- 某水利信息化项目人员组织矩阵识别与问题分析
静默空禅
项目管理大数据目标跟踪团队开发业界资讯职场和发展笔记经验分享
近期参与的华北某水利信息化类型项目,该项目不仅仅是软件设计开发,还涉及模型算法、硬件安装、环境配置、数据采集制作等诸多方面的工作;项目人员方面不仅是单一团队,涉及到多方团队的合作,项目推动工作较为复杂,各类影响因素繁多。以我个人视角和观察,进行一些记录和总结:一、人员分工基本框架项目整体分为三方人员,项目需求方、项目代建方、项目承建方。需求方为当地行业管理单位,项目建设需求来自他们;项目代建方为当
- Python爬虫实战:研究psd-tools库相关技术
ylfhpy
爬虫项目实战python爬虫开发语言psd-tools
一、引言1.1研究背景AdobePhotoshop是目前最流行的图像处理软件之一,其原生文件格式PSD(PhotoshopDocument)包含了丰富的图像信息和编辑历史。PSD文件不仅在设计领域广泛使用,还在数字营销、版权保护和安全分析等领域具有重要价值。然而,手动分析大量PSD文件是一项繁琐且耗时的工作,因此开发自动化的PSD文件分析工具具有重要的现实意义。1.2研究目的本文旨在开发一个基于P
- [特殊字符] Electron 中的 `global` 变量
几道之旅
electronjavascript前端
在Electron的多进程架构(主进程+渲染进程)中,global对象是主进程内全局变量的核心载体,用于存储跨窗口或模块共享的数据或服务。其设计类似于Node.js的全局对象,但在Electron中需特别注意进程边界和安全性限制。⚙️一、global的核心作用与使用场景主进程中的全局存储global仅在主进程中可用,用于保存需跨多个渲染进程访问的数据或服务。示例:存储全局缓存、数据库连接实例或配置
- 文心4.5开源背后的战略棋局:百度为何选择All in开放?
度假的小鱼
AI/大数据创作活动打卡#人工智能基础文心大模型开源GitCode百度
文章目录引言:一场颠覆AI行业格局的孤注国内开源模型的崛起与威胁国际竞争格局的重塑1.技术维度:开源是突破模型性能瓶颈的“加速器”1.1闭源模型的“内卷化”困境1.2文心4.5的开源技术架构:从“黑箱”到“乐高”1.2.1文心4.5的技术创新1.2.2工具链的成熟配套2.商业维度:开源是重构AI市场规则的“核武器”2.1闭源时代的“赢家通吃”逻辑2.2文心4.5的开源商业模型:从“卖API”到“卖
- 1、基础
a风风a
创建项目django-adminproject_namecdproject_namepythonmanage.pyrunserver0.0.0.0:8000#pythonmanage.py(查看可用命令)创建应用pythonmanage.pystartappapp_namesetting中的INSTALLED_APPS=[追加'app_name',cdapp_name编辑views.py进入项目文
- 构建企业私有RAG系统全流程:从 PDF 到智能问答的落地实践
观熵
国产大模型部署实战全流程指南pdf人工智能大模型部署RAG
构建企业私有RAG系统全流程:从PDF到智能问答的落地实践✅一、RAG到底是什么?为什么你现在必须了解它?RAG,全称Retrieval-AugmentedGeneration(检索增强生成)。通俗点说,它的核心思想就一句话:“模型不知道的内容,从你的知识库里搜;然后由模型来生成回答。”RAG系统的核心价值:传统模型问答RAG系统模型只能靠自己的训练记忆模型可以实时读“外部资料”企业知识不在模型里
- 伽卡他卡电子教室:技术原理、功能解析与教育场景实践
一、术语澄清与技术定位“伽卡他卡”(Gakataka)在计算机科学领域的核心实体为伽卡他卡电子教室软件。需注意其与无关技术的区别:❌与分布式流处理平台ApacheKafka无技术关联;❌与AI模型GauGAN、半导体技术GAA等“G”开头术语无关。核心定位:一款专为教育场景设计的局域网教学管理软件,由伽卡他卡公司开发。二、核心功能与应用场景1.核心模块屏幕广播:实时传输教师端操作画面;远程控制:教
- LLM模型 贪婪、温度、Top-k、核采样方式的区别---附代码与示例
繁星意未平
AIpython开发语言
LLM模型贪婪、温度、Top-k、核采样方式的区别—附代码与示例在自然语言生成任务中,不同的采样技术用于从语言模型的输出中选择下一个生成的单词或词语。这些技术包括贪婪采样、温度采样、Top-k采样和核(Nucleus)采样。它们在选择生成单词的过程中有不同的策略,本文将介绍这四种采样方式的区别。1.贪婪采样(GreedySampling)贪婪采样是一种直接选择最可能的下一个词的策略。具体步骤为:从
- 金融量化交易如何精准把握市场趋势?这些策略你不能错过!
