- 机器人操作系统 ROS 大全
亚图跨际
嵌入式ROS机器人操作系统
特点第一部:提供对机器人操作系统(ROS)和最新相关系统的全面介绍,这是目前被认为是机器人应用程序的主要开发框架。第1部分介绍了ROS的基础知识和基础。在第2部分中,涉及导航、运动和规划。第3部分提供了服务和实验机器人的四个示例。第4部分处理应用程序的实际部署。第5部分介绍了用于感知和传感的信号处理工具。第6部分提供了使用ROS设计复杂软件的软件工程方法。第7部分介绍了模拟框架。最后,第8部分介绍
- 机器学习背后的数学芝士
小技工丨
机器学习机器学习人工智能
在当今快速发展的科技领域,机器学习作为人工智能的核心技术之一,正在深刻地改变我们的生活和工作方式。本文将了解一下机器学习背后的关键数学芝士。线性代数:数据处理的基础工具向量与矩阵向量是有序数字的集合,常用于表示数据点,例如用户的特征向量可能包括年龄、性别、收入等信息。矩阵则是二维数组,广泛应用于数据集的表示和变换操作。线性变换线性变换描述了向量在空间中的拉伸、压缩或旋转过程。这类变换在数据预处理、
- 【算法day7】 Z 字形变换 (O2算法思路整理)
舔甜歌姬的EGUMI LEGACY
算法算法
Z字形变换,算法思路整理https://leetcode.cn/problems/zigzag-conversion/将一个给定字符串s根据给定的行数numRows,以从上往下、从左到右进行Z字形排列。比如输入字符串为“PAYPALISHIRING”行数为3时,排列如下:PAHNAPLSIIGYIR之后,你的输出需要从左往右逐行读取,产生出一个新的字符串,比如:“PAHNAPLSIIGYIR”。请
- 【漫话机器学习系列】129.主成分分析(Principal Component Analysis,PCA)
IT古董
漫话机器学习系列专辑机器学习人工智能
主成分分析(PCA):降维与特征提取的强大工具1.什么是主成分分析(PCA)?主成分分析(PrincipalComponentAnalysis,PCA)是一种常见的数据降维技术,主要用于将高维数据投影到低维空间,同时尽可能保留数据的主要信息。PCA通过线性变换,将原始特征变量转换为一组新的变量,这些新变量被称为主成分(PrincipalComponents)。在这张图中,我们可以看到PCA的核心概
- 图像处理与机器视觉
Be_auto
图像处理计算机视觉
1.图像处理与机器视觉的概念图像处理(ImageProcessing)是对图像进行分析、增强、变换等操作以改善图像质量或提取有用信息的过程。它通常涉及数字图像处理技术,包括滤波、边缘检测、图像分割、特征提取等。图像处理的目标可以是增强图像的视觉效果,或者使图像更适合于某种特定的机器分析。详细解释图文处理,就像是给照片和文档“化妆”和“打扮”一样。它可不是简单的涂抹或者穿衣搭配,而是需要掌握一系列“
- 大模型面试--大模型(LLMs)基础面
TAICHIFEI
大模型面试语言模型人工智能
大模型(LLMs)基础面1.目前主流的开源模型体系有哪些?目前主流的开源大模型体系有以下几种:1.Transformer系列Transformer模型是深度学习中的一类重要模型,尤其在自然语言处理(NLP)领域。以下是一些主流的Transformer模型:GPT系列GPT-2和GPT-3:由OpenAI开发的生成式预训练变换器模型,用于生成高质量的文本。GPT-Neo和GPT-J:由Eleuthe
- 数字信号处理之 快速傅里叶变换(FFT)
墨痕_777
信号处理算法
文章目录快速傅里叶变换(FFT)一、直接计算DFT的问题和改善DFT运算效率的基本途径直接计算DFT的问题改善DFT运算效率的基本途径二、按时间抽取(DIT)的FFT算法(库利-图基算法)算法原理按时间抽取的FFT算法与直接计算DFT运算量的比较按时间抽取的FFT算法的特点按时间抽取的FFT算法的若干变体三、按频率抽取(DIF)的FFT算法(桑德-图基算法)算法原理时间抽取算法与频率抽取算法的比较
- 学习笔记 -《量子计算与编程入门》- 量子程序
诸葛思颖
量子计算与编程入门机器学习
