什么是函数柯里化,这个语法现象的背后动机是什么,有什么样的应用场景,以及与部分应用函数(Partial Applied Function)之间的联系 1. 什么是柯里化函数
A way to write functions with multiple parameter lists. For instance
def f(x: Int)(y: Int) is a
- HashMap
dalan_123
java
HashMap在java中对很多人来说都是熟的;基于hash表的map接口的非同步实现。允许使用null和null键;同时不能保证元素的顺序;也就是从来都不保证其中的元素的顺序恒久不变。
1、数据结构
在java中,最基本的数据结构无外乎:数组 和 引用(指针),所有的数据结构都可以用这两个来构造,HashMap也不例外,归根到底HashMap就是一个链表散列的数据
- Java Swing如何实时刷新JTextArea,以显示刚才加append的内容
周凡杨
java更新swingJTextArea
在代码中执行完textArea.append("message")后,如果你想让这个更新立刻显示在界面上而不是等swing的主线程返回后刷新,我们一般会在该语句后调用textArea.invalidate()和textArea.repaint()。
问题是这个方法并不能有任何效果,textArea的内容没有任何变化,这或许是swing的一个bug,有一个笨拙的办法可以实现
- servlet或struts的Action处理ajax请求
g21121
servlet
其实处理ajax的请求非常简单,直接看代码就行了:
//如果用的是struts
//HttpServletResponse response = ServletActionContext.getResponse();
// 设置输出为文字流
response.setContentType("text/plain");
// 设置字符集
res
- FineReport的公式编辑框的语法简介
老A不折腾
finereport公式总结
FINEREPORT用到公式的地方非常多,单元格(以=开头的便被解析为公式),条件显示,数据字典,报表填报属性值定义,图表标题,轴定义,页眉页脚,甚至单元格的其他属性中的鼠标悬浮提示内容都可以写公式。
简单的说下自己感觉的公式要注意的几个地方:
1.if语句语法刚接触感觉比较奇怪,if(条件式子,值1,值2),if可以嵌套,if(条件式子1,值1,if(条件式子2,值2,值3)
- linux mysql 数据库乱码的解决办法
墙头上一根草
linuxmysql数据库乱码
linux 上mysql数据库区分大小写的配置
lower_case_table_names=1 1-不区分大小写 0-区分大小写
修改/etc/my.cnf 具体的修改内容如下:
[client]
default-character-set=utf8
[mysqld]
datadir=/var/lib/mysql
socket=/va
- 我的spring学习笔记6-ApplicationContext实例化的参数兼容思想
aijuans
Spring 3
ApplicationContext能读取多个Bean定义文件,方法是:
ApplicationContext appContext = new ClassPathXmlApplicationContext(
new String[]{“bean-config1.xml”,“bean-config2.xml”,“bean-config3.xml”,“bean-config4.xml
- mysql 基准测试之sysbench
annan211
基准测试mysql基准测试MySQL测试sysbench
1 执行如下命令,安装sysbench-0.5:
tar xzvf sysbench-0.5.tar.gz
cd sysbench-0.5
chmod +x autogen.sh
./autogen.sh
./configure --with-mysql --with-mysql-includes=/usr/local/mysql
- sql的复杂查询使用案列与技巧
百合不是茶
oraclesql函数数据分页合并查询
本片博客使用的数据库表是oracle中的scott用户表;
------------------- 自然连接查询
查询 smith 的上司(两种方法)
&
- 深入学习Thread类
bijian1013
javathread多线程java多线程
一. 线程的名字
下面来看一下Thread类的name属性,它的类型是String。它其实就是线程的名字。在Thread类中,有String getName()和void setName(String)两个方法用来设置和获取这个属性的值。
同时,Thr
- JSON串转换成Map以及如何转换到对应的数据类型
bijian1013
javafastjsonnet.sf.json
在实际开发中,难免会碰到JSON串转换成Map的情况,下面来看看这方面的实例。另外,由于fastjson只支持JDK1.5及以上版本,因此在JDK1.4的项目中可以采用net.sf.json来处理。
一.fastjson实例
JsonUtil.java
package com.study;
impor
- 【RPC框架HttpInvoker一】HttpInvoker:Spring自带RPC框架
bit1129
spring
HttpInvoker是Spring原生的RPC调用框架,HttpInvoker同Burlap和Hessian一样,提供了一致的服务Exporter以及客户端的服务代理工厂Bean,这篇文章主要是复制粘贴了Hessian与Spring集成一文,【RPC框架Hessian四】Hessian与Spring集成
在
【RPC框架Hessian二】Hessian 对象序列化和反序列化一文中
- 【Mahout二】基于Mahout CBayes算法的20newsgroup的脚本分析
bit1129
Mahout
#!/bin/bash
#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements. See the NOTICE file distributed with
# this work for additional information re
- nginx三种获取用户真实ip的方法
ronin47
随着nginx的迅速崛起,越来越多公司将apache更换成nginx. 同时也越来越多人使用nginx作为负载均衡, 并且代理前面可能还加上了CDN加速,但是随之也遇到一个问题:nginx如何获取用户的真实IP地址,如果后端是apache,请跳转到<apache获取用户真实IP地址>,如果是后端真实服务器是nginx,那么继续往下看。
实例环境: 用户IP 120.22.11.11
- java-判断二叉树是不是平衡
bylijinnan
java
参考了
http://zhedahht.blog.163.com/blog/static/25411174201142733927831/
但是用java来实现有一个问题。
由于Java无法像C那样“传递参数的地址,函数返回时能得到参数的值”,唯有新建一个辅助类:AuxClass
import ljn.help.*;
public class BalancedBTree {
- BeanUtils.copyProperties VS PropertyUtils.copyProperties
诸葛不亮
PropertyUtilsBeanUtils
BeanUtils.copyProperties VS PropertyUtils.copyProperties
作为两个bean属性copy的工具类,他们被广泛使用,同时也很容易误用,给人造成困然;比如:昨天发现同事在使用BeanUtils.copyProperties copy有integer类型属性的bean时,没有考虑到会将null转换为0,而后面的业
- [金融与信息安全]最简单的数据结构最安全
comsci
数据结构
现在最流行的数据库的数据存储文件都具有复杂的文件头格式,用操作系统的记事本软件是无法正常浏览的,这样的情况会有什么问题呢?