股票程序化交易接口
量化交易股票API接口Python股票量化交易金融金融量化交易市场趋势技术分析策略基本面分析策略股票量化接口股票API接口
Python股票接口实现查询账户,提交订单,自动交易(1)Python股票程序交易接口查账,提交订单,自动交易(2)股票量化,Python炒股,CSDN交流社区>>>金融量化交易把握市场趋势的基础认知金融量化交易旨在通过数学模型和计算机算法来执行交易决策。市场趋势反映了市场价格的总体走向,量化交易与市场趋势紧密相连。量化交易借助数据和算法去捕捉市场趋势信号,以决定买卖时机。准确把握市场趋势能为量化
- 视觉构架流程编辑UI
小治视觉
c#visualstudio
usingSystem;usingSystem.Collections.Generic;usingSystem.ComponentModel;usingSystem.Data;usingSystem.Drawing;usingSystem.Linq;usingSystem.Text;usingSystem.Text.RegularExpressions;usingSystem.Threading.
- LLM 的Top-P参数 是在LLM中的每一层发挥作用,还是最后一层?
ZhangJiQun&MXP
教学2024大模型以及算力2021AIpython人工智能算法机器学习transformer自然语言处理
LLM的Top-P参数是在LLM中的每一层发挥作用,还是最后一层?Top-P(核采样)是在大语言模型(LLM)生成文本的最后一步发挥作用,具体来说是在模型输出**原始分数(Logits)**之后、应用Softmax函数生成概率分布之前进行筛选。它的作用机制与Temperature(温度)类似,但逻辑不同,以下从技术原理、代码实现和应用场景三个维度展开说明:一、技术原理:仅作用于生成阶段的最后一步1
- 本地部署 Kimi K2 全指南(llama.cpp、vLLM、Docker 三法)
迎风斯黄
llamadocker容器kimi
KimiK2是MoonshotAI于2025年7月11日发布的高性能多专家语言模型(MoE),支持最大128K上下文,激活参数规模为32B,具备极强的推理、代码生成与多轮对话能力。自从其权重以多种格式开源以来,许多开发者希望将其部署在本地,以获得更高的私密性和灵活性。本文将详细介绍三种主流本地部署路径,并提供完整的配置步骤和使用建议。准备工作(通用部分)在进行部署前,请准备如下环境与资源:✅最低硬
- 【流水账】一个教训:不敢太相信自己的记忆
金台望道
7月1日,星期四,白天晴,晚上雷雨大作【流水账】一个教训:不敢太相信自己的记忆早上:早起写完、发布今天的公号文并推送;写完上月的总结,制定好下个月计划。上午:用着流量,看百年庆典的讲话。下午:到办公室开组织生活会。晚上:继续加工启蒙第一课的第二册,夹杂着写完明天的推送,然后继续写启蒙课。静下心来加油干吧,周六务必提交第二册给编辑,以便开始组织第三册。今天得到一个教训。前些日子,因为网络考试出了一些
- KAIST:LLM混合递归推理
大模型任我行
大模型-推理优化人工智能自然语言处理语言模型论文笔记
标题:Mixture-of-Recursions:LearningDynamicRecursiveDepthsforAdaptiveToken-LevelComputation来源:arXiv,2507.10524摘要缩放语言模型解锁了令人印象深刻的能力,但伴随的计算和内存需求使训练和部署都很昂贵。现有的效率工作通常针对参数共享或自适应计算,留下了如何同时实现两者的问题。我们引入了混合递归(MoR
- 从“直觉抢答”到“深度思考”:大模型的“慢思考”革命,思维链、树、图如何让AI越来越像人?