文章目录1量子计算原理1.1酉变换1.2矩阵的指数函数1.3单量子比特逻辑门1.3.1泡利矩阵1.3.2常见逻辑门以及含义·Hadamard(H)门·Pauli-X门·Pauli-Y门·Pauli-Z门·旋转门(rotationoperators)1.4多量子比特逻辑门·控制非门(Control-NOT)(CNOT门)·控制相位门(Controlledphasegate)(CR/CPhase门)·
- 人工智能学习
星月IWJ
人工智能机器学习深度学习神经网络目标检测人工智能
//-----初探-----//人工智能三大核心要素数据/算法/算力人工智能是通过机器来模拟人类认知能力的技术机器学习/神经网络/深度学习(多层隐藏层神经网络)tf1.14python3.5keras2.1.5//-----数学基础&&数字图像-----//向量大小/方向矢量(有大小和方向)标量(只有大小没有方向(长度))单位向量线性变换(矩阵运算)T(v+w)=T(v)+T(w)T(cv)=cT
- QP 问题(Quadratic Programming, 二次规划)
BineHello
算法人工智能强化学习自动驾驶线性代数
QP问题(QuadraticProgramming,二次规划)是什么?QP(QuadraticProgramming,二次规划)是一类优化问题,其中目标函数是二次型函数,约束条件可以是线性等式或不等式。QP问题是线性规划(LP,LinearProgramming)的扩展形式,广泛应用于最优控制、机器学习、金融优化、信号处理等领域。一、QP问题的数学定义标准形式的QP问题如下:minx12xTQx
- 旋翼机自主着陆-主要技术难点
兜兜有糖_DC
位姿测量无人机智能控制UAVlanding自动计算机视觉深度学习算法
搜索阶段:远距离:目标为几个像素,并且淹没在环境里完全没有任何目标或目标偶尔出现,如何进行导航中远距离目标部分容易被遮挡,如何进行目标检测在光线条件较差的环境下,目标检测出现误判和无法工作的情况近距离目标在视场中占据较大部分,飞机的剧烈姿态变换容易引起目标丢失受到飞机震动和相机抖动限制,特征点提取误差较大,位姿解算精度不高当前解决方案:1.依靠GPS、RTK等设备进行目标追踪存在与目标的通信特定的
- 主流加解密算法全景解析:对称、非对称与哈希算法详解
JT-999
网络哈希算法网络算法
主流加解密算法通常分为以下三大类,每类都有其独特的特点和应用场景,下面我们详细介绍这三类算法的原理、优势、缺陷以及典型应用场景:1.对称加密算法原理对称加密算法是指加密和解密都使用同一个密钥。发送方和接收方事先共享一个秘密密钥,利用这个密钥将明文转换为密文,加密后的数据只有用相同的密钥才能解密恢复原文。其基本过程通常包括:明文分块(如果是分组加密算法);对每个数据块进行一系列变换(如置换、替换、异
- Chromium浏览器的代理配置和通信原理
JT-999
Chromium内核chrome网络
Chromium浏览器的代理配置和通信原理涉及多个组件和流程,以下是它们的基本原理:1.代理配置Chromium浏览器支持多种类型的代理配置,包括手动配置、自动配置(通过PAC脚本)、自动检测(通过WPAD协议)等。代理配置的原理是根据用户设置或网络环境动态选择合适的代理服务器来处理网络请求。手动配置:用户手动指定代理服务器的地址和端口,浏览器将所有的网络请求都发送到指定的代理服务器上。自动配置(
- 三维错切变换矩阵_齐次空间与仿射变换
瓢咋
三维错切变换矩阵
齐次空间与仿射变换1.齐次坐标与齐次空间1.1齐次坐标齐次坐标本质上是4D向量(x,y,z,w),在w=1处的三维空间定义为标准的3D空间,任何齐次坐标转化到标准3D空间坐标点为(x/w.y/w,z/w),如果w为0时(x,y,z,0)表示的是标准3D空间的方向(x,y,z)而并非坐标点。1.24X4齐次矩阵由于表示三维空间的3x3矩阵只能表示旋转和缩放不能表示移动,当我们使用齐次矩阵时就可以表示
- 仿射变换矩阵应用
点云学习
c++pcl点云处理算法pcl点云处理3D视觉