从信息安全的角度来看,如果我们数据库系统仅仅把这种格式的数据文件做异地备份,如果相同版本的所有数据库管理系统都同时被攻击,那么
- vi区段删除
Cwind
linuxvi区段删除
区段删除是编辑和分析一些冗长的配置文件或日志文件时比较常用的操作。简记下vi区段删除要点备忘。
vi概述
引文中并未将末行模式单独列为一种模式。单不单列并不重要,能区分命令模式与末行模式即可。
vi区段删除步骤:
1. 在末行模式下使用:set nu显示行号
非必须,随光标移动vi右下角也会显示行号,能够正确找到并记录删除开始行
- 清除tomcat缓存的方法总结
dashuaifu
tomcat缓存
用tomcat容器,大家可能会发现这样的问题,修改jsp文件后,但用IE打开 依然是以前的Jsp的页面。
出现这种现象的原因主要是tomcat缓存的原因。
解决办法如下:
在jsp文件头加上
<meta http-equiv="Expires" content="0"> <meta http-equiv="kiben&qu
- 不要盲目的在项目中使用LESS CSS
dcj3sjt126com
Webless
如果你还不知道LESS CSS是什么东西,可以看一下这篇文章,是我一朋友写给新人看的《CSS——LESS》
不可否认,LESS CSS是个强大的工具,它弥补了css没有变量、无法运算等一些“先天缺陷”,但它似乎给我一种错觉,就是为了功能而实现功能。
比如它的引用功能
?
.rounded_corners{
- [入门]更上一层楼
dcj3sjt126com
PHPyii2
更上一层楼
通篇阅读完整个“入门”部分,你就完成了一个完整 Yii 应用的创建。在此过程中你学到了如何实现一些常用功能,例如通过 HTML 表单从用户那获取数据,从数据库中获取数据并以分页形式显示。你还学到了如何通过 Gii 去自动生成代码。使用 Gii 生成代码把 Web 开发中多数繁杂的过程转化为仅仅填写几个表单就行。
本章将介绍一些有助于更好使用 Yii 的资源:
- Apache HttpClient使用详解
eksliang
httpclienthttp协议
Http协议的重要性相信不用我多说了,HttpClient相比传统JDK自带的URLConnection,增加了易用性和灵活性(具体区别,日后我们再讨论),它不仅是客户端发送Http请求变得容易,而且也方便了开发人员测试接口(基于Http协议的),即提高了开发的效率,也方便提高代码的健壮性。因此熟练掌握HttpClient是很重要的必修内容,掌握HttpClient后,相信对于Http协议的了解会
- zxing二维码扫描功能
gundumw100
androidzxing
经常要用到二维码扫描功能
现给出示例代码
import com.google.zxing.WriterException;
import com.zxing.activity.CaptureActivity;
import com.zxing.encoding.EncodingHandler;
import android.app.Activity;
import an
- 纯HTML+CSS带说明的黄色导航菜单
ini
htmlWebhtml5csshovertree
HoverTree带说明的CSS菜单:纯HTML+CSS结构链接带说明的黄色导航
在线体验效果:http://hovertree.com/texiao/css/1.htm代码如下,保存到HTML文件可以看到效果:
<!DOCTYPE html >
<html >
<head>
<title>HoverTree
- fastjson初始化对性能的影响
kane_xie
fastjson序列化
之前在项目中序列化是用thrift,性能一般,而且需要用编译器生成新的类,在序列化和反序列化的时候感觉很繁琐,因此想转到json阵营。对比了jackson,gson等框架之后,决定用fastjson,为什么呢,因为看名字感觉很快。。。
网上的说法:
fastjson 是一个性能很好的 Java 语言实现的 JSON 解析器和生成器,来自阿里巴巴的工程师开发。
- 基于Mybatis封装的增删改查实现通用自动化sql
mengqingyu
DAO
1.基于map或javaBean的增删改查可实现不写dao接口和实现类以及xml,有效的提高开发速度。
2.支持自定义注解包括主键生成、列重复验证、列名、表名等
3.支持批量插入、批量更新、批量删除
<bean id="dynamicSqlSessionTemplate" class="com.mqy.mybatis.support.Dynamic
- js控制input输入框的方法封装(数字,中文,字母,浮点数等)
qifeifei
javascript js
在项目开发的时候,经常有一些输入框,控制输入的格式,而不是等输入好了再去检查格式,格式错了就报错,体验不好。 /** 数字,中文,字母,浮点数(+/-/.) 类型输入限制,只要在input标签上加上 jInput="number,chinese,alphabet,floating" 备注:floating属性只能单独用*/
funct
- java 计时器应用
tangqi609567707
javatimer
mport java.util.TimerTask; import java.util.Calendar; public class MyTask extends TimerTask { private static final int
- erlang输出调用栈信息
wudixiaotie
erlang
在erlang otp的开发中,如果调用第三方的应用,会有有些错误会不打印栈信息,因为有可能第三方应用会catch然后输出自己的错误信息,所以对排查bug有很大的阻碍,这样就要求我们自己打印调用的栈信息。用这个函数:erlang:process_display (self (), backtrace).需要注意这个函数只会输出到标准错误输出。
也可以用这个函数:erlang:get_s