陈敬雷-充电了么-CEO兼CTO
《GPT多模态大模型与AIAgent智能体》新书内容人工智能chatgptAIGC神经网络python大模型思维链
注:此文章内容均节选自充电了么创始人,CEO兼CTO陈敬雷老师的新书《GPT多模态大模型与AIAgent智能体》(跟我一起学人工智能)【陈敬雷编著】【清华大学出版社】GPT多模态大模型与AIAgent智能体书籍本章配套视频课程【陈敬雷】文章目录GPT多模态大模型与AIAgent智能体系列十六从“直觉抢答”到“深度思考”:大模型的“慢思考”革命,思维链、树、图如何让AI越来越像人?引言:当AI从“快
- AI-调查研究-33- 咖啡价格战 连锁咖啡低价策略全景分析:补贴、成本与盈利模型
点一下关注吧!!!非常感谢!!持续更新!!!AI篇持续更新中!(长期更新)AI炼丹日志-30-新发布【1T万亿】参数量大模型!Kimi‑K2开源大模型解读与实践,持续打造实用AI工具指南!Java篇正式开启!(300篇)目前2025年07月16日更新到:Java-74深入浅出RPCDubboAdmin可视化管理安装使用源码编译、Docker启动MyBatis已完结,Spring已完结,Nginx已
- 大模型本地部署-dify私有化部署-教程
一、简介dify是一个开源的LLM应用开发平台。其直观的界面结合了AI工作流、RAG管道、Agent、模型管理、可观测性功能等,可以让您快速从原型到生产。二、核心功能列表1、工作流:在画布上构建和测试功能强大的AI工作流程。2、全面的模型支持:与数百种专有/开源LLMs以及数十种推理提供商和自托管解决方案无缝集成,涵盖GPT、Mistral、Llama3以及任何与OpenAIAPI兼容的模型。完整
- 目标检测中的标签分配算法总结
北京地铁1号线
目标检测与图像处理人工智能
目标检测中的标签分配算法是训练过程中的一个核心环节,它决定了如何将标注好的真实目标框分配给模型预测出来的候选框(AnchorBoxes或Points),从而为这些候选框提供监督信号(正样本、负样本、忽略样本)。它的质量直接影响模型的学习效率和最终性能。简单来说,标签分配要解决的关键问题是:“哪些预测框应该负责学习哪些真实目标?”一、为什么标签分配如此重要?1.定义学习目标:它直接告诉模型哪些预测应
- 【机器学习&深度学习】什么是量化?
一叶千舟
深度学习【理论】机器学习深度学习人工智能
目录前言一、量化的基本概念1.1量化对比示例1.2量化是如何实现的?二、为什么要进行量化?2.1解决模型体积过大问题2.2降低对算力的依赖2.3加速模型训练和推理2.4优化训练过程2.5降低部署成本小结:量化的应用场景三、量化的类型与实现3.1权重量化(WeightQuantization)3.2激活量化(ActivationQuantization)3.3梯度量化(GradientQuantiz
- 基于AutoCut实现在文档中按照片段剪辑视频
Mr数据杨
Python音频技术音视频
本项目致力于通过构建一个具备深度学习支持的多功能视频处理环境,为用户提供高效、智能的视频编辑和字幕生成工具。依托Anaconda环境管理工具和PyTorch的GPU加速能力,用户能够迅速搭建一个符合项目需求的Python环境。结合FunClip的源代码以及相关插件的安装和配置,用户可充分利用项目所支持的图像、音频识别功能,并以极少的配置便获得理想的视频裁剪效果。项目的核心在于简化深度学习项目的环境
- GPT-4和Claude哪个好
姜暮儿
人工智能
选择GPT-4还是Claude?这就像在问“苹果还是橙子哪个更好”——答案完全取决于你的具体需求。两者都是顶尖大语言模型,但各有特色。我为你做了详细对比,帮你快速定位哪个更适合你:核心能力对比特性GPT-4(OpenAI)Claude(Anthropic)语言理解/推理顶尖水平,尤其擅长逻辑推理、代码生成极强,注重自然语言流畅性长文本处理上下文最大128Ktokens,但实际效果不如C
- 写论文时遇到的问题及解决办法
小白的程序空间
论文格式技能汇总经验分享windows
问题1:利用endnote关于出现{},而不是[1].解决办法:找到WORD中的updateCitationsandBibliography,点击后,即可恢复[]。问题2:写论文时,endnote中常用的字体是什么?解决办法:ChineseStdGBT7714(numeric)问题3:如何在word中添加Endnote的字体?解决办法:在endnote中,找到“编辑”,“输出样式”,接着“打开样式
- Python 机器学习:NumPy 实现朴素贝叶斯分类器
Python编程之道
Python编程之道python机器学习numpyai