目录1原理介绍2数学公式推导3计算流程4示例代码仿射变换是计算机视觉、图像处理和点云处理中常用的几何变换之一。它不仅包括旋转和平移,还包括缩放和剪切等线性变换。仿射变换保持了点、直线和平面的平行性。1原理介绍仿射变换在三维空间中通常由一个3×3的线性变换矩阵和一个3×1的平移向量组成。通过使用齐次坐标,我们可以将仿射变换表示为一个4×4矩阵:其中:A是一个3×3的线性变换矩阵(包含旋转、缩放、剪切
- UVa12303 Composite Transformations
惆怅客123
UVa部分题目解题报告计算几何icpcUVa仿射变换矩阵平面的一般式平面的三点式
UVa12303CompositeTransformations题目链接题意输入格式输出格式分析AC代码题目链接 UVa12303CompositeTransformations题意 空间中有n个点和m个平面,你的任务是按顺序向它们施加t个变换,输出每个点的最终位置和每个平面的最终方程。一共有3种变换,如表下表所示。变换说明TRANSLATEabc点(x,y,z)变成(x+a,y+b,z+c)
- 三维仿射变换矩阵
惆怅客123
计算几何仿射变换矩阵平移缩放旋转
三维仿射变换矩阵平移变换缩放变换旋转变换绕x、y、z单个轴旋转的变换绕任意轴旋转 三维仿射变换矩阵有3×4、4×43\times4、4\times43×4、4×4两种写法,都是施加到三维点的齐次式上,4×44\times44×4的仿射变换矩阵是在3×43\times43×4的矩阵后追加一行(0,0,0,1)(0,0,0,1)(0,0,0,1),便于通过连续左乘计算组合变换矩阵,这里只对平移、缩放
- 储能变流器硬件工程师能力提升路径
DOMINICHZL
硬件能源硬件工程
储能变流器(PCS,PowerConversionSystem)作为储能系统的核心部件,其硬件设计涉及电力电子、控制理论、热管理、电磁兼容(EMC)等多领域技术。以下是储能变流器行业硬件工程师需要具备的核心能力,以及技术提升的路径建议:一、储能变流器硬件工程师的核心能力电力电子基础能力拓扑设计与分析:熟悉Boost/Buck、双向DC-DC、三相逆变器、LLC谐振变换器等拓扑结构,并能根据效率、成
- CV:傅里叶变换
壹十壹
CV人工智能计算机视觉python
图像中的傅里叶变换主要指将图像从空间域转换到频域的过程。通过傅里叶变换,我们可以将图像看作是不同频率正弦波的叠加,这有助于分析图像的周期性特征、纹理和噪声等信息。主要概念频域表示幅值谱(MagnitudeSpectrum):反映了各个频率成分的能量或强度。低频部分一般对应图像中的整体轮廓和大致结构,高频部分则反映图像的边缘、细节和噪声。相位谱(PhaseSpectrum):包含了图像的空间位置信息
- 【漫话机器学习系列】130.主成分(Principal Components)
IT古董
漫话机器学习系列专辑机器学习人工智能python
主成分(PrincipalComponents)详解1.什么是主成分?主成分(PrincipalComponents,PCs)是数据集中方差最大的线性组合,它是主成分分析(PrincipalComponentAnalysis,PCA)中的核心概念。主成分可以看作是对原始特征的新表述方式,它通过数学变换找到一组新的正交坐标轴,使得数据的主要变化方向与这些轴对齐。简单来说:主成分是数据集中信息量(方差
- 信号处理应用:电力系统中的信号处理_(10).电力系统信号处理中的现代滤波器设计
kkchenkx
信号处理技术仿真模拟信号处理大数据
电力系统信号处理中的现代滤波器设计1.引言在电力系统中,信号处理技术被广泛应用于监测、保护、控制和优化等多个方面。现代滤波器设计是信号处理技术中的重要组成部分,它能够有效地去除噪声、提取有用信号、提高信号质量,从而确保电力系统的稳定运行和高效性能。本节将介绍现代滤波器设计的基本概念、分类、设计方法及其在电力系统中的应用。2.滤波器的基本概念滤波器是一种信号处理设备,用于从输入信号中提取或抑制特定频
- 大语言模型原理基础与前沿 挑战与机遇
AI大模型应用之禅
DeepSeekR1&AI大模型与大数据计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
大语言模型原理基础与前沿挑战与机遇1.背景介绍大语言模型(LargeLanguageModels,LLMs)是近年来人工智能领域的一个重要突破。它们通过深度学习技术,特别是基于变换器(Transformer)架构的模型,能够在自然语言处理(NLP)任务中表现出色。大语言模型的出现不仅推动了学术研究的发展,也在实际应用中展现了巨大的潜力。1.1大语言模型的起源大语言模型的起源可以追溯到早期的统计语言
- 华为OD机试 -猜字谜 (Java & Python& JS & C++ & C )
算法大师
最新华为OD机试华为华为odpythonjavajavascriptc++
最新华为OD机试真题目录:点击查看目录华为OD面试真题精选:点击立即查看题目描述小王设计了一个简单的猜字谜游戏,游戏的谜面是一个错误的单词,比如nesw,玩家需要猜出谜底库中正确的单词。猜中的要求如下:对于某个谜面和谜底单词,满足下面任一条件都表示猜中:变换顺序以后一样的,比如通过变换w和e的顺序,“nwes”跟“news”是可以完全对应的;字母去重以后是一样的,比如“woood”和“wood”是
- 华为OD机试E卷 -猜字谜(Java & Python& JS & C++ & C )
算法大师
最新华为OD机试华为odjavapythonc语言javascriptc++华为od机考e卷
最新华为OD机试真题目录:点击查看目录华为OD面试真题精选:点击立即查看题目描述小王设计了一个简单的猜字谜游戏,游戏的谜面是一个错误的单词,比如nesw,玩家需要猜出谜底库中正确的单词。猜中的要求如下:对于某个谜面和谜底单词,满足下面任一条件都表示猜中:变换顺序以后一样的,比如通过变换w和e的顺序,“nwes”跟“news”是可以完全对应的;字母去重以后是一样的,比如“woood”和“wood”是
- 深度学习 PyTorch 中 18 种数据增强策略与实现
@Mr_LiuYang
计算机视觉基础数据增强深度学习torchvisiontransforms
深度学习pytorch之简单方法自定义9类卷积即插即用数据增强通过对训练数据进行多种变换,增加数据的多样性,它帮助我们提高模型的鲁棒性,并减少过拟合的风险。PyTorch提供torchvision.transforms模块丰富的数据增强操作,我们可以通过组合多种策略来实现复杂的增强效果。本文将介绍18种常用的图像数据增强策略,并展示如何使用PyTorch中的torchvision.transfor
- 用MATLAB打造浪漫3D粒子心脏:代码解析与动态可视
爱玩三国杀的界徐盛
matlab3d开发语言
一、效果预览本文我们将用MATLAB实现一个令人惊艳的3D动态可视化效果:旋转的粒子心脏悬浮在星空背景中,粉紫色的心形粒子群与不同层次的旋转星辰交相辉映。这个效果结合了三维曲面生成、粒子系统、坐标变换等多项技术,最终呈现出一个充满科技感的动态艺术作品。二、代码解析2.1颜色配置模块col=@(n)repmat([255,158,196]./255,[n,1])+repmat([-39,-81,-5
- 信号处理应用:控制系统中的信号处理_(2).控制系统的数学建模
kkchenkx
信号处理技术仿真模拟数学建模信号处理
控制系统的数学建模在控制系统的设计和分析中,数学建模是基础且至关重要的步骤。数学模型可以描述系统的动态行为,帮助我们理解和预测系统的响应。本节将详细介绍控制系统的数学建模方法,包括传递函数、状态空间模型和频域分析。1.传递函数传递函数是一种常用的数学模型,用于描述线性时不变(LTI)系统的输入输出关系。传递函数是在复频域(s域)中表示的,可以方便地进行系统的分析和设计。1.1定义传递函数定义为系统
- 信号处理应用:电力系统中的信号处理_(9).基于电力系统信号的数据挖掘技术
kkchenkx
信号处理技术仿真模拟信号处理数据挖掘人工智能
基于电力系统信号的数据挖掘技术1.引言电力系统中的信号处理是一个重要的研究领域,涉及电力系统的监测、故障诊断、状态评估等多个方面。随着大数据和人工智能技术的发展,数据挖掘技术在电力系统中的应用越来越广泛。本节将介绍如何利用数据挖掘技术对电力系统中的信号进行处理和分析,以提高系统的可靠性和效率。2.电力系统中的信号类型在电力系统中,信号可以分为多种类型,包括:电压信号:反映电力系统的电压水平,用于检