Python机器学习:NumPy实现朴素贝叶斯分类器关键词:朴素贝叶斯分类器、NumPy、机器学习、概率模型、条件概率、拉普拉斯平滑、向量化计算摘要:本文系统讲解朴素贝叶斯分类器的核心原理,基于NumPy实现高效的算法框架,涵盖从概率理论到工程实现的完整流程。通过数学公式推导、代码实现和鸢尾花数据集实战,展示如何利用向量化计算优化概率估计,解决特征独立性假设下的分类问题。同时分析算法优缺点及实际应
- 微信小程序案例 - 本地生活(首页)
一、前言随着微信小程序生态的不断壮大,越来越多的生活服务类App开始以小程序的形式落地。本篇文章将以一个典型的“本地生活”类小程序为例,详细讲解其首页页面的开发流程和实现思路。我们将从零开始构建一个具有如下功能模块的首页:✅轮播图广告位✅分类导航图标区域✅热门推荐商家列表✅底部TabBar导航栏并通过WXML、WXSS和JS的结合使用,带你完成整个页面的搭建与数据渲染。二、项目结构说明目录结构示意
- 改装手表包金多少钱一个,广州组装手表价格一览表
富腕表之家
现在越来越多的人买复刻高仿手表都是追求品质,不是买哪些很像正品,而是更像正品,甚至有代替字面,代替把头,代替机芯,能有多好就多好,材质选择包真金真钻。那样的话价格就很贵,那么改装手表包真金真钻是多少钱呢?改装手表微信:626603312【下单赠送精美礼品】1,劳力士迪通拿改装包金价格一般在2500到4000之间2,百达翡丽手表改装包金价格一般在3000到5000左右3,卡地亚蓝气球包金价格一般在1
- 基于深度学习的和平精英(吃鸡)内置锁头训练
摆烂仙君
深度学习人工智能
前言本教程以和平精英为例,主要讲解如何构建深度学习模型对游戏中角色进行头部标注,并控制鼠标对其进行锁定射击,同时围绕其游戏防作弊系统进行算法攻防讲解,该方案对于csgo,cf等游戏也同样适用。请注意,该教程仅供娱乐教学,若本教程评论超过100,将会开源相关代码并对实际的代码部署进行进一步分析。一、和平精英伤害机制分析在《刺激战场》(现为《和平精英》)中,击中头部的伤害远高于身体其他部位,这是由游戏
- 迁移学习让深度学习更容易
城市中迷途小书童
摘要:一文读懂迁移学习及其对深度学习发展的影响!深度学习在一些传统方法难以处理的领域有了很大的进展。这种成功是由于改变了传统机器学习的几个出发点,使其在应用于非结构化数据时性能很好。如今深度学习模型可以玩游戏,检测癌症,和人类交谈,自动驾驶。深度学习变得强大的同时也需要很大的代价。进行深度学习需要大量的数据、昂贵的硬件、甚至更昂贵的精英工程人才。在ClouderaFastForward实验室,我们
- 神经网络:模拟人脑的 AI 信息处理系统
1.神经网络是什么:AI的“数字大脑”1.1从生物神经元到人工神经元人脑由860亿个神经元通过突触连接形成复杂网络,神经元通过电信号传递信息——当信号强度超过阈值时,神经元被激活并向其他神经元发送信号。神经网络正是模仿这一结构设计的计算模型,其核心是“人工神经元”和“层级连接”。人工神经元接收多个输入信号,通过权重(模拟突触强度)加权求和,再经激活函数处理(模拟神经元“是否激活”),输出结果。例如
- 网络安全态势感知模型 原理和架构及案例
hao_wujing
web安全架构安全
大家读完觉得有帮助记得关注和点赞!!!网络安全态势感知(NetworkSecuritySituationAwareness,NSSA)是通过多源数据融合、动态分析与预测,实现对网络环境安全状态的全局认知与风险预判的核心技术体系。其核心价值在于将碎片化威胁信息转化为可行动的防御策略,以下从原理、架构及典型案例三方面展开深度解析:一、核心原理:三层认知模型与动态融合1.Endsley三层模型10态势要
- 汉武帝情史(一)金屋藏娇
小二黑以今说古
金屋藏娇的故事在中国流传广泛,可谓家喻户晓,老少皆知。中国的文人骚客对风花雪月之事特别敏感,这一类君王恋佳人的艳事更为他们津津乐道,一个平常的故事常被他们用诗词歌句渲染得曲折离奇,五彩缤纷。唐代的大诗人们自然不会放过对这段艳事的题咏。白居易在《续古诗》中云:“岁暮望汉宫,谁在黄金屋?”李白在《怨情》诗中称:“请看陈后黄金屋,寂寂珠帘生网丝。”李商隐《无题》诗:“黄金堪作屋,何不作重楼?”黄金屋作为
- apache 安装linux windows
墙头上一根草
apacheinuxwindows
linux安装Apache 有两种方式一种是手动安装通过二进制的文件进行安装,另外一种就是通过yum 安装,此中安装方式,需要物理机联网。以下分别介绍两种的安装方式
通过二进制文件安装Apache需要的软件有apr,apr-util,pcre
1,安装 apr 下载地址:htt
- fill_parent、wrap_content和match_parent的区别
Cb123456
match_parentfill_parent