- 电机的声音数据进行AI分析
鹿屿二向箔
人工智能
对电机的声音数据进行分析,尤其是当数据来源于加速度传感器时,涉及到的不仅仅是声音分析,还包含了振动分析。这类问题通常可以归类于机械故障诊断或预测性维护领域。以下是一些适合处理这种类型数据的人工智能模型和方法:1.特征工程+传统机器学习模型在直接应用深度学习之前,通常首先会进行特征提取。对于振动信号(即使通过加速度传感器采集),常用的方法包括计算频域特征(如傅里叶变换后的频谱)、时域特征(如均方根值
- 眼见不一定为实,孙悟空教你AI换脸换声的技术原理及如何用火眼金睛识别新型诈骗
非知名人士
人工智能
话说俺老孙自从大闹天宫归来,闲来无事,忽闻人间兴起一门奇术——所谓“换脸换声”。听说那乃现代科学家利用人工智能之奥秘,将人脸、声音通通变换得跟戏法似的,让人真假难辨。俺老孙心生好奇,便跃上筋斗云,直奔这科技之都,打算探个究竟。今就由俺老孙来给你们摆一摆,这换脸换声究竟是咋回事,就像俺大闹天宫时施展变化,变化无穷,妙趣横生!话说那日俺老孙正在花果山上闲逛,忽然听见猪八戒捧着一部闪闪发光的“小机灵”—
- [黑洞与暗粒子]没有光的世界
comsci
无论是相对论还是其它现代物理学,都显然有个缺陷,那就是必须有光才能够计算
但是,我相信,在我们的世界和宇宙平面中,肯定存在没有光的世界....
那么,在没有光的世界,光子和其它粒子的规律无法被应用和考察,那么以光速为核心的
&nbs
- jQuery Lazy Load 图片延迟加载
aijuans
jquery
基于 jQuery 的图片延迟加载插件,在用户滚动页面到图片之后才进行加载。
对于有较多的图片的网页,使用图片延迟加载,能有效的提高页面加载速度。
版本:
jQuery v1.4.4+
jQuery Lazy Load v1.7.2
注意事项:
需要真正实现图片延迟加载,必须将真实图片地址写在 data-original 属性中。若 src
- 使用Jodd的优点
Kai_Ge
jodd
1. 简化和统一 controller ,抛弃 extends SimpleFormController ,统一使用 implements Controller 的方式。
2. 简化 JSP 页面的 bind, 不需要一个字段一个字段的绑定。
3. 对 bean 没有任何要求,可以使用任意的 bean 做为 formBean。
使用方法简介
- jpa Query转hibernate Query
120153216
Hibernate
public List<Map> getMapList(String hql,
Map map) {
org.hibernate.Query jpaQuery = entityManager.createQuery(hql);
if (null != map) {
for (String parameter : map.keySet()) {
jp
- Django_Python3添加MySQL/MariaDB支持
2002wmj
mariaDB
现状
首先,Django@Python2.x 中默认的引擎为 django.db.backends.mysql 。但是在Python3中如果这样写的话,会发现 django.db.backends.mysql 依赖 MySQLdb[5] ,而 MySQLdb 又不兼容 Python3 于是要找一种新的方式来继续使用MySQL。 MySQL官方的方案
首先据MySQL文档[3]说,自从MySQL
- 在SQLSERVER中查找消耗IO最多的SQL
357029540
SQL Server
返回做IO数目最多的50条语句以及它们的执行计划。
select top 50
(total_logical_reads/execution_count) as avg_logical_reads,
(total_logical_writes/execution_count) as avg_logical_writes,
(tot
- spring UnChecked 异常 官方定义!