fill_parent、wrap_content和match_parent的区别:
1)fill_parent
设置一个构件的布局为fill_parent将强制性地使构件扩展,以填充布局单元内尽可能多的空间。这跟Windows控件的dockstyle属性大体一致。设置一个顶部布局或控件为fill_parent将强制性让它布满整个屏幕。
2) wrap_conte
- 网页自适应设计
天子之骄
htmlcss响应式设计页面自适应
网页自适应设计
网页对浏览器窗口的自适应支持变得越来越重要了。自适应响应设计更是异常火爆。再加上移动端的崛起,更是如日中天。以前为了适应不同屏幕分布率和浏览器窗口的扩大和缩小,需要设计几套css样式,用js脚本判断窗口大小,选择加载。结构臃肿,加载负担较大。现笔者经过一定时间的学习,有所心得,故分享于此,加强交流,共同进步。同时希望对大家有所
- [sql server] 分组取最大最小常用sql
一炮送你回车库
SQL Server
--分组取最大最小常用sql--测试环境if OBJECT_ID('tb') is not null drop table tb;gocreate table tb( col1 int, col2 int, Fcount int)insert into tbselect 11,20,1 union allselect 11,22,1 union allselect 1
- ImageIO写图片输出到硬盘
3213213333332132
javaimage
package awt;
import java.awt.Color;
import java.awt.Font;
import java.awt.Graphics;
import java.awt.image.BufferedImage;
import java.io.File;
import java.io.IOException;
import javax.imagei
- 自己的String动态数组
宝剑锋梅花香
java动态数组数组
数组还是好说,学过一两门编程语言的就知道,需要注意的是数组声明时需要把大小给它定下来,比如声明一个字符串类型的数组:String str[]=new String[10]; 但是问题就来了,每次都是大小确定的数组,我需要数组大小不固定随时变化怎么办呢? 动态数组就这样应运而生,龙哥给我们讲的是自己用代码写动态数组,并非用的ArrayList 看看字符
- pinyin4j工具类
darkranger
.net
pinyin4j工具类Java工具类 2010-04-24 00:47:00 阅读69 评论0 字号:大中小
引入pinyin4j-2.5.0.jar包:
pinyin4j是一个功能强悍的汉语拼音工具包,主要是从汉语获取各种格式和需求的拼音,功能强悍,下面看看如何使用pinyin4j。
本人以前用AscII编码提取工具,效果不理想,现在用pinyin4j简单实现了一个。功能还不是很完美,
- StarUML学习笔记----基本概念
aijuans
UML建模
介绍StarUML的基本概念,这些都是有效运用StarUML?所需要的。包括对模型、视图、图、项目、单元、方法、框架、模型块及其差异以及UML轮廓。
模型、视与图(Model, View and Diagram)
&
- Activiti最终总结
avords
Activiti id 工作流
1、流程定义ID:ProcessDefinitionId,当定义一个流程就会产生。
2、流程实例ID:ProcessInstanceId,当开始一个具体的流程时就会产生,也就是不同的流程实例ID可能有相同的流程定义ID。
3、TaskId,每一个userTask都会有一个Id这个是存在于流程实例上的。
4、TaskDefinitionKey和(ActivityImpl activityId
- 从省市区多重级联想到的,react和jquery的差别
bee1314
jqueryUIreact
在我们的前端项目里经常会用到级联的select,比如省市区这样。通常这种级联大多是动态的。比如先加载了省,点击省加载市,点击市加载区。然后数据通常ajax返回。如果没有数据则说明到了叶子节点。 针对这种场景,如果我们使用jquery来实现,要考虑很多的问题,数据部分,以及大量的dom操作。比如这个页面上显示了某个区,这时候我切换省,要把市重新初始化数据,然后区域的部分要从页面
- Eclipse快捷键大全
bijian1013
javaeclipse快捷键
Ctrl+1 快速修复(最经典的快捷键,就不用多说了)Ctrl+D: 删除当前行 Ctrl+Alt+↓ 复制当前行到下一行(复制增加)Ctrl+Alt+↑ 复制当前行到上一行(复制增加)Alt+↓ 当前行和下面一行交互位置(特别实用,可以省去先剪切,再粘贴了)Alt+↑ 当前行和上面一行交互位置(同上)Alt+← 前一个编辑的页面Alt+→ 下一个编辑的页面(当然是针对上面那条来说了)Alt+En