7454103
spring
如果你接触过spring的 事物管理!那么你必须明白 spring的 非捕获异常! 即 unchecked 异常! 因为 spring 默认这类异常事物自动回滚!!
public static boolean isCheckedException(Throwable ex)
{
return !(ex instanceof RuntimeExcep
- mongoDB 入门指南、示例
adminjun
javamongodb操作
一、准备工作
1、 下载mongoDB
下载地址:http://www.mongodb.org/downloads
选择合适你的版本
相关文档:http://www.mongodb.org/display/DOCS/Tutorial
2、 安装mongoDB
A、 不解压模式:
将下载下来的mongoDB-xxx.zip打开,找到bin目录,运行mongod.exe就可以启动服务,默
- CUDA 5 Release Candidate Now Available
aijuans
CUDA
The CUDA 5 Release Candidate is now available at http://developer.nvidia.com/<wbr></wbr>cuda/cuda-pre-production. Now applicable to a broader set of algorithms, CUDA 5 has advanced fe
- Essential Studio for WinRT网格控件测评
Axiba
JavaScripthtml5
Essential Studio for WinRT界面控件包含了商业平板应用程序开发中所需的所有控件,如市场上运行速度最快的grid 和chart、地图、RDL报表查看器、丰富的文本查看器及图表等等。同时,该控件还包含了一组独特的库,用于从WinRT应用程序中生成Excel、Word以及PDF格式的文件。此文将对其另外一个强大的控件——网格控件进行专门的测评详述。
网格控件功能
1、
- java 获取windows系统安装的证书或证书链
bewithme
windows
有时需要获取windows系统安装的证书或证书链,比如说你要通过证书来创建java的密钥库 。
有关证书链的解释可以查看此处 。
public static void main(String[] args) {
SunMSCAPI providerMSCAPI = new SunMSCAPI();
S
- NoSQL数据库之Redis数据库管理(set类型和zset类型)
bijian1013
redis数据库NoSQL
4.sets类型
Set是集合,它是string类型的无序集合。set是通过hash table实现的,添加、删除和查找的复杂度都是O(1)。对集合我们可以取并集、交集、差集。通过这些操作我们可以实现sns中的好友推荐和blog的tag功能。
sadd:向名称为key的set中添加元
- 异常捕获何时用Exception,何时用Throwable
bingyingao
用Exception的情况
try {
//可能发生空指针、数组溢出等异常
} catch (Exception e) {
- 【Kafka四】Kakfa伪分布式安装
bit1129
kafka
在http://bit1129.iteye.com/blog/2174791一文中,实现了单Kafka服务器的安装,在Kafka中,每个Kafka服务器称为一个broker。本文简单介绍下,在单机环境下Kafka的伪分布式安装和测试验证 1. 安装步骤
Kafka伪分布式安装的思路跟Zookeeper的伪分布式安装思路完全一样,不过比Zookeeper稍微简单些(不
- Project Euler
bookjovi
haskell
Project Euler是个数学问题求解网站,网站设计的很有意思,有很多problem,在未提交正确答案前不能查看problem的overview,也不能查看关于problem的discussion thread,只能看到现在problem已经被多少人解决了,人数越多往往代表问题越容易。
看看problem 1吧:
Add all the natural num
- Java-Collections Framework学习与总结-ArrayDeque
BrokenDreams
Collections
表、栈和队列是三种基本的数据结构,前面总结的ArrayList和LinkedList可以作为任意一种数据结构来使用,当然由于实现方式的不同,操作的效率也会不同。
这篇要看一下java.util.ArrayDeque。从命名上看
- 读《研磨设计模式》-代码笔记-装饰模式-Decorator
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.io.BufferedOutputStream;
import java.io.DataOutputStream;
import java.io.FileOutputStream;
import java.io.Fi
- Maven学习(一)
chenyu19891124
Maven私服
学习一门技术和工具总得花费一段时间,5月底6月初自己学习了一些工具,maven+Hudson+nexus的搭建,对于maven以前只是听说,顺便再自己的电脑上搭建了一个maven环境,但是完全不了解maven这一强大的构建工具,还有ant也是一个构建工具,但ant就没有maven那么的简单方便,其实简单点说maven是一个运用命令行就能完成构建,测试,打包,发布一系列功
- [原创]JWFD工作流引擎设计----节点匹配搜索算法(用于初步解决条件异步汇聚问题) 补充
comsci
算法工作PHP搜索引擎嵌入式
本文主要介绍在JWFD工作流引擎设计中遇到的一个实际问题的解决方案,请参考我的博文"带条件选择的并行汇聚路由问题"中图例A2描述的情况(http://comsci.iteye.com/blog/339756),我现在把我对图例A2的一个解决方案公布出来,请大家多指点
节点匹配搜索算法(用于解决标准对称流程图条件汇聚点运行控制参数的算法)
需要解决的问题:已知分支
- Linux中用shell获取昨天、明天或多天前的日期
daizj
linuxshell上几年昨天获取上几个月
在Linux中可以通过date命令获取昨天、明天、上个月、下个月、上一年和下一年
# 获取昨天
date -d 'yesterday' # 或 date -d 'last day'
# 获取明天
date -d 'tomorrow' # 或 date -d 'next day'
# 获取上个月
date -d 'last month'
#
- 我所理解的云计算
dongwei_6688
云计算
在刚开始接触到一个概念时,人们往往都会去探寻这个概念的含义,以达到对其有一个感性的认知,在Wikipedia上关于“云计算”是这么定义的,它说:
Cloud computing is a phrase used to describe a variety of computing co
- YII CMenu配置
dcj3sjt126com
yii
Adding id and class names to CMenu
We use the id and htmlOptions to accomplish this. Watch.