- js 笔记 函数
征客丶
JavaScript
一、函数的使用
1.1、定义函数变量
var vName = funcation(params){
}
1.2、函数的调用
函数变量的调用: vName(params);
函数定义时自发调用:(function(params){})(params);
1.3、函数中变量赋值
var a = 'a';
var ff
- 【Scala四】分析Spark源代码总结的Scala语法二
bit1129
scala
1. Some操作
在下面的代码中,使用了Some操作:if (self.partitioner == Some(partitioner)),那么Some(partitioner)表示什么含义?首先partitioner是方法combineByKey传入的变量,
Some的文档说明:
/** Class `Some[A]` represents existin
- java 匿名内部类
BlueSkator
java匿名内部类
组合优先于继承
Java的匿名类,就是提供了一个快捷方便的手段,令继承关系可以方便地变成组合关系
继承只有一个时候才能用,当你要求子类的实例可以替代父类实例的位置时才可以用继承。
在Java中内部类主要分为成员内部类、局部内部类、匿名内部类、静态内部类。
内部类不是很好理解,但说白了其实也就是一个类中还包含着另外一个类如同一个人是由大脑、肢体、器官等身体结果组成,而内部类相
- 盗版win装在MAC有害发热,苹果的东西不值得买,win应该不用
ljy325
游戏applewindowsXPOS
Mac mini 型号: MC270CH-A RMB:5,688
Apple 对windows的产品支持不好,有以下问题:
1.装完了xp,发现机身很热虽然没有运行任何程序!貌似显卡跑游戏发热一样,按照那样的发热量,那部机子损耗很大,使用寿命受到严重的影响!
2.反观安装了Mac os的展示机,发热量很小,运行了1天温度也没有那么高
&nbs
- 读《研磨设计模式》-代码笔记-生成器模式-Builder
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/**
* 生成器模式的意图在于将一个复杂的构建与其表示相分离,使得同样的构建过程可以创建不同的表示(GoF)
* 个人理解:
* 构建一个复杂的对象,对于创建者(Builder)来说,一是要有数据来源(rawData),二是要返回构
- JIRA与SVN插件安装
chenyu19891124
SVNjira
JIRA安装好后提交代码并要显示在JIRA上,这得需要用SVN的插件才能看见开发人员提交的代码。
1.下载svn与jira插件安装包,解压后在安装包(atlassian-jira-subversion-plugin-0.10.1)
2.解压出来的包里下的lib文件夹下的jar拷贝到(C:\Program Files\Atlassian\JIRA 4.3.4\atlassian-jira\WEB
- 常用数学思想方法
comsci
工作
对于搞工程和技术的朋友来讲,在工作中常常遇到一些实际问题,而采用常规的思维方式无法很好的解决这些问题,那么这个时候我们就需要用数学语言和数学工具,而使用数学工具的前提却是用数学思想的方法来描述问题。。下面转帖几种常用的数学思想方法,仅供学习和参考
函数思想
把某一数学问题用函数表示出来,并且利用函数探究这个问题的一般规律。这是最基本、最常用的数学方法
- pl/sql集合类型
daizj
oracle集合typepl/sql
--集合类型
/*
单行单列的数据,使用标量变量
单行多列数据,使用记录
单列多行数据,使用集合(。。。)
*集合:类似于数组也就是。pl/sql集合类型包括索引表(pl/sql table)、嵌套表(Nested Table)、变长数组(VARRAY)等
*/
/*
--集合方法
&n
- [Ofbiz]ofbiz初用
dinguangx
电商ofbiz
从github下载最新的ofbiz(截止2015-7-13),从源码进行ofbiz的试用
1. 加载测试库
ofbiz内置derby,通过下面的命令初始化测试库
./ant load-demo (与load-seed有一些区别)
2. 启动内置tomcat
./ant start
或
./startofbiz.sh
或
java -jar ofbiz.jar
&
- 结构体中最后一个元素是长度为0的数组
dcj3sjt126com
cgcc