//in your view
$this->widget('zii.widgets.CMenu', array(
'id'=>'myMenu',
'items'=>$this-&g
- 设计模式之静态代理与动态代理
come_for_dream
设计模式
静态代理与动态代理
代理模式是java开发中用到的相对比较多的设计模式,其中的思想就是主业务和相关业务分离。所谓的代理设计就是指由一个代理主题来操作真实主题,真实主题执行具体的业务操作,而代理主题负责其他相关业务的处理。比如我们在进行删除操作的时候需要检验一下用户是否登陆,我们可以删除看成主业务,而把检验用户是否登陆看成其相关业务
- 【转】理解Javascript 系列
gcc2ge
JavaScript
理解Javascript_13_执行模型详解
摘要: 在《理解Javascript_12_执行模型浅析》一文中,我们初步的了解了执行上下文与作用域的概念,那么这一篇将深入分析执行上下文的构建过程,了解执行上下文、函数对象、作用域三者之间的关系。函数执行环境简单的代码:当调用say方法时,第一步是创建其执行环境,在创建执行环境的过程中,会按照定义的先后顺序完成一系列操作:1.首先会创建一个
- Subsets II
hcx2013
set
Given a collection of integers that might contain duplicates, nums, return all possible subsets.
Note:
Elements in a subset must be in non-descending order.
The solution set must not conta
- Spring4.1新特性——Spring缓存框架增强
jinnianshilongnian
spring4
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- shell嵌套expect执行命令
liyonghui160com
一直都想把expect的操作写到bash脚本里,这样就不用我再写两个脚本来执行了,搞了一下午终于有点小成就,给大家看看吧.
系统:centos 5.x
1.先安装expect
yum -y install expect
2.脚本内容:
cat auto_svn.sh
#!/bin/bash
- Linux实用命令整理
pda158
linux
0. 基本命令 linux 基本命令整理
1. 压缩 解压 tar -zcvf a.tar.gz a #把a压缩成a.tar.gz tar -zxvf a.tar.gz #把a.tar.gz解压成a
2. vim小结 2.1 vim替换 :m,ns/word_1/word_2/gc
- 独立开发人员通向成功的29个小贴士
shoothao
独立开发
概述:本文收集了关于独立开发人员通向成功需要注意的一些东西,对于具体的每个贴士的注解有兴趣的朋友可以查看下面标注的原文地址。
明白你从事独立开发的原因和目的。
保持坚持制定计划的好习惯。
万事开头难,第一份订单是关键。
培养多元化业务技能。
提供卓越的服务和品质。
谨小慎微。
营销是必备技能。
学会组织,有条理的工作才是最有效率的。
“独立
- JAVA中堆栈和内存分配原理
uule
java
1、栈、堆
1.寄存器:最快的存储区, 由编译器根据需求进行分配,我们在程序中无法控制.2. 栈:存放基本类型的变量数据和对象的引用,但对象本身不存放在栈中,而是存放在堆(new 出来的对象)或者常量池中(字符串常量对象存放在常量池中。)3. 堆:存放所有new出来的对象。4. 静态域:存放静态成员(static定义的)5. 常量池:存放字符串常量和基本类型常量(public static f