在Linux源代码中,有很多的结构体最后都定义了一个元素个数为0个的数组,如/usr/include/linux/if_pppox.h中有这样一个结构体: struct pppoe_tag { __u16 tag_type; __u16 tag_len; &n
- Linux cp 实现强行覆盖
dcj3sjt126com
linux
发现在Fedora 10 /ubutun 里面用cp -fr src dest,即使加了-f也是不能强行覆盖的,这时怎么回事的呢?一两个文件还好说,就输几个yes吧,但是要是n多文件怎么办,那还不输死人呢?下面提供三种解决办法。 方法一
我们输入alias命令,看看系统给cp起了一个什么别名。
[root@localhost ~]# aliasalias cp=’cp -i’a
- Memcached(一)、HelloWorld
frank1234
memcached
一、简介
高性能的架构离不开缓存,分布式缓存中的佼佼者当属memcached,它通过客户端将不同的key hash到不同的memcached服务器中,而获取的时候也到相同的服务器中获取,由于不需要做集群同步,也就省去了集群间同步的开销和延迟,所以它相对于ehcache等缓存来说能更好的支持分布式应用,具有更强的横向伸缩能力。
二、客户端
选择一个memcached客户端,我这里用的是memc
- Search in Rotated Sorted Array II
hcx2013
search
Follow up for "Search in Rotated Sorted Array":What if duplicates are allowed?
Would this affect the run-time complexity? How and why?
Write a function to determine if a given ta
- Spring4新特性——更好的Java泛型操作API
jinnianshilongnian
spring4generic type
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- CentOS安装JDK
liuxingguome
centos
1、行卸载原来的:
[root@localhost opt]# rpm -qa | grep java
tzdata-java-2014g-1.el6.noarch
java-1.7.0-openjdk-1.7.0.65-2.5.1.2.el6_5.x86_64
java-1.6.0-openjdk-1.6.0.0-11.1.13.4.el6.x86_64
[root@localhost
- 二分搜索专题2-在有序二维数组中搜索一个元素
OpenMind
二维数组算法二分搜索
1,设二维数组p的每行每列都按照下标递增的顺序递增。
用数学语言描述如下:p满足
(1),对任意的x1,x2,y,如果x1<x2,则p(x1,y)<p(x2,y);
(2),对任意的x,y1,y2, 如果y1<y2,则p(x,y1)<p(x,y2);
2,问题:
给定满足1的数组p和一个整数k,求是否存在x0,y0使得p(x0,y0)=k?
3,算法分析:
(
- java 随机数 Math与Random
SaraWon
javaMathRandom
今天需要在程序中产生随机数,知道有两种方法可以使用,但是使用Math和Random的区别还不是特别清楚,看到一篇文章是关于的,觉得写的还挺不错的,原文地址是
http://www.oschina.net/question/157182_45274?sort=default&p=1#answers
产生1到10之间的随机数的两种实现方式:
//Math
Math.roun
- oracle创建表空间
tugn
oracle
create temporary tablespace TXSJ_TEMP
tempfile 'E:\Oracle\oradata\TXSJ_TEMP.dbf'
size 32m
autoextend on
next 32m maxsize 2048m
extent m
- 使用Java8实现自己的个性化搜索引擎
yangshangchuan
javasuperword搜索引擎java8全文检索
需要对249本软件著作实现句子级别全文检索,这些著作均为PDF文件,不使用现有的框架如lucene,自己实现的方法如下:
1、从PDF文件中提取文本,这里的重点是如何最大可能地还原文本。提取之后的文本,一个句子一行保存为文本文件。
2、将所有文本文件合并为一个单一的文本文件,这样,每一个句子就有一个唯一行号。
3、对每一行文本进行分词,建立倒排表,倒排表的格式为:词=包含该词的总行数N=